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Abstract

We study fair clustering problems as proposed by Chierichetti et al. [CKLV17]. Here,
points have a sensitive attribute and all clusters in the solution are required to be balanced
with respect to it (to counteract any form of data-inherent bias). Previous algorithms for
fair clustering do not scale well.

We show how to model and compute so-called coresets for fair clustering problems, which
can be used to significantly reduce the input data size. We prove that the coresets are
composable [IMMM14] and show how to compute them in a streaming setting. Furthermore,
we propose a variant of Lloyd’s algorithm that computes fair clusterings and extend it to a
fair k-means++ clustering algorithm. We implement these algorithms and provide empirical
evidence that the combination of our approximation algorithms and the coreset construction
yields a scalable algorithm for fair k-means clustering.
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1 Introduction

Our challenge is to support growth in the beneficial use of big data while ensuring
that it does not create unintended discriminatory consequences.
(Executive Office of the President, 2016 [MSP16])

As the use of machine learning methods becomes more and more common in many areas of
daily life ranging from automatic display of advertisements on webpages to mortgage approvals,
we are faced with the question whether the decisions made by these automatic systems are fair,
i.e. free of biases by race, gender or other sensitive attributes. While at first glance it seems
that replacing human decisions by algorithms will remove any kind of bias as algorithms will
only decide based on the underlying data, the problem is that the training data may contain all
sorts of biases. As a result, the outcome of an automated decision process may still contain these
biases.

Recent findings in algorithmically generated results strengthen this concern. For example,
it has been discovered that the COMPAS software that is used to predict the probability of
recidivism is much more likely to assign an incorrect high risk score to a black defendant and
low risk scores to a white defendant [ALMK16]. This raises the general question how we can
guarantee fairness in algorithms.

This questions comes with several challenges. The first challenge is to formally define the
concept of fairness. And indeed, it turns out that there are several ways to define fairness which
result in different optimal solutions [CPF+17], and it has recently been shown that they cannot
be achieved simultanuously unless the data has some very special (unlikely) structure [KMR17].

In this paper we build upon the recent work by Chiericetti et al. [CKLV17] and consider
fairness of clustering algorithms using the concept of disparate impact, which is a notion of
(un)fairness introduced to computer science by Feldman et. al. [FFM+15]. Disparate impact
essentially means that the result of a machine learning task does not correlate strongly with
sensitive attributes such as gender, race sexual or religious orientation. More formally and
illustrated on the case of a single binary sensitive attribute X and cluster variable C, a clustering
algorithm does not show disparate impact if it satisfies the p% rule (a typical value for p is 0.8)

stating that Pr{C=i|X=0}
Pr{C=i|X=1} ≤ p. If we assume that both attribute values appear with the same

frequency, then by Bayes Theorem the above translates to having at most p% points with a
specific attribute value in each cluster.

Chierichetti et. al. model fairness based on the disparate impact model in the following way.
They assume that every point has one of two colors (red or blue). If a set of points C has rC
red and bC blue points, then they define its balance to be min( rCbC ,

bC
rC

). The overall balance of
a clustering is then defined as the minimum balance of any cluster in it. Clusterings are then
considered fair if their overall balance is close to 1/2.

An algorithm ensuring fairness has to proceed with care; as mentioned before an algorithm
that obliviously optimizes an objective function may retain biases inherent in the training set.
Chierichetti et al. avoid this by identifying a set of fair micro-clusters via a suitably chosen
perfect matching and running the subsequent optimization on the microclusters. This clever
technique has the benefit of always computing a fair clustering, as the union of fair micro clusters
is necessarily also fair. However, the min-cost perfect matching is computationally expensive,
and it needs random access to the data, which may be undesirable. This raises the following
question:

Question 1. Is is possible to perform a fair data analysis efficiently, even when the size of the
data set renders random-access unfeasible?

Our contribution We address the issue of scaling algorithms by investigating coresets for fair
clustering problems, specifically for k-means. Given an input set P in d dimensional Euclidean
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space, the problem consists of finding a set of k centers c1, . . . , ck and a partition of P into k sets
C1, . . . , Ck such that

∑k
i=1

∑

p∈Ci
‖p − ci‖22 is minimized.

Roughly speaking, a coreset is a summary of a point set which has the property that it
approximates the cost function well for any possible candidate solution. The notion was proposed
by Har-Peled and Mazumdar [HM04] and has since recieved a wide range of attention, see [BFL16,
FL11, FMS07, FGS+13, FS05, LS10] for clustering. Coresets for geometric clustering are usually
composable, meaning that if S1 is a coreset for P1 and S2 is a coreset for P2, then S1 ∪ S2 is a
coreset for P1∪P2 [IMMM14]. Composability is arguably the main appeal of coresets; it enables
an easy reduction from coreset constructions to streaming and distributed algorithms which scale
to big data. Dealing with fair clustering, composability is not obvious. In this work, we initiate
the study of fair coresets and their algorithmic implications:

• The standard coreset definition does not satisfy composability for fair clustering problems.
We propose an alternative definition tailored to fair clustering problems and show that this
new definition satisfies composability. The definition straightforwardly generalizes to having ℓ
color classes and we show how a suitable coreset (of size O(ℓk log nǫd−1) for constant d) may be
computed efficiently.

• We provide different approximation algorithms for fair k-means clustering with two colors,
including a variant of Lloyd’s algorithm, two algorithms based on the approach of Chierichetti
et al. [CKLV17], and a (1 + ǫ)-approximation for cases with costant k.

• We empirically evaluate the approximation algorithms and our coreset approach. In par-
ticular, we demonstrate empirically how coresets enable scalable fair clustering algorithms and
also allow us to improve the solution quality by using better yet slower algorithms.

Additional related work The research on fairness in machine learning follows two main
directions. One is to find proper definitions of fairness. There are many different definitions
available including statistical parity [TRT11], disparate impact [FFM+15], disparate mistreat-
ment [ZVGRG17] and many others, e.g. [BHJ+17, HPS16]. For an overview see the recent survey
[BHJ+17]. Furthermore, the effects of different definitions of fairness and their relations have
been studied in [Cho16, CPF+17, KMR17]. A notion for individual fairness has been developed
in [DHP+12]. The other direction is the development of algorithms for fair machine learning
tasks. Here the goal is to develop new algorithms that solve learning tasks in such a way that
the result satisfies a given fairness condition. Examples include [CKLV17, HPS16, ZVGRG17].
The closest result to our work is the above described paper by Chierichetti et. al. [CKLV17].

Polynomial-time approximation schemes for k-means were e.g. developed in [BFL16, FL11,
KSS10], assuming that k is a constant. If d is a constant, [CKM16, FRS16] give a PTAS. If k
and d are arbitrary, then the problem is APX-hard [ACKS15, LSW17]. Lloyd’s algorithm [Llo57]
is an old but very popular local search algorithm for the k-means problem which can converge
to arbitrarlity bad solutions. By using k-means++ seeding [AV07] as initialization, one can
guarantee that the computed solution is a O(log k)-approximation.

Chierichetti et al. [CKLV17] develop approximation algorithms for fair k-center and k-median
with two colors. This approach was further improved by Backurs et al. [BIO+19], who pro-
posed an algorithm to speed up the fairlet computation. Rösner and Schmidt [RS18] extend
their definition to multiple colors and develop an approximation algorithm for k-center. Bercea
et al. [BGK+18] develop an even more generalized notion and provide bicriteria approxima-
tions for fair variants of k-center, k-median and also k-means. For k-center, they provide a
true 6-approximation. Very recently, Kleindessner et. al. [KAM19] proposed a linear-time 2-
approximation for fair k-center. This algorithm is not in the streaming setting, but still faster
then previously existing approaches for fair clustering.

The fair k-means problem can also be viewed as a k-means clustering problem with size
constraints. Ding and Xu [DX15] showed how to compute an exponential sized list of candidate
solutions for any of a large class of constrained clustering problems. Their result was improved
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by Bhattacharya et. al. [BJK18].
In addition to the above cited coreset constructions, coresets for k-means in particular have

also been studied empirically [AMR+12, AJM09, FGS+13, FS08, KMN+02]. Dimensionality
reductions for k-means are for example proposed in [BZD10, BZMD15, CEM+15, FSS13]. In
particular[CEM+15, FSS13] show that any input to the k-means problem can be reduced to ⌈k/ǫ⌉
dimensions by using singular value decomposition (SVD) while distorting the cost function by
no more than an ǫ-factor. Furthermore, [CEM+15] also study random projection based dimen-
sionality reductions. While SVD based reductions result in a smaller size, random projections
are more versatile. We discuss the work of Cohen et. al. in more detail

1.1 Preliminaries

We use P ⊆ R
d to denote a set of n points in the d-dimensional vector space R

d. The Euclidean
distance between two points p, q ∈ R

d is denoted as ‖p − q‖. The goal of clustering is to find
a partition of an input point set P into subsets of ’similar’ points called clusters. In k-means
clustering we formulate the problem as an optimization problem. The integer k denotes the
number of clusters. Each cluster has a center and the cost of a cluster is the sum of squared
Euclidean distances to this center. Thus, the problem can be described as finding a set C =
{c1, . . . , ck} and corresponding clusters C1, . . . , Ck such that cost(P,C) =

∑k
i=1

∑

p∈Ci
‖p− ci‖2

is minimized.
It is easy to see that in an optimal (non-fair) clustering each point p is contained in the set Ci

such that ‖p− ci‖2 is minimized. The above definition can be easily extended to non-negatively
and integer weighted point sets by treating the weight as a multiplicity of a point. We denote
the k-means cost of a set S weighted with w and center set C as costw(S,C). Finally, we recall
that the best center for a cluster Ci is its centroid µ(Ci) :=

1
|Ci|

∑

p∈Ci
p.

Proposition 2. Given a point set P ⊂ R
d and a point c ∈ R

d, the 1-means cost of clustering P
with c can be decomposed into

∑

p∈P ‖p − c‖2 = ∑

p∈P ‖p − µ(P )‖2 + |P | · ‖µ(P )− c‖2.

Next, we give the coreset definition for k-means as introduced by Har-Peled and Mazumdar.

Definition 3 (Coreset [HM04]). A set S ⊆ R
d together with non-negative weights w : S → N

is a (k, ǫ)-coreset for a point set P ⊆ R
d with respect to the k-means clustering problem, if for

every set C ⊆ R
d of k centers we have costw(S,C) ∈ (1± ǫ) · cost(P,C).

Fair clustering We extend the definition of fairness from [CKLV17] to sensitive attributes with
multiple possible values. As in [CKLV17], we model the sensitive attribute by a color. Notice
that we can model multiple sensitive attributes by assigning a different color to any combination
of possible values of the sensitive attributes. We further assume that the sensitive attributes are
not among the point coordinates. Thus, our input set is a set P ⊆ R

d together with a coloring
c : P → {1, . . . , ℓ}.

We define ξ(j) = |{p ∈ P : c(p) = j}|/|P | as the fraction that color j has in the input point
set. Then we call a clustering C1, . . . , Ck (α, β)-fair, 0 < α ≤ 1 ≤ β, if for every cluster Ci and
every color class j ∈ {1, . . . , ℓ} we have

α · ξ(j) ≤ |{p ∈ Ci : c(p) = j}|
|{p ∈ Ci}|

≤ β · ξ(j).

For any set C = {c1, . . . , ck} of k centers we define faircost(P,C) to be the minimum of
∑k

i=1

∑

p∈Ci
‖p − ci‖2 where the minimum is taken over all (α, β)-fair clusterings of P into

C1, . . . , Ck. The optimal (α, β)-fair clustering C ′ is the one with minimal faircost(P,C ′). Al-
ternatively to ξ(j), we could demand that the fraction of all colors is (roughly) 1/ℓ. However,
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point set P1

point set P2

4 4

‘coreset’ S1

4 4

‘coreset’ S2

faircost(P1 ∪ P2) ∈ O(ǫ)

4 44 4

faircost(S1 ∪ S2) ∈ Ω(ǫ∆)

Figure 1: A simple example of non-composable coresets.

notice that the best achievable fraction is ξ(j). Thus (α, β)-fairness is a strictly more general
condition.It is also arguably more meaningful if the data set itself is heavily imbalanced. Con-
sider an instance where the blue points outnumber the red points by a factor of 100. Then the
disparity of impact is at least 0.01. A (1, 1)-fair clustering then is a clustering where all clusters
achieve the best-possible ratio 0.01.

2 Fair coresets and how to get them

First, notice that the definition of coresets as given in Definition 3 does not translate well to
the realm of fair clustering. Assume we replace cost by faircost in Definition 3. Now consider
Figure 1. We see two point sets P1 and P2 with eight points each, which both have an optimum
cost of Ω(∆). Replacing the four left and the four right points by one point induces an error
of O(ǫ∆), which is an O(ǫ)-fraction of the total cost. Thus, the depicted sets S1 and S2 are
coresets. However, when we combine P1 and P2, then the optimum changes. The cost decreases
dramatically to O(ǫ). For the new optimal solution, S1∪S2 still costs Ω(ǫ∆), and the inequality
in Definition 3 is no longer satisfied.

We thus have to do a detour: We define a stronger, more complicated notion of coresets
which regains the property of being composable. Then, we show that a special type of coreset
constructions for k-means can be used to compute coresets that satisfy this stronger notion. It
is an interesting open question to analyze whether it is possible to design sampling based coreset
constructions that satisfy our notion of coresets for fair clustering.

For our detour, we need the following generalization of the standard k-means cost. A coloring
constraint for a set of k cluster centers C = {c1, . . . , ck} and a set of ℓ colors {1, . . . , ℓ} is a k× ℓ
matrix K. Given a point set P with a coloring c : P → {1, . . . , ℓ} we say that a partition of P into
sets C1, . . . , Ck satisfies K if |{p ∈ Ci : c(p) = j}| = Kij. The cost of the corresponding clustering

is

k
∑

i=1

∑

p∈Ci

‖p − ci‖2 as before. Now we define the color-k-means cost colcost(P,K,C) to be the

minimal cost of any clustering satisfying K. If no clustering satisfies K, colcost(P,K,C) := ∞.
Notice that we can prevent the bad example in Figure 1 by using the color-k-means cost: If

colcost(P,K,C) is approximately preserved for the color constraints modeling that each cluster
is either completely blue or completely red, then S1 and S2 are forbidden as a coresets.

Definition 4. Let P be a point set with coloring c : P → {1, . . . , ℓ}. A non-negatively integer
weighted set S ⊆ R

d with a coloring c′ : S → {1, . . . , ℓ} is a (k, ǫ)-coreset for P for the (α, β)-fair
k-means clustering problem, if for every set C ⊆ R

d of k centers and every coloring constraint
K we have

colcostw(S,K,C) ∈ (1± ǫ) · colcost(P,K,C),

where in the computation of colcost(S,K,C) we treat a point with weight w as w unweighted
points and therefore a point can be partially assigned to more than one cluster.
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Definition 4 demands that the cost is approximated for any possible color constraint. This
implies that it is approximated for those constraints we are interested in. Indeed, the fairness
constraint can be modeled as a collection of color constraints. As an example for this, assume we
have two colors and k is also two; furthermore, assume that the input is perfectly balanced, i.e.,
the number of points of both colors is n/2, and that we want this to be true for both clusters as
well. Say we have a center set C = {c1, c2} and define Ki by Ki

11 = i,Ki
12 = i,Ki

21 = n
2 −i,Ki

22 =
n
2 − i, i.e., Ki assigns i points of each color to c1 and the rest to c2. The feasible assignments
for the fairness constraint are exactly those assignments that are legal for exactly one of the
color constraints Ki, i ∈ {0, . . . , n2 }. So since a coreset according to Definition 4 approximates
colcost(P,C,Ki) for all i, it in particular approximately preserves the cost of any fair clustering.
This also works in the general case: We can model the (α, β)-fair constraint as a collection of
color constraints (and basically any other fairness notion based on the fraction of the colors in
the clusters as well).

Proposition 5. Given a center set C, |C| = k, the assignment restriction to be (α, β)-fair can
be modeled as a collection of coloring constraints.

Proof. Recall ξ(j) = |{p∈P : c(p)=j}|
|P | . Let C = {C1, . . . , Ck} be a clustering and let K be the

coloring constraint matrix induced by C. We observe that the ith row sums up to |Ci| and the
jth column sums up to |{p ∈ P : c(p) = j}|. Then C is (α, β)-fair if and only if α · ξ(j) ≤
|{p∈Ci : c(p)=j}|

|Ci| =
Ki,j

∑k
h=1

Ki,h

≤ β · ξ(j) for all i ∈ {1, . . . , k} and j ∈ {1, . . . , ℓ}.

The main advantage of Definition 4 is that it satisfies composability. The main idea is that
for any coloring constraint K, any clustering satisfying K induces specific color constraints K1

and K2 for P1 and P2; and for these, the coresets S1 and S2 also have to satisfy the coreset
property. We can thus proof the coreset property for S and K by composing the guarantees for
S1 and S2 on K1 and K2.

Lemma 6 (Composability). Let P1, P2 ⊂ R
d be point sets. Let S1, w1, c1 be a (k, ǫ)-coreset for

P1 and let S2, w2, c2 be a (k, ǫ)-coreset for P2 (both satisfying Definition 4). Let S = S1 ∪ S2

and concatenate w1, w2 and c1, c2 accordingly to obtain weights w and colors c for S. Then S,
w, c is a coreset for P = P1 ∪ P2 satisfying Definition 4.

Proof. Let C = {c1, . . . , ck} ⊂ R
d be an arbitrary set of centers, and let K ∈ N

k×ℓ be a an
arbitrary coloring constraint for C. We want to show that

colcostw(S,K,C) ∈ (1± ǫ) colcost(P,K,C).

Let γ : P → C be an assignment that minimizes the assignment cost among all assignments
that satisfy K, implying that colcost(P,K,C) =

∑

p∈P ||x − γ(x)||2. Since γ satisfies K, the
number of points of color j assigned to each center ci ∈ C is exactly Kij. We split K into two
matrices K1 and K2 with K = K1 +K2 by counting the number of points of each color at each
center which belong to P1 and P2, respectively. In the same fashion, we define two mappings
γ1 : P1 → C and γ2 : P2 → C with γ1(p) = γ(p) for all p ∈ P1 and γ2(p) = γ(p) for all p ∈ P2.

Now we argue that colcost(P,C,K) = colcost(P1, C,K1) + colcost(P2, C,K2). Firstly, we
observe that colcost(P,C,K) ≤ colcost(P1, C,K1) + colcost(P2, C,K2) since γ1 and γ2 are legal
assignments for the color constraint K1 and K2, respectively, and they induce exactly the same
point-wise cost as γ. Secondly, we argue that there cannot be cheaper assignments for K1 and
K2. Assume there where an assignment γ′1 with

∑

p∈P1
||x− γ′1(x)||2 < colcost(P1, C,K1). Then

we could immediately adjust γ to be identical to γ′1 on the points in P1 instead of γ1, and this
would reduce the cost; a contradiction to the optimality of γ. The same argument holds for γ2.
Thus, colcost(P,C,K) = colcost(P1, C,K1) + colcost(P2, C,K2) is indeed true.
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Now since S1, w1, c1 is a coreset for P1 and S2, w2, c2 is a coreset for P2, they have to
approximate colcost(P1, C,K1) and colcost(P2, C,K2) well. We get from this that

colcostw(S1, C,K1) + colcostw(S2, C,K2)

∈ (1± ǫ) · colcost(P1, C,K1) + (1± ǫ) · colcost(P2, C,K2)

∈ (1± ǫ) · colcost(P,C,K).

Observe that colcostw(S,C,K) ≤ colcostw(S1, C,K1)+colcostw(S2, C,K2) since we can concate-
nate the optimal assignments for S1 and S2 to get an assignment for S. Thus, colcostw(S,C,K) ≤
(1 + ǫ) · colcost(P,C,K). It remains to show that colcostw(S,C,K) ≥ (1− ǫ) · colcost(P,C,K).

Let γ′ : S → C be an assignment that satisfies K and has cost colcostw(S,C,K) (for sim-
plicity, we treat S as if it were expanded by adding multiple copies of each weighted point; recall
that we allow weights to be split up for S). Let γ′1 : P1 → C and γ′2 : P2 → C be the result
of translating γ′ to P1 and P2, and split K into K ′

1 and K ′
2 according to γ′ as we did above.

Then colcostw(S,C,K) = colcostw(S1, C,K
′
1) + colcostw(S2, C,K

′
2) by the same argumentation

as above. Furthermore,

colcostw(S,C,K) = colcostw(S1, C,K
′
1) + colcostw(S2, C,K

′
2)

≥(1− ǫ) colcostw(P1, C,K
′
1) + (1− ǫ) colcostw(P2, C,K

′
2)

≥(1− ǫ) colcost(P,C,K).

where the first inequality holds by the coreset property and the second is true since we can also
use γ′ to cluster P , implying that colcostw(P,C,K) ≤ colcostw(P1, C,K

′
1)+colcostw(P2, C,K

′
2).

That completes the proof.

We have thus achieved our goal of finding a suitable definition of coresets for fair clustering.
Now the question is whether we can actually compute sets which satisfy the rather strong Def-
inition 4. Luckily, we can show that a special class of coreset constructions for k-means can be
adjusted to work for our purpose. A coreset construction for k-means is an algorithm that takes
a point set P as input and computes a summary S with integer weights that satisfies Definition 3.

We say that a coreset construction is movement-based if

• all weights w(p), p ∈ S are integers

• there exists a mapping π : P → S with σ−1(p) = w(p) for all p ∈ S which satisfies that
∑

x∈P
||x− π(x)||2 ≤ ε2

16
· OPTk, where OPTk = min

C⊂Rd,|C|=k
cost(P,C).

Movement-based coreset constructions compute a coreset by ‘moving’ points to common places
at little cost, and then replacing heaps of points by weighted points. Examples for movement-
based coreset constructions are [FGS+13, FS05, HM04]. Now the crucial observation is that we
can turn any movement-based coreset construction for k-means into an algorithm that computes
coresets for fair k-means satisfying Definition 4. The main idea is to run ALG to move all points
in P to common locations, and then to replace all points of the same color at the same location
by one coreset point. This may result in up to ℓ points for every location, i.e., the final coreset
result may be larger than its colorless counterpart by a factor of at most ℓ. The rest of the
proof then shows that Definition 4 is indeed true, following the lines of movement-based coreset
construction proofs.

Theorem 7. Let ALG be a movement-based coreset construction for the k-means problem. As-
sume that given the output P ∈ Rd, k and ǫ, the size of the coreset that ALG computes is
bounded by f(|P |, d, k, ǫ). Then we can construct an algorithm ALG′ which constructs a set S′

that satisfies Definition 4. The size of this set is bounded by ℓ · f(|P |, d, k, ǫ), where ℓ is the
number of colors.
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Proof. For any P , ALG gives us a set S and a non-negative weight function w such that Defini-
tion 3 is true, i.e.,

costw(S,C) ∈ (1± ǫ) cost(P,C) (1)

holds for all set of centers C with |C| = k. Since ALG is movement-based, the weights are
integer; and there exists a mapping π : P → S, such that at most w(p) points from P are
mapped to any point p ∈ S, and such that

∑

x∈P
||x− π(x)||2 ≤ ε2

16
· OPTk (2)

is true. Statement (2) is stronger than (1), and we will only need (2) for our proof. We will,
however, need the mapping π to construct ALG′. Usually, the mapping will be at least implicitly
computed by ALG. If not or if outputting this information from ALG is cumbersome, we do the
following. We assign every point in P to its closest point in S. The resulting mapping has to
satisfy 2, since the distance of any point to its closest point in S can only be smaller than in any
given assignment. We may now assign more than w(p) points to S. We resolve this by simply
changing the weights of the points in S to match our mapping. Since we now have S, w and π
satisfying (2), we can proceed as if ALG had given a mapping to us.

Now we do what movement-based coreset constructions do internally as well: We consolidate
all points that share the same location. However, since they may not all be of the same color,
we possibly put multiple (at most ℓ) copies of any point in S into our coreset S′. More precisely,
for every p ∈ S, we count the number np,i of points of color i. If np,i is at least one, then we put
p into S′ with color i and weight np,i. The size of S′ is thus at most ℓ · f(|P |, d, k, ǫ).

The proof that S′ satisfies 4 is now close to the proof that movement-based coreset construc-
tions work. To execute it, we imagine S′ in its expanded form (where every point p is replaced by
np,i points of color i. We call this expanded version P ′. Notice that cost(P ′, C) = costw(S

′, C)
for all C ⊂ R

d. We only need P ′ for the analysis. Notice that π can now be interpreted as a
bijective mapping between P and P ′ and this is how we will use it.

Let C be an arbitrary center set with |C| = k and let K be an arbitrary coloring constraint.
We want to show that colcost(P ′,K,C) ∈ (1 ± ǫ) · colcost(P,K,C). If no assignment satisfies
K, then colcost(P,K,C) is infinity, and there is nothing to show. Otherwise, fix an arbitrary
optimal assignment γ : P → C of the points in P to C among all assignments that satisfy K.
Notice that γ and π are different assignments with different purposes; γ assigning a point in P
to its center, and π assigning each point in P to its moved version in P ′.

We let vc(x) := ||x − γ(x)|| be the distance between x ∈ P and the center its assigned to.
Let vc be the |P |-dimensional vector consisting of all vc(x) (in arbitrary order). Then we have

colcost(P,C,K) =
∑

x∈P
||x− γ(x)||2 =

∑

x∈P
vc(x)

2 = ||vc||2.

Furthermore, we set vp(x) = ||π(x)−x|| and let vp be the |P |-dimensional vector of all vp(x)

(ordered in the same way as vc). We have
∑

x∈P ||π(x)−x||2 ≤ ε2

16
·OPTk by our preconditions.

Now we want to find an upper bound on colcost(P ′, C,K). Since we only need an upper
bound, we can use γ for assigning the points in P ′ to C. We already know that γ satisfies K for
the points in P ; and the points in P ′ are only moved versions of the points in P . We use this
and then apply the triangle inequality:

colcost(P ′, C,K) ≤
∑

y∈P ′

||y − γ(π−1(y))||2 =
∑

x∈P
||γ(x)− π(x)||2

≤
∑

x∈P
(||γ(x) − x||+ ||x− π(x)||)2 =

∑

x∈P
(vc(x) + vp(x))

2 = ||vc + cp||2.
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Now we can apply the triangle inequality to the vector vc + vp to get ||vc + vp|| ≤ ||vc||+ ||vp|| ≤
√

colcost(P,C,K) +
√

ε2

16 ·OPTk. So we know that

colcost(P ′, C,K) ≤ ||vc + vp||2 ≤ colcost(P,C,K) +
ε2

16
·OPTk

+ 2
√

colcost(P,C,K) ·
√

ε2

16
· OPTk

≤ colcost(P,C,K) +
ε2

16
·OPTk

+
ε

2
· colcost(P,C,K)

< (1 + ǫ) · colcost(P,C,K).

To obtain that also colcost(P,C,K) ≤ (1 + ǫ) · colcost(P ′, C,K), we observe that the above
argumentation is symmetric in P and P ′. No argument used that P is the original point set and
P ′ is the moved version. So we exchange the roles of P and P ′ to complete the proof.

We can now apply Theorem 7. Movement-based constructions include the original paper
due to Har-Peled and Mazumdar [HM04] as well as the practically more efficient algorithm
BICO [FGS+13]. For more information on the idea of movement-based coreset constructions,
see Section 3.1 in the survey [MS18]. For BICO in particular, Lemma 5.4.3 in [Sch14] gives a proof
that the construction is movement-based. Using Theorem 7 and Corollary 1 from [FGS+13], we
then obtain the following.

Corollary 8. There is an algorithm in the insertion-only streaming model which computes a
(k, ǫ)-coreset for the fair k-means problem according to Definition 4. The size of the coreset and
the storage requirement of the algorithm is m ∈ O(ℓ · k · log n · ǫ−d+2), where ℓ is the number of
colors in the input, and where d is assumed to be a constant.

The running time of the algorithm is O(N(m)(n+ log(n∆)m)), where ∆ is the spread of the
input points and N(m) is the time to compute an (approximate) nearest neighbor.

3 Approximation algorithms for fair k-means

We give a full overview of algorithms for fair k-means clustering in Section 5, but give an overiew
here. Notice that while the previous section was for multiple colors, we now go back to the case
with only two colors, assuming that exactly half of the input points are colored with each color,
and demanding that this is true for all clusters in the clustering as well. We call this special
case exactly balanced. We do this because for multiple colors, no true approximation algorithms
are known, and there is indication that this problem might be very difficult (it is related to
solving capacitated k-median/k-means, a notoriously difficult question). Notice that the coreset
approach works for arbitrary (α, β)-fair k-means.

For two colors, Chierichetti et. al. [CKLV17] outline how to transfer approximation algo-
rithms for clustering to the setting of fair clustering, but derive the algorithms only for k-center
and k-median. The idea is to first compute a coarse clustering where the microclusters are called
fairlets, and then to cluster representatives of the fairlets to obtain the final clustering. The
following algorithm extends their ideas to compute fairlets for k-means.

The idea of the algorithm is the following. In any optimal solution, the points can be paired
into tuples of a blue and a red point which belong to the same optimal cluster. Clustering the
n/2 ≥ k tuples with n/2 centers cannot be more expensive than the cost of the actual optimal k-
means solution. Thus, we would ideally like to know the tuples and partition them into clusters.
Since we cannot know the tuples, we instead compute a minimum cost perfect matching between
the red and blue points, where the weight of an edge is the 1-means cost of clustering the two
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Algorithm 1 Fairlet computation

1: Let B be the blue points and R be the red points
2: For any b ∈ B, r ∈ R, set c(r, b) = ||r − b||2/2
3: Consider the complete bipartite graph G on B and R
4: Compute a min cost perfect matching M on G
5: For each edge (r, b) ∈ M , add µ({r, b}) to F
6: Output F

points with an optimal center (this is always half their squared distance). The matching gives us
tuples; these tuples are the fairlets. The centroid of each fairlet now serves as its representative.
The following theorem shows that clustering the representatives yields a good solution for the
original problem.

Theorem 9. There is an algorithm that achieves the following. For any P ⊂ R
d which contains

|P |/2 blue and |P |/2 red points, it computes a set of representatives F ⊂ P of size |P |/2, such
that an α-approximate solution for the colorless k-means problem on F yields a (5.5α + 1)-
approximation for the fair k-means problem on P .

Similarly to the fairlet computation, the problem of finding an fair assignment, i.e., an cost-
wise optimal assignment of points to given centers which is fair, can be modeled as a matching
problem. This algorithm, as well as algorithms for fairlet computation and fair assignment for
weighted points are specified in Section 5 (Algorithms 8, 9, 10).

The fairlet computation and fair assignment give rise to the following algorithms, where we use
k-means++ as the approximation algorithm for the unconstrained k-means problem. It consists
of a clever sampling step called D2-sampling, followed by Lloyd’s algorithm. Lloyd’s algorithm
is a local search heuristic. Starting with initial centers, it alternatingly assigns points to their
closest center and computes the optimum center for each cluster (the centroid). The two steps
are repeated until a stopping criterion is met, for example until the algorithm is converged or has
reached a maximum number of iterations. When run to convergence, the initial solution is refined
to a local optimum. Because of the clever sampling, k-means++ is a O(log k)-approximation
on expectation, and due to the combination with the refinement by Lloyd’s algorithm, it has
become the state-of-the-art algorithm for k-means in practive.

CKLV-k-means++ computes a clustering on the fairlet representatives with k-means++ and
then assigns both points in a fairlet to the center that their representative is assigned to.

Algorithm 2 CKLV-k-means++

1: Compute fairlet representatives F with Algorithm 1 or 9
2: Run standard k-means++ on F and assign fairlet points accordingly

Algorithm 3 Reassigned-CKVL

1: Compute a center set C with Algorithm 2
2: Compute an optimal fair assignment of all points in P to C

Both variants compute a O(log k)-approximation to the fair k-means problem. The second
variant stems from the fact that a solution computed by k-means++ on the fairlet representatives
can be improved by improving the fair assignment of the points.

Finally, we also present a direct extension of Lloyd’s algorithm to the fair k-means setting.
The idea is to remove the loss in the quality due to the fairlet approach. We use k-means++
on the fairlets to obtain an initial solution, but then run a fair variant of Lloyd’s algorithm on
the actual data instead of running Lloyd’s algorithm on the fairlets. When doing Lloyd’s, it is
the assignment step which becomes nontrivial. Changing the center of a cluster to its centroid

9



does not violate the fairness constraint, and it is still the optimal choice for the cluster. The
assignment step, however, does no longer produce legal clusterings. We have to replace it with the
fair assignment step. Because of this, fair Lloyd’s is not a competitive algorithm when applied to
the whole input because it becomes very slow. On the other hand, it computes the best solutions
in our experiments. As we will see, the use of coresets speeds up the computation so much that
it allows us to use fair Lloyd’s to improve the solution quality in reasonable time.

Algorithm 4 Fair k-means++

1: Compute initial centers C0 by Algorithm 2
2: For all i ≥ 0, unless a stopping criterion is met:
3: Assign every point to a center Ci by evoking Algorithm 8, partitioning P into P 1

i , . . . , P
k
i

4: Set Ci+1 = {µ(P j
i ) | j ∈ [k]}

From a theretical point of view, we also state how to obtain a PTAS for fair k-means clustering
by following known techniques (Algorithm 14 in the Section 5). We also extend the PTAS to
the streaming setting. For this we develop a novel combination of the coreset construction with
a sketching technique due to Cohen et. al. [CEM+15] which may be of independent interest.
For sketching techniques, the input points are usually represented by a matrix A ∈ R

n×d. Our
theoretical streaming algorithm can be found in the Section 5 (Algorithm 15). It reduces the
dimensionality of the input points in a clever way. We obtain the following result.

Theorem 10. Let 0 < ε < 1/2. Assume there is streaming algorithm ALG that receives the
rows of a matrix A ∈ R

n×d and maintains an (ǫ, k)-coreset T with the following property: We
can replace weighted points in T by a corresponding number of copies to obtain a matrix A′ such
that

∑n
i=1 ‖Ai∗ −Ai′∗‖2 ≤ ε2

16 ·OPT. Furthermore, assume that ALG uses f(k, ε, d, log n) space.
If we use ALG in Step 2 of Algorithm 15, then Algorithm 15 will use f(k, ε/25, c′ · (k/ε)2, log n) ·
d+O(kd/ǫ2) space to compute a set of centers C with

faircost(P,C) ≤ γ(1 + ε) · OPT

where OPT is the cost of an optimal solution for A and c′ > 0 is a constant such that the
guarantees of Theorem 12 from [CEM+15] are satisfied.

Notice that combining this algorithm with Corollary 8 replaces the exponential dependency
on d with an exponential dependency on k. It is thus viable for very small values of k.

4 Empirical evaluation

Here we evaluate the approximation algorithms and our coreset approach empirically.

Algorithms We compare CKLV-k-means++ (Algorithm 2), Reassigned-CKLV (Algorithm 3)
and fair k-means++ (Algorithm 4). When we need to execute the algorithms on coresets, which
are weighted, we use the algorithms for weighted inputs in Section 5.4.

Data sets We use the same data sets as studied in [CKLV17] and choose the same sensitive
dimensions. The data sets all originate from the UCI library [Lic13]. We processed the data sets,
converted or deleted non-numerical features and deleted data points with missing entries, and
made sure that the data sets are balanced. We get data sets with the following properties: Adult:
A US census record data set from 1994 (n = 21542; d = 6; sensitive attribute: gender). Diabetes:
A data set about a study with diabetis patients (n = 94116; d = 29; sensitive attribute: marital
status) Bank: A data set about a marketing campaign of a Portuguese bank (n = 34600; d = 11;
sensitive attribute: gender).
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Setting All implementations were made in C or C++. For the minimum cost flow algorithm,
we used capacity scaling as implemented in the C++ Library for Efficient Modeling and Op-
timization in Networks (LEMON) [EGR]. As the coreset algorithm, we use BICO [FGS+13],
following Corollary 8. We (heuristicaally) set the coreset size to 200k. All experiments were
run on one core of a Intel(R) Xeon(R) E3-1240 v6 processor with 32GB of main memory. As
the stopping criterion for all Lloyd’s variants, we use a maximum of 100 iterations. Since the
k-means++ seeding introduces (a small amount of) variance, we repeat all experiments five times
to account for the randomness.

Results We did experiments with small, medium and large data sets. To evaluate the effect of
the coreset on the quality, we can only use small data sets because we need to compute solutions
on the input data as well to compare the quality. Thus, we use small subsampled data sets of
small increasing size between 500 and 5000. We then compute a 2-clustering on the data (the
small choice of k is due to the high running time of Fair k-means++) and compare the quality
of the solutions computed on the input set with those computed on the coreset (evaluated on
the input set). The left side of Figure 2 shows the coreset quality for all data sets. The error is
low, the largest error (up to 3,5%) occurs for the data set bank.

On the right side Figure 2, we depict the running time. We can clearly see that the runtime
of Fair k-means++ does not scale even to medium sized data. The coreset approach is relatively
unaffected by the increasing data size, since the coreset computation is nearly linear and the
coreset size only depends on k. CKLV-k-means++ is a much faster alternative to Fair k-means++,
but we already anticipate that it will not scale to big data.

To further evaluate the running times on larger data sets, we did further experiments for
the data set diabetic (because it is the largest of the data sets). The first diagram of Figure 3
shows the runtime of all algorithms on the small data sets (identical to the corresponding di-
agram in Figure 2). In the second diagram, we see results for data sets of medium size. As
expected, CKLV-k-means++ can handle middle sized data set. However, at n = 26.000, the mem-
ory requirement of the fairlet computation became larger than the main memory, making the
approach basically infeasible. Notice that we could speed up the algorithm somewhat by im-
proving the implementation. However, there is no simple way of bypassing the problem that the
bipartite graph needed for the fair assignments grows quadratically in the input point size. The
computations on the coreset, however, are unaffected by the increase in the data. We can easily
perform even Fair k-means++ on the coreset.

Indeed, the running time for the coreset algorithms mainly scales with k: That is because the
coreset size depends on k, so the computation time on the coreset increases with k. We see this
on the right side of Figure 3, where we see the running times of the algorithms on the diabetic

data set up to its full size, for k = 2, k = 5 and for k = 10. As we can see, the choice of k has
more effect on the running time than increasing the size of the input data.

Figure 4 compares the solution quality of Fair k-means++, CKLV-k-means++ and Reassigned-CKLV

on subsampled data sets of size 1000 with increasing values of k. The diagrams are normalized
to the cost of CKLV-k-means++ (blue).

The left side shows the quality on all data sets. The right side shows the costs of the fairlets
for all data sets. The cost of the fairlet micro-clustering can be seen as the ‘cost of fairness’. It
is a lower bound on the cost of any clustering.

As we can see, the fairlets are very expensive for bank and adult (probably due to a large
gender bias that is present in these data sets). Compared to the cost for the fairlets, the actual
clustering cost gets negligible with increasing k. This reflects in the quality experiments as well.
For bank and adult, the algorithms perform basically identically well.

For data set diabetic, the price of fairness is not as high, leaving some room for opti-
mization to the algorithms. Here we see that Fair k-means++ achieves the best cost. Fair

k-means++ (red) gains up to 5% in quality on diabetic compared to the optimized fairlet ap-
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Figure 2: Evaluation of the coreset with respect to quality decrease and runtime improvement.
The left side shows the cost of the computed solutions. The highest deviation occurs for bank.
The right side shows the improvement in the running time.
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Figure 3: Runtime development for diabetic.

proach Reassigned-CKLV. Compared to the unoptimized solution of CKLV-k-means++, the gain
is higher.

5 Approximation algorithms for fair k-means (full)

5.1 Lloyd’s algorithm and k-means++

The most known heuristic for (colorless) k-means in practice is the k-means algorithm / Lloyd’s
algorithm [Llo57]. It is a local search heuristic that alternates an assignment step with recomput-
ing the centers; it is of similar nature as EM type algorithms. We state the k-means algorithm
as Algorithm 5.

Algorithm 5 k-means/Lloyd’s algorithm

1: Compute initial centers C0

2: For all i ≥ 0, unless a stopping criterion is met:
3: Assign every point to its closest center in Ci, partitioning P into P 1

i , . . . , P
k
i

4: Set Ci+1 = {µ(P j
i ) | j ∈ [k]}

Both steps of the algorithm are improving (or at least do not worsen the solution): The
cheapest way to assign points to centers is to assign every point optimally, and the centroid is
always the best center for a cluster by Proposition 2. A typical stopping criterion is when a given
number of iterations is reached, or when the decrease of the objective function per iteration falls
below a given threshold (notice, however, that this stopping criterion has to be parametrized
in a data dependent fashion). When implementing Lloyd’s, some care should be given to the
possible event that a cluster runs out of points. A typical reaction to this is to choose a new
center randomly (or by k-means++ seeding).

The k-means algorithm crucially depends on the initialization. The de facto standard initial-
ization method has become k-means++ seeding, which guarantees a O(log k) approximation; the
combination of seeding and k-means++ is called the k-means++ algorithm, see Algorithm 6.

Algorithm 6 k-means++

1: Initialize C = {p} with a random point p ∈ P
2: While |C| < k

3: add q ∈ P to C with probability
min
c∈C

‖q−c‖2
∑

q′∈P min
c∈C

‖q−c‖2

4: Run Algorithm 6 with C0 = C as initial centers
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Figure 4: Comparison of the solution quality. The left side compares the three approaches. The
right side shows how the clustering cost relates to the cost of the fairlet computation. For bank

and adult, the clustering cost is dominated by the ‘cost of fairness’. For diabetic, this is not
the case, implying that there is optimization potential for the approximation algorithms.
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5.2 Fairlets for k-means

Chierichetti et. al. [CKLV17] outline how to transfer approximation algorithms for clustering
to the setting of fair clustering via the computation of fairlets, but derive the algorithms only
for k-center and k-median. We give a method to compute fairlets for k-means in Algorithm 7.
Computing an α-approximation for k-means on the fairlets provides a (5α + 1)-approximation
for the fair k-means clustering problem:

Algorithm 7 Fairlet computation

1: Let B be the blue points and R be the red points
2: For any b ∈ B, r ∈ R, set c(r, b) = ||r − b||2/2
3: Consider the complete bipartite graph G on B and R
4: Compute a min cost perfect matching M on G
5: For each edge (r, b) ∈ M , add µ({r, b}) to F
6: Output F

Theorem 9. There is an algorithm that achieves the following. For any P ⊂ R
d which contains

|P |/2 blue and |P |/2 red points, it computes a set of representatives F ⊂ P of size |P |/2, such
that an α-approximate solution for the colorless k-means problem on F yields a (5.5α + 1)-
approximation for the fair k-means problem on P .

Proof. Fix some optimal fair k-means clustering solution C∗ on P . Observe that C∗ partitions
P into n/2 pairs, each consisting of a blue and a red point. Let (r, b) be a pair which is assigned
to center c ∈ C∗ in the optimal solution. This costs more than assigning both r and b to their
optimum center, namely, the centroid of r and b. The cost of assigning r and b to µ({r}, {b}) is
||r− b||2/2. Thus, the sum of ||r− b||2/2 summed over all pairs is at most OPT . In Algorithm 7,
we set the cost c(r, b) to ||r − b||2/2. We just argued that there is a partitioning of the points
into n/2 bichromatic pairs such that the sum of the costs is at most OPT . By computing a min
cost perfect matching, we obtain the cheapest such partitioning, which thus also costs at most
OPT .

Now let C be any solution, and assign all points in F to their closest center. By Proposition 2,
∑

µ({r,b})∈F
min
c∈C

||r − c||2 + ||b− c||2 = 2cost(F,C) + c(M).

Thus, 2 cost(F,C)+c(M) is the cost that we pay if we insist on clustering both points of a fairlet
together. If we compute an optimal assignment of P to C, then the cost can only be smaller.

It remains to argue that 2 cost(F,C) + 2c(M) is small. First recall that
∑

µ({r,b})∈F
||r − b||2/2 ≤ OPT, (3)

so c(M) ≤ OPT . Furthermore, say w.l.o.g. that r is cheaper in cost(P,C) than b, and consider
the center c ∈ C which is the closest center for r. Then r pays the same as it would pay in
cost(P,C). We can estimate the cost of b by ||b − c||2 ≤ 2||b − r||2 + 2||r − c||2 ≤ 2||b − r||2 +
0.5 · ||r − c||2 + 1.5 · ||b− c′||2, where c′ ∈ C is the closest center to b. It we sum this up for all
pairs, we get:

2 cost(F,C)

≤
∑

µ({r,b})∈F
2||b− r||2 + 1.5 · ||r − c||2 + 1.5 · ||b− c′||2

≤4 · OPT + 1.5 · cost(P,C) ≤ 5.5 · faircost(P,C),

where we use (3) for the second inequality. If we now compute an α-approximation on F , we
get a solution with 2 cost(F,C) ≤ 5.5αOPT , leading to a total cost of 2 cost(F,C) + c(M) ≤
(5.5α + 1) · faircost(P,C).
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5.3 Fair assignment

Algorithm 8 Fair assignment

1: Let B be blue points, R red points and C centers
2: ∀b ∈ B, r ∈ R, set c(r, b) = minc∈C ||r − c||2 + ||b − c||2 and cen(r, b) = argmin c ∈ C||r −
c||2 + ||b− c||2
3: Consider the complete bipartite graph G on B and R
4: Compute a min cost perfect matching M on G wrt c
5: For each edge (r, b) ∈ M , assign r and b to cen(r, b)
6: Output F

With the fairness constraint, assigning points to a given set of centers C becomes non-trivial.
Similarly to the fairlet computation, we can model the assignment step as a matching problem.
The points are the vertices. Between any blue point b and any red point r, we insert an edge
whose cost is the minimum cost of assigning b and r to the same center. Now we want to match
every blue to a red point while minimizing the cost, i.e., we look for a minimum cost perfect
matching in a bipartite graph. This problem is polynomially solvable, e.g., by the Hungarian
method.

5.4 Fairlets and fair assignment for weighted inputs

Algorithm 9 Fairlet computation (weighted)

1: Let B be the blue points and R be the red points
2: For any b ∈ B, r ∈ R, set c(r, b) = ||r − b||2/2
3: Construct a complete bipartite network where every b ∈ B is a source with supply w(b), every
r ∈ R is a sink with demand w(b), every b is connected to every r with a directed edge of infinite
capacity
4: Compute an integral minimum cost flow with respect to the edge costs c that satisfies all
supplies and demands
5: For all r ∈ R, b ∈ B, add µ({r, b}) to F with weight f((r, b))
6: Output F

Algorithm 10 Fair assignment (weighted)

1: Let B be blue points, R red points, w the weights and C the centers
2: ∀b ∈ B, r ∈ R, set c(r, b) = minc∈C ||r − c||2 + ||b − c||2 and cen(r, b) = argmin c ∈ C||r −
c||2 + ||b− c||2
3: Construct a complete bipartite network where every b ∈ B is a source with supply w(b), every
r ∈ R is a sink with demand w(b), every b is connected to every r with a directed edge of infinite
capacity
4: Compute an integral minimum cost flow with respect to the edge costs c that satisfies all
supplies and demands
5: For all r ∈ R, b ∈ B, assign f((r, v)) weight from r and b to cen(r, b)
6: Output F

Notice that we want to use our algorithms on coresets, i.e., on weighted inputs. Thus, we want
to solve the assignment in a setting where the points have (splittable) weights, without incurring
a runtime that depends on the vertex weights. In this context, it is more convenient to view the
problem as a minimum cost flow problem. The blue points are the sources, the red points are
the sinks, and the supplies and demands correspond to the point weights. The minimum cost
flow problem can be solved in polynomial time and for integral capacities, supplies and demands,
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there is an optimal flow which is integral. A strongly polynomial algorithm computing an integral
min cost flow is Enhanced Capacity Scaling with a running time of O((m log n)(m + n log n)).
In our setting, m ∈ Θ(n2), so the running time is O(n4 log n). The standard text book [AMO93]
provides a detailed description of this and several other minimum cost flow algorithms.

Observation 11. The fair assignment step can be performed optimally in strongly polynomial
time, even if the points are weighted. The same is true for the fairlet computation.

5.5 CKLV-k-means++ and Reassigned-CKVL

We can now combine the fairlet computation with k-means++.

Corollary 12. Algorithm 11 computes an expected O(log k)-approximation for the fair k-means
problem.

Algorithm 11 CKLV-k-means++

1: Compute fairlet representatives F with Algorithm 7 or 9
2: Run Algorithm 6 on F

Algorithm 12 Reassigned-CKVL

1: Compute a center set C with Algorithm 11
2: Assign all points in P to C with Algorithm 8 or 10

5.6 Fair k-means

Finally, we want to adapt Lloyd’s algorithm to the setting of fair k-means clustering. The idea
behind this is to avoid the (constant-factor) loss of first computing fairlets and then using an
approximation algorithm. As initialization, we use the k-means++ seeding on the fairlets, which
guarantees that the outcome is a O(log k) approximation on expectation. For the seeding, we
do not perform Lloyd on the fairlets, but only the seeding part of k-means++.

When computing a fair clustering, it is the assignment step of Lloyd’s algorithm which be-
comes nontrivial. Changing the center of a cluster to its centroid does not violate the fairness
constraint, and it is still the optimal choice for the cluster. The assignment step, however, does
no longer produce legal clusterings. We have to replace it with the fair assignment step.

Algorithm 13 Fair k-means++

1: Compute initial centers C0 by Algorithm 11
2: For all i ≥ 0, unless a stopping criterion is met:
3: Assign every point to a center Ci by evoking Algorithm 8 or 10, partitioning P into
P 1
i , . . . , P

k
i

4: Set Ci+1 = {µ(P j
i ) | j ∈ [k]}

5.7 A PTAS for fair kmeans

We next give an algorithm to efficiently compute a (1 + ǫ)-approximation. We remark that
the running time of this algorithm is worse than that of [BJK18, DX15]. However, it can be
easily adapted to work with weighted inputs. While we believe that in principle adapting the
algorithms in [BJK18, DX15] to the weighted case is possible, we preferred to stick to the simpler
slightly worse result to keep the paper concise.
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Theorem 13. Let P ⊆ R
d be a weighted point set of n points such that half of the point weight is

red and the other half is blue. Then we can compute a (1+ ǫ)-approximations to the fair k-means
problem in time nO(k/ǫ).

We will use the well-known fact that every cluster has a subset of O(1/ǫ) points such that
their centroid is a (1 + ǫ)-approximation to the centroid of the cluster. We use the following
lemma by Inaba et al.

Lemma 14. [IKI94] Let P ⊆ R
d be a set of points and let S be a subset of m points drawn

independently and uniformly at random from P . Let c(P ) = 1
|P |

∑

p∈P p and c(S) = 1
|S|

∑

p∈S p
be the centroids of P and S. Then with probability at least 1− δ we have

‖
∑

p∈P
‖p− c(S)‖22 ≤ (1 +

1

δm
) · ‖

∑

p∈P
‖p − c(P )‖22 .

It immediately follows that for m = ⌈2/ǫ⌉ there exists a subset S of m points that satisfies
the above inequality. The result can immediately be extended to the weighted case. This implies
the following algorithm.

Algorithm 14 PTAS for fair k-means++

Input: (Weighted) point set P ⊆ R
d

1: Consider all subsets S ⊆ P of size k · ⌈2/ǫ⌉.
2: Partition S into k sets C1, . . . , Ck of size ⌈2/ǫ⌉.
3: Solve the fair assignment problem for P and c(C1), . . . , c(Ck) (with Algorithm 8 or
9,respectively)
4: Return the best solution computed above

The running time of the algorithm is nO(k/ǫ) since line two can be implemented in kO(k/ǫ)

time and the partition problem can be solved in nO(1) time. This implies the theorem.

5.8 A Streaming PTAS for Small k

We would like to extend the PTAS to the streaming setting, using our coreset. Applying Corol-
lary 8 directly incurs an exponential dependency on the dimension d. The standard way to avoid
this is to project the data onto the first k/ε principal components, see [CEM+15, FSS13], and
then to use a technique called merge-and-reduce. Unfortunately, merge-and-reduce technique
requires a rescaling of ε by a factor of log n. In other words, the resulting streaming coreset will

have a size exp(
(

logn
ε

)

, k · logn
ε ), which is even larger than the input size. To avoid this, we show

how to make use of oblivious random projections to reduce the dependency of the dimension for
movement-based coreset constructions, and also recover a (1 + ε) approximate solution.

We review some of the algebraic properties. Given a matrix A ∈ R
n×d, we define the Frobe-

nius norm as ‖A‖F =
√

∑n
i=1 ‖Ai∗‖2, where Ai∗ is the ith row of A. For k-means, we will

consider the rows of A to be our input points. The spectral norm ‖A‖2 is the largest singular
value of A.

Let us now consider the n-vector x = 1 · 1√
n
. x is a unit vector, i.e. ‖x‖2 = 1, and moreover,

due to Proposition 2, the rows of xxTA are µ(A)T . Hence ‖A − xxTA‖2F is the optimal 1-
means cost of A. This may be extended to an arbitrary number of centers by considering the n

by k clustering matrix X with Xi,j =

{

√

1/|Cj | if Ai∗ ∈ cluster Cj

0 otherwise
. XXT is an orthogonal

projection matrix and ‖A−XXTA‖2F corresponds to the k-means cost of the clusters C1, . . . , Ck.
If we lift the clustering constraints on X and merely assume X to be orthogonal and rank k,
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‖A − XXTA‖2F becomes the rank k approximation problem. The connection between rank k
approximation and k-means is well established, see for example [BZMD15, DFK+04, FSS13].
Specifically, we aim for the following guarantee.

Definition 15 (Definition 1 of [CEM+15]). Ã ∈ R
n×d′ is a rank k-projection-cost preserving

sketch of A ∈ R
n×d with error 0 < ε < 1 if, for all rank k orthogonal projection matrices

XXT ∈ R
n×n,

‖Ã−XXT Ã‖2F + c ∈ (1± ε) · ‖A−XXTA‖2F ,
for some fixed non-negative constant c that may depend on A and Ã, but is independent of XXT .

Our choice of Ã is AS, where S is a scaled Rademacher matrix of target dimension m ∈
O(k/ε2), see Theorem 12 of [CEM+15]. In this case c = 0.

Algorithm 15 Dimension-Efficient Coreset Streaming

Input: Point set A processed in a stream
1: Initialize S ∈ R

d×m

2: Maintain a movement-based coreset T of AS
3: Let π−1(Ti∗) be the set of rows of AS that are moved to Ti∗
4: Let π−1

A (Ti∗) be the set of corresponding rows of A
5: Maintain |π−1

A (Ti∗)| and the linear sum L(Ti∗) of the rows in π−1
A (Ti∗)

6: Solve (α, β)-fair k-means on T using a γ-approximation algorithm  clustering C1, . . . , Ck

7: For each cluster Cj return the center 1∑
Ti∗∈Cj

|π−1

A
(Ti∗)|

·∑Ti∗∈Cj
L(Ti∗)

We combine oblivious sketches with movement-based coreset constructions in Algorithm 15.
The general idea is to run the coreset construction on the rows of AS (which are lower dimensional
points). Since the dimensions of AS are n times k/ε2, this has the effect that we can replace d in
the coreset size by O(k/ε2). Furthermore, we show that by storing additional information we can
still compute an approximate solution for A (the challenge is that although AS will approximate
preserve clustering costs, the cluster centers that achieve this cost lie in a different space and
cannot be used directly as a solution for A).

Theorem 10. Let 0 < ε < 1/2. Assume there is streaming algorithm ALG that receives the
rows of a matrix A ∈ R

n×d and maintains an (ǫ, k)-coreset T with the following property: We
can replace weighted points in T by a corresponding number of copies to obtain a matrix A′ such
that

∑n
i=1 ‖Ai∗ −Ai′∗‖2 ≤ ε2

16 ·OPT. Furthermore, assume that ALG uses f(k, ε, d, log n) space.
If we use ALG in Step 2 of Algorithm 15, then Algorithm 15 will use f(k, ε/25, c′ · (k/ε)2, log n) ·
d+O(kd/ǫ2) space to compute a set of centers C with

faircost(P,C) ≤ γ(1 + ε) · OPT

where OPT is the cost of an optimal solution for A and c′ > 0 is a constant such that the
guarantees of Theorem 12 from [CEM+15] are satisfied.

Proof. Let X be the optimal clustering matrix on input A′S and Y be the optimal clustering
matrix for input A. Let Z be the clustering matrix returned by our (α, β)-fair approximation
algorithm on input A′S (or, equivalently, on input T ). Let ε′ = ε/25. Since we are using a
γ-approximation algorithm, we know that ‖ZZTA′S−A′S‖2F ≤ γ · ‖XXTA′S−A′S‖2F . We also
observe that ‖ZZTA′S − ZZTAS‖F ≤ ‖ZZT‖2‖A′S −AS|F = ‖A′S −AS‖F for an orthogonal
projection matrix ZZT . Furthermore, we will use that ‖XXTA′S − A′S‖F ≤ ‖XXTA′S −
XXTAS‖F+‖XXTAS−AS‖F+‖A′S−AS‖F and the fact that the spectral norm and Frobenius
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norm are conforming, e.g., they satisfy ‖AB‖F ≤ ‖A‖2‖B‖F . We obtain

(1− ε′) · ‖ZZTA−A‖2F ≤ ‖ZZTAS −AS‖2F
≤

(

‖ZZTA′S − ZZTAS‖F + ‖ZZTA′S −AS‖F
)2

≤ (‖ZZTA′S − ZZTAS‖F + ‖ZZTA′S −A′S‖F
+‖A′S −AS‖F )2

≤
(

2‖A′S −AS‖F +
√
γ‖XXTA′S −A′S‖F

)2

≤ ((2 +
√
γ)‖A′S −AS‖F

+
√
γ(‖XXTA′S −XXTAS‖F +

‖XXTAS −AS‖F ))2

≤ ((2 + 2
√
γ)‖A′S −AS‖F +

√
γ‖XXTAS −AS‖F )2

≤ ((
ε′

4
(2 + 2

√
γ) +

√
γ)‖XXTAS −AS‖F )2

≤ ((1 + ε′)
√
γ)‖XXTAS −AS‖F )2

≤ (1 + ε′)2γ‖Y Y TAS −AS‖2F
≤ (1 + ε′)3γ‖Y Y TA−A‖2F

where the first and the last inequality follows from the guarantee of Definition 15 and Theorem
12 of [CEM+15]. To conclude the proof, observe that (1 + ε′)3/1 − ε ≤ (1 + 25ε′) = (1 + ε) for
0 < ε < 1

2 .
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