
Commitment and Slack for Online Load Maximization
Samin Jamalabadi

TU Dortmund University

Dortmund, Germany

samin.jamalabadi@tu-dortmund.de

Chris Schwiegelshohn

Sapienza University of Rome

Rome, Italy

schwiegelshohn@diag.uniroma1.it

Uwe Schwiegelshohn

TU Dortmund University

Dortmund, Germany

uwe.schwiegelshohn@tu-

dortmund.de

ABSTRACT
We consider a basic admission control problem in which jobs with

deadlines arrive online and our goal is to maximize the total volume

of executed job processing times.We assume that the deadlines have

a slack of at least ε , that is, each deadline d satisfies d ≥ (1+ε) ·p+r
with processing time p and release date r . In addition, we require

the admission policy to support immediate commitment, that is,
upon a job’s submission, we must immediately make the decision

of if and where we schedule the job, and this decision is irreversible.

Our main contribution is a deterministic algorithm with nearly

optimal competitive ratio for load maximization on multiple ma-

chines in the non-preemptive model. Previous results either only

held for a single machine, did not support commitment, or required

job preemption and migration.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms; • Net-
works→ Cloud computing.

KEYWORDS
online algorithms; scheduling; commitment

ACM Reference Format:
Samin Jamalabadi, Chris Schwiegelshohn, and Uwe Schwiegelshohn. 2020.

Commitment and Slack for Online Load Maximization. In Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’20), July 15–17, 2020, Virtual Event, USA. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3350755.3400271

1 INTRODUCTION
In the Infrastructure-as-a-Service business model of cloud com-

puting, system providers rent out infrastructure (typically but not

limited to computing power) to customers. They are responsible for

system management and resource allocation. The business model

may comprise multiple customer service-levels. For example, some

periodic routine tasks have a low urgency while time-sensitive jobs

require an almost immediate completion.

Due to their real-world relevance, it has become increasingly

important to model these systems theoretically and understand

the possibilities and limitations in designing algorithms for them.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6935-0/20/07. . . $15.00

https://doi.org/10.1145/3350755.3400271

Here, we consider online algorithms that maximize revenue while

obeying certain system constraints. In its most generic form, we

aim to maximize the function

∑
Job j accepted

w j , where w j is some

arbitrary non-negative value [2, 28]. Often algorithms target special

cases, such as maximization of throughput [8, 14] (w j = 1 for all

jobs) or load [19] (w j = pj with processing time pj of job Jj). We

apply competitive analysis, that is, we aim to maximize the ratio

between the revenue of an optimal offline algorithm and the revenue

obtained by our online algorithm. In accordance with the cloud

computing use case, we study these objectives for parallel machines.

We use the key assumption that the jobs have slack ε > 0, that

is, deadlines satisfy the slack condition d ≥ (1 + ε) · p + r with

release date r and processing time p. This assumption is useful

both theoretically and empirically: tight deadlines are typically

not of practical importance and yield impossibility results. We can

consider the slack as a system parameter determined by the system

provider. Therefore, we are interested in understanding how much

a small slack affects the difficulty of admission problems.

Once an infrastructure has been rented out to a customer, the

agreement is binding. Therefore, we require that the admission

policy immediately commits to every decision it makes. Commit-

ment has received substantial recent attention (see, for instance,

[2, 8, 15, 28, 29] and references therein) with the following models

being most commonly studied in literature.

Immediate Commitment, also called commitment on arrival,
is arguably the strongest and most desirable variant of commitment:

we must decide immediately upon submission of a job if we execute

the job. Lucier et al. [28] showed that for general objective func-

tions, any online algorithm has an unbounded competitive ratio for

any slack value. Most positive results exist for load or throughput

maximization, see [11, 14, 20]. In non-preemptive machine models,

the commitment property typically extends to the allocation of the

job with a temporal (start time) and spatial (executing machine)

component. If commitment does not include job allocation then

the algorithm supports immediate notification [9, 17], see, for in-

stance, preemptive machine models [10, 16] that allow interrupting

and reallocating the jobs on the fly.

Delayed Commitment: given a slack ε and a parameter δ ≤ ε ,
we say that an algorithm has δ -delayed commitment if it makes the

decision whether to accept a job Jj before time r j + δ · pj , see, for
instance, [2, 8]. When supporting commitment on admission,
an algorithm only commits to a job upon starting it. Many early

works on online admission control use this variant, see [18, 26, 27].

Commitment with Penalties requires an immediate commit-

ment of the scheduling algorithm but allows a later revocation at

the cost of a loss in the objective function, see, for instance, [15, 31].

This variant of commitment has some similarity to robust online

scheduling that limits the number of decision revocations [30].

https://doi.org/10.1145/3350755.3400271
https://doi.org/10.1145/3350755.3400271

While the former variant penalizes each commitment violation, the

latter budgets the number of times we can reverse a decision.

In this paper, we maximize the total load

∑
Job j accepted

pj onm par-

allel identical machines that do not allow preemption. Furthermore,

all jobs have slack ε . Our goal is to design competitive algorithms

with immediate commitment, that is, upon submission of a job, the

algorithm either rejects or allocates it.

1.1 Our Results and Techniques
For our problem with slack ε ∈ (0, 1] andm machines, we present a

lower bound c(ε,m) of the competitive ratio of any deterministic

online algorithm and a deterministic online algorithm with a com-

petitive ratio that matches the lower bound for sufficiently small

values of ε or deviates from it by at most (3 − e)/(e − 1) ≈ 0.164.

The function c(ε,m) decreases with increasing values of ε andm.

We conjecture that it is optimal for every pair ofm and ε ∈ (0, 1]. As

m tends to∞ and ε tends to 0, c(ε,m) approaches ln(1/ε). Therefore,
it is the first super constant lower bound for parallel machines that

simultaneously holds for both large values ofm and small values

of ε .
For each value ofm, c(ε,m) hasm−1 continuous phase transitions

from a termO
(
ε−1/(k+1)

)
to a termO

(
ε−1/k

)
with k ∈ {1, . . . ,m−

1}. We can provide the exact terms of c(ε,m) only for the last three

phases, see, for instance,

c(ε, 2) =

{
2 ·

√
25

16
+ 1

ε +
1

2
for 0 < ε < 2

7

3

2
+ 1

ε for
2

7
≤ ε ≤ 1.

(1)

For the other phases, we must numerically determine the function

value for each pair (ε,m). To get a better feel for these bounds, we

have plotted c(ε,m) for 1 ≤ m ≤ 4 in Fig. 1. More details on the

properties of this function are given in Section 2; an intuition as

how we derived it is given in Section 3.

Form = 1, our online algorithm matches the performance of the

optimal deterministic algorithm by Goldwasser and Kerbikov [20].

Supporting immediate commitment, it also slightly improves on the

previously best bound of 1+m+m · ε−1/m by Lee [26] that requires

commitment upon admission. Using a standard technique, our algo-

rithm yields a randomized algorithm with immediate commitment

for a single machine. Its competitive ratio O
(
log ε−1

)
, improves on

the deterministic competitive ratio of 2 + 1

ε [20].

Our Techniques

Lower Bounds. The starting point of our work is Goldwasser’s

lower bound for a singlemachine [18]. To obtain a 1/ε lower bound1,
the adversary merely submits a job with value 1 and deadline (1+ε).
If the algorithm does not accept this job, no further jobs arrive

and the competitive ratio is unbounded. Otherwise, the adversary

submits another job with processing time p < 1/ε and deadline

(1 + ε) · p the moment the first job is started. The algorithm cannot

accept the second job and the lower bound follows from p → 1/ε .
For two machines, we cannot replicate this approach: if the

adversary submits two jobs of length 1 then the algorithm is only

forced to accept one of them. Accepting both jobs leads to the

1
The optimal bound is 2 + 1/ε . We consider a worse bound to simplify the exposition.

same competitive ratioO(ε−1) as in the single machine case, see the

second phase of c(ε, 2) in (1). If the algorithm rejects one job and

reserves the second machine in anticipation of a larger job then the

adversary may counter this by submitting a job of length p with

1 < p < 1/ε depending on the value of ε . If the algorithm rejects

this job then the adversary does not submit any further job and

we obtain a competitive ratio ofO(1 + p). Otherwise, the adversary
submits a final job with a processing time slightly less than 1/ε .
Since the algorithm cannot accept this job, we obtain a competitive

ratio of O
(
ε−1+p
1+p

)
. Equalizing both terms produces a competitive

ratio of O
(
ε−1/2

)
that matches the first phase of c(ε, 2) in (1).

To extend this idea for multiple machines, we use a recursive

construction and assume ε < 1. Initially, we generate a sequence of

jobs with processing time 1. Due to ε < 1, no two jobs can be pro-

cessed on the same machine. The algorithm selects k ∈ {1, . . .m}

of these jobs. For each value of k , we recursively determine a final

sequence of jobs that forces the competitive ratio: for k = m, the

adversary submitsm jobs with processing timepm slightly less than

1/ε and the algorithm must reject all of them. Since there is at least

one idle machine for k < m, the adversary submits up tom jobs

of length pk until the algorithm accepts one. If the algorithm has

not accepted anyone of these jobs then we have a competitive ratio

of
m ·pk
k . Otherwise, the adversary continues as if the algorithm

had initially accepted k + 1 jobs with processing time 1. The only

difference is the accepted load of k + pk instead of k + 1. As in

the case with two machines, we determine the processing times

pk , . . . ,pm−1 by equalizing them−k+1 possible competitive ratios

m · pk
k
= . . . =

m · pq+1

k +
∑q
i=k pi

= . . . =
m · pm

k +
∑m−1
i=k pi

(2)

and obtain pk = O
(
ε−1/k

)
. Each value of k represents a phase of

the function c(ε,m). The term of first (dominant) phase of function

c(ε,m) isO
(
ε−1/m

)
. Identity (2) lies at the heart of our construction

and proof, and is the main reason that we can give an analytic

expression only for those phases of the function c(ε,m) that are

represented by k ∈ {m − 2,m − 1,m}.

Upper Bounds. Any algorithm for our problem consists of two

phases: (a) a decision phase in which we decide whether to accept or

reject a job, and (b) an allocation phase in which we assign the job

to a machine and a start time. To explain the main ideas behind the

algorithm, we use an easy variant of the problem inwhich all release

dates are 0. Before considering a new job Jj , we index the machines

mi with i ∈ {1, . . .m} by decreasing load l(mi). For the decision

phase, we use an admission threshold maxi≥k {l(mi) · fi } based
on them − k + 1 least loaded machines. The value k corresponds

to k in the lower bound description while the values fi > 1 are

closely related to the valuespi for i ∈ {k, . . . ,m} in the lower bound

description, see Section 4 for details. Note that fi < fi+1 holds for
i ∈ {k, . . . ,m − 1}.

Let Jj be the rejected job with the largest deadline among all

rejected jobs. Then there is some machinemh with dj < l(mh) · fh
and our competitive ratio is O

(
dj ·m/

∑
1≤i≤m l(mi)

)
. To limit the

competitive ratio, the allocation part of our algorithm primarily

seeks machines m1 to mk−1 as target machines since the loads

Figure 1: Functions of tight competitive ratios in slack interval (0, 1] form = 2 (blue line) andm = 3 (green line) in comparison
to the tight competitive ratio for m = 1 (dashed line), see Goldwasser and Kerbikov [20]. The competitive ratio for m = 1 is
identical to a greedy approach with list scheduling in a parallel environment, see Kim and Chwa [23]. Form = 4 (violet line),
there is a very small gap of at most 0.12 between c(ε, 4) and the obtained competitive ratio in the right most phase. The circles
on the lines indicate transitions from one phase to the next one.

on these machines do not affect the threshold. For machinesmi
with k ≤ i < h, the algorithm tries to allocate sufficient load

to them such that l(mi) · fi does not cause a larger threshold by

exceeding l(mh) · fh . It turns out that a good load distribution

is always obtained by a simple best-fit heuristic: we allocate an

accepted job to the most loaded machine that can process it prior

to its deadline and start it immediately after the completion of the

preceding job on this machine. The effect is two-fold: first this

policy affects our ability to accept and schedule longer jobs the

least. Second it turns out that this allocation policy has the smallest

effect on the term maxk≤i≤m {l(mi) · fi }.

1.2 Related Work
Load maximization objectives have been a staple of online sched-

uling since the early 90s [1, 3–6, 17, 18, 23, 25, 27]. Without slack,

competitive ratios are typically of the formO(log∆) [17, 27], where
∆ is the ratio of the largest to the smallest possible processing time.

For slack scheduling, most of these early algorithms only satisfy

the commitment on admission property. The state of the art for non-

preemptive machines with slack seems to be an optimal

(
2 + 1

ε

)
-

competitive deterministic algorithm by Goldwasser [18], and an

O(1+m+m ·ε−1/m) competitive algorithm onm identical machines

and an O(log 1/ε)-competitive randomized algorithm for a single

machine by Lee [26]. The former result has since been extended

to algorithms with immediate commitment by Goldwasser and

Kerbikov [20]. Currently, the only known immediate notification

algorithms for parallel machines that improve over Goldwasser and

Kerbikov [20] require some degree of preemption. DasGupta and

Palis [10] and Garay et al. [16] independently proved a competitive

ratio of 1 + 1

ε , assuming that preemption (but not migration) is

allowed. DasGupta and Palis [10] also gave a lower bound of roughly

4 for small values of ε . Schwiegelshohn and Schwiegelshohn [29]

studied parallel machines that support preemption and migration.

For this machine model and immediate commitment, they gave a

deterministic algorithm with a competitive ratio that approaches

(1 + ε) · log 1+ε
ε ifm is large enough.

A different line of research does not use any slack to obtain

meaningful competitive ratios but instead assumes that the jobs

have unit length. On a single machine, Baruah et al. [4] proposed

an optimal deterministic algorithm with a competitive ratio of 2.

For randomized algorithms, the state of the art is a 5/3 competitive

algorithm due to Chrobak et al. [9]. The best known randomized

lower bound is 4/3 [17]. On parallel machines, improvements are

possible. Ding et al. [11] gave a deterministic algorithm with a

competitive ratio that approaches
e

e−1 if the number of machines

is large enough. A matching lower bound was given by Ebenlendr

and Sgall [13]. Further results on parallel machines with a more

relaxed form of commitment are given in [7, 12, 21].

2 DEFINITIONS AND PRELIMINARIES
Each job Jj is specified by a tuple (r j ,pj ,dj), corresponding to re-

lease date, processing time, and deadline, respectively. The deadline

satisfies the slack condition

dj ≥ (1 + ε) · pj + r j . (3)

If (3) holds with equality, we say that the job has a tight slack.
We assume throughout this paper that ε ∈ (0, 1]. For slack values

greater than 1, it is easy to derive constant competitive algorithms

with immediate commitment using previous work
2
. The system

comprises m identical non-preemptive machines. The indicator

variableUj is 1 if and only if we reject job Jj , see Graham et al. [22].

We refer to our problem as Pm |online, ε, immediate|
∑
pj · (1 −Uj)

using the standard three-field notation.

We now introduce the function f (ε,m) that is crucial for both

the lower bound and the online algorithm. The function depends

2
For example, a greedy algorithm that allocates the jobs in a non-delay fashion always

achieves a competitive ratio less than 3 for ε > 1.

on the slack ε and the number of machinesm, and is defined by

recursion, that is, for each pair (ε,m), we obtain a different variant

of the recursion. For each variant, f (ε,m) usesm−k +1 parameters

fq (ε,m) for q ∈ {k, . . . ,m}. Informally, we have already introduced

integer parameter k in Section 1.1. Later in this section, we pro-

vide a formal definition. Although the anchor (4) of the recursion

only depends on the slack, we use the notation fm (ε,m) for the

corresponding parameter to be consistent with the notations of the

other parameters of the recursion. Remember that the indexing of

parameters fq (ε,m) matches the indexing of the machines based

on the outstanding load in Section 4, see Section 1.1 and Equation

(9).

fm (ε,m) =
1 + ε

ε
(4)

c(ε,m) =
1 +m · fq (ε,m)

k +
∑q−1
h=k (fh (ε,m) − 1)

for q ∈ {k, . . . ,m} (5)

For a fixed value k , all fq (ε,m) are strictly decreasing with in-

creasing slack due to (4). Similar to (2), (5) requires that the ratio

c(ε,m) is independent of parameterq. Therefore, we have fq (ε,m) <

fq+1(ε,m) for q ∈ {k, . . . ,m − 1}.

Before explaining the role of k , we introduce another constraint

fq (ε,m) ≥ 2 for q ∈ {k, . . . ,m} (6)

that is required for technical reasons, see the details in Section 3.

Due to ε ∈ (0, 1], fm (ε,m) always satisfies (6). To prevent a violation

of (6) for other values, parameter k ∈ {1, . . . ,m} defines corner

values εk ,m of the slack parameter and restricts the range of q:

fk (εk ,m,m) = 2 (7)

Due to the monotony of fq (ε,m), these corner values partition

the slack interval (0, 1] into m slack intervals (0 = ε0,m, ε1,m],

(ε1,m, ε2,m], . . ., (εm−1,m, εm,m = 1], see Fig. 1. In slack interval

(εk−1,m, εk ,m], we use the same variant of the recursion since the

same value of k guarantees validity of (6). Due to

1 +m · fq (εk ,m,m)

k +
∑q−1
h=k (fh (εk ,m,m) − 1)

=
1 +m · fq (εk ,m,m)

k + 1 +
∑q−1
h=k+1(fh (εk ,m,m) − 1)

for all q ∈ {k + 1, . . . ,m}, the competitive ratio is continuous at the

corner values.

Finally, we remark that the competitive ratio approaches ln 1/ε
for small slack values asm tends to ∞.

Proposition 1.

lim

m→∞
c(ε,m) = ln

1

ε
for ε ∈ (0, ε1,m]

Proof. We use a continuous extension of parameter function

fq → f (x) and transform recursion (5)

lim

m→∞
c(ε,m) =

1

m + fq (ε,m)

1

m +
1

m ·
∑q−1
h=1(fh (ε,m) − 1)

→
f (x)

1

m +
∫ x
0
(f (z) − 1)dz

for x ∈ (0, 1] (8)

We replace the undefined term 1/m by f (0)/c(ε,m) to maintain

independence of the right side of (8) from c(ε,m). Then we obtain

the claim by applying derivation to the right side of (8) and solving

the resulting homogeneous differential equation.

�

3 LOWER BOUNDS
Throughout this section, we will prove the following theorem.

Theorem 1. Assumem machines and slack ε . The partitioning of
interval (0, 1] yields k with ε ∈ (εk−1,m, εk ,m]. Then any determinis-
tic online algorithm for the problem Pm |online, ε, immediate|

∑
pj ·

(1 −Uj) has at least competitive ratio

c(ε,m) =
m · fk (ε,m) + 1

k
.

Proof. The high level idea is as follows. The adversary submits

a sequence of jobs with the aim of permitting the algorithm to

schedule no more than a single job on each machine. The entire

procedure consists of three phases that we now describe. In Fig. 2,

we show an illustration of the various events that trigger the phases

and the adversary’s actions for m = 3 and ε ∈ [ε1,3, ε2,3). Fig. 3
displays the online schedule and an optimal schedule for the path

marked in red in Fig. 2.

Phase 1 is mainly a set-up in which the adversary submits a

job J1(0, 1,d1). If the algorithm rejects J1 then the adversary stops

submission and the competitive ratio is unbounded. Otherwise, the

algorithm selects some start time t . All subsequent jobs will now
arrive at time t . The large deadline d1 allows an optimal schedule

to complete J1 either before t or to start it after the largest deadline
of all other jobs.

Phase 2 consists of up tom subphases. , The adversary submits

up to 2m identical jobs J
2,h (t,p2,h,d2,h = t + 2 · p

2,h) in subphase

h ∈ {1, . . . ,m}. Due to ε ≤ 1, each job observes the slack condition

(3). If the algorithm has accepted a job in a subphase then the

adversary immediately terminates this subphase and starts the

next one. Assume that the algorithm does not accept any job in

subphase u. For u < k , the adversary stops submission. Otherwise,

it continues with phase 3.

Phase 3 consists of up to m − u + 1 subphases. In subphase

h ∈ {u, . . . ,m}, the adversary submitsm identical jobs J
3,h (t,p3,h =

(fh (ε,m) − 1) · p2,u ,d3,h = t + p2,u + p3,h). Immediately after the

algorithm has accepted a job in a subphase, the adversary terminates

this subphase and starts the next one. If the algorithm does not

accept a job in a subphase then the adversary stops submission.

We now turn to the analysis of phases 2 and 3.

Lemma 1. Let β > 0 be an arbitrarily small constant. The adver-
sary can select p

2,h ∈ (1− β, 1) such that every machine in the online
schedule executes at most one job after the completion of phase 2.

Proof. The adversary uses an overlap interval Ih−1 with the

initial setting I0 = (t + 1− β, t + 1) such that all previously allocated

jobs execute during this overlap interval. The processing time p
2,h

is the mid time of the overlap interval Ih−1 minus the submission

time t . Therefore, the algorithm cannot execute any job of type J
2,h

on a machine with an already allocated job while any allocation

of this job to an idle machine overlaps with either the lower or

the upper half of interval Ih−1. Hence, we have |Ih | ≥ |Ih−1 |/2 and
1 − β < p

2,h < 1. �

Due to Lemma 1, phase 2 ends after subphasem at the latest. For

the remainder of the proof, we assume that β is small enough to

not affect the competitive ratio and we drop β from the notation.

Lemma 2. If phase 2 has stopped after subphaseu then the resulting
competitive ratio is (2m + 1)/u.

Proof. If the adversary stops phase 2 after subphase u then the

algorithm has accepted u − 1 jobs in phase 2 and job J1 in phase 1.

Since the optimal schedule executes the 2m jobs of subphase u and

job J1, the competitive ratio is (2m + 1)/u. �

For phase 3, we establish properties similar to those of Lemma 1

and Lemma 2.

Lemma 3. Let u ≥ k be the final subphase of phase 2. We consider
subphase h ∈ {u, . . . ,m} of phase 3. Then job J

3,h satisfies the slack
condition (3) and every machine executes at most one job.

Proof. Due to the monotony of the parameters fq (ε,m) and the

anchor condition (4), we have

d
3,h = t + p2,u + p3,h = t +

(
1

fh (ε,m) − 1

+ 1

)
· p

3,h

≥ t +

(
1

fm (ε,m) − 1

+ 1

)
· p

3,h ≥ t + (ε + 1) · p
3,h .

Phase 3 requires (6). Therefore, we have p
3,h ≥ p2,u . Due to

Lemma 1, the algorithm needs an idle machine to execute job J
3,h if

p
3,h = p2,u holds. Forp

3,h > p2,u ,d3,h requires job J
3,h to complete

after time t + p2,u and to start at this time at the latest. Therefore,

the algorithm cannot execute J
3,h on any machine that does not

permit execution of J2,u and Lemma 1 yields the claim. �

If phase 3 ends with subphase h then the algorithm has accepted

h jobs and occupied h machines due to Lemmas 1 and 3. Therefore,

phase 3 ends with subphasem at the latest.

Lemma 4. If phases 2 and 3 end with subphases u and h, respec-
tively, then the resulting competitive ratio is

1 +m · fh (ε,m)

u +
∑h−1
i=u (fi (ε,m) − 1)

,

Proof. If phases 2 and 3 stop with subphases u and h, respec-
tively then the algorithm has accepted a total processing time of

u +
∑h−1
i=u (fi (ε,m) − 1) while the optimal schedule executes job J1,

m jobs J2,u , andm jobs J
3,h resulting in the claimed competitive

ratio. �

Now we are ready to prove the theorem. Our deadline selection

in phase 2 and Lemma 3 show that the generated instance is valid,

that is, all jobs satisfy the slack condition (3).

To maximize the competitive ratio, the adversary requires the

competitive ratios of Lemma 4 to be independent of the final sub-

phase h such that none of the possible competitive ratios is smaller

than the others. This selection denies us the opportunity to stop

phase 3 at a favorable subphase and leads to our key recursion (5).

Next we turn to the selection of the final subphase u of phase

2 since this selection is our only remaining choice to minimize

the competitive ratio. Stopping phase 2 before subphase k is not

beneficial since it produces a larger competitive ratio than stopping

Algorithm 1 Threshold

1: l(mh) = 0 for 1 ≤ h ≤ m
2: for the next job Jj do
3: update l(mh) for 1 ≤ h ≤ m
4: determine dl im with (9) and (10)

5: if dj < dl im then
6: reject Jj
7: else
8: accept Jj
9: allocate Jj to the candidate machine with highest load

10: start Jj after completing the load of this machine

after subphase k , see Lemma 2. Stopping phase 2 with the final

subphase u > k removes a subphase of phase 3 and effectively

exchanges a job of phase 3 having a processing time of at least 1

with a job having processing time 1. Therefore, this exchange cannot

increase the denominator of the competitive ratio in Lemma 4 and

cannot decrease the competitive ratio. �

4 ONLINE ALGORITHM
In this section, we present a deterministic online algorithm and

determine its competitive ratio. We assume a fixed slack value ε
and a fixed number of machinesm and omit any dependency on ε
andm in the variable notation of this section. We still distinguish

the various parameters fq . The next theorem contains our main

result.

Theorem 2. Assumem machines and slack ε . The partitioning of
interval (0, 1] yields k with ε ∈ (εk−1,m, εk ,m]. Then Algorithm 1 has
a competitive ratio of at most

m · fk + 1

k
for k ≤ 3

m · fk + 1

k
+
3 − e

e − 1

for k > 3.

for the problem Pm |online, ε, immediate|
∑
pj · (1 −Uj).

First we describe the notation used by Algorithm 1. For accep-

tance, we use a machine-dependent deadline threshold dl im,h for

each machinemh . It is simply the product of fh (recall the defini-

tion from Section 2) times the current (outstanding) load l(mh) on

a machinemh in addition to the current time t :

dl im,h = t + l(mh) · fh for h ∈ {k, . . . ,m} (9)

Remember that we index the machines by decreasing loads such

that l(mh−1) ≥ l(mh) holds forh ∈ {2, . . . ,m}. The system deadline

dl im for acceptance of a new job is the maximum of the machine-

dependent deadlines:

dl im = max

h∈{k , ...,m }
dl im,h (10)

Based on (9) and (10), we can provide another intuitive interpre-

tation of variable k : for ε ∈ (εk−1, εk], we use only them − k + 1
least loaded machines to determine the deadline threshold. Then

our online schedule has a minimal total load if the k most loaded

machines all have the same (balanced) load.

In Algorithm 1, there is initially no load on any machine (Line

1). After the submission of a new job Jj at time r j , we update the

Adversary

Online Algorithm

Adversary

C → ∞

stops

rejects

Adversary

Online Algorithm

Adversary

C = 7

stops

rejects all

Adversary

Online Algorithm

Adversary

Online Algorithm

Adversary

C =
3f2(ε)+1

2

stops

rejects all

Adversary

C =
3f3(ε)+1
f2(ε)+1

submits three jobs J3,3

accepts one

submits up to three jobs J3,2

rejects all

Adversary

Adversary

C =
3f3(ε)+1

3

submits three jobs J3,3

submits up to six jobs J2,3

accepts one

submits up to six jobs J2,2

accepts one

submits up to six jobs J2,1

accepts

submits a base job J1

Figure 2: As example, we provide the lower bound process as a decision tree form = 3 and ε ∈ [ε1,3, ε2,3). We have highlighted
one path through this tree in red. For this path, we provide the online and the optimal schedule in Fig. 3

(outstanding) load of the machines, adapt the machine indexes, and

determine the new threshold dl im using (9) and (10) (Lines 3 and 4).

We accept Jj only if its deadline dj is at least as large as the deadline
threshold (Lines 7 and 8). A machinemi is a candidate machine for

an accepted job Jj if it can complete Jj on time (l(mi) + pj ≤ dj).
We allocate the accepted job Jj to the candidate machine with

the largest load (Line 9) and start Jj as early as possible, that is,

immediately after the completion of the outstanding load on this

machine (Line 10).

Since the allocation of a new job to a machine increases the load

of this machine, we need a notation that specifies the load values

during the run of our algorithm: l(mi)|j is the value l(mi) when

making the decision to accept or reject job Jj . We apply the same

notation |j to the thresholds dl im and dl im,h . If dl im |j = dl im,i |j
holds then we say that machinemi determines dl im when testing

job Jj for acceptance. The following claim shows that the algorithm

is correct.

Claim 1. Algorithm 1 completes any accepted job on time.

Proof Sketch. We simply show that any accepted job will fin-

ish on time on machinemm . �

Assume that Algorithm 1 has produced online schedule S for

some problem instance J .

Definition 1. An interval [ts , te) of S is uncovered if it does not
intersect with the interval [r j ,dj) of any rejected job Jj ∈ J .

We transform instance J into our target instance Jmax ⊇ J

with the same schedule S by adding jobs such that Algorithm 1

rejects all added jobs and the total length of all uncovered intervals

of schedule S is minimal.

Definition 2. We obtain the set of all covered intervals of schedule
S by removing all uncovered intervals of target instance Jmax from
interval [0,maxJj ∈Jmax dj).

Due to Definition 1, every covered interval starts with the sub-

mission time of a rejected job. Our transformation guarantees that

for the end te of any covered interval [ts , te), there is a rejected

job Jj ∈ Jmax such that the difference dl im |j − te is positive but

arbitrarily small. Therefore, we use the approximation that every

covered interval ends with a deadline threshold.

For our performance analysis of schedule S , we consider each
covered interval separately. For covered interval [ts , te), (te − ts) ·m
is an upper bound on its optimal load.

time

0

t

J1

J3,2

J2,1J1 J2,2 J2,2 J2,2

J3,3 J3,3 J3,3

Optimal scheduleOnline schedule

Figure 3: The online algorithm has accepted the blue jobs
and rejected the orange jobs. It has started job J1(0, 1,d1) at
time t ≥ 1 while the optimal schedule completes J1 before
starting any other job. The processing times and deadlines
of jobs J3,2(t,p3,2, t + p2,2 + p3,2) allow execution on the same
machine together with J2,2 but not together with J2,1. Jobs
J3,3(t,p3,3, t + p2,2 + p3,3) have a tight slack and a process-
ing time that also allows execution on the same machine
together with J2,2.

Next we introduce some notations and define the performance

ratio of an interval of schedule S that follows the concept of the

competitive ratio but is restricted to an interval.

Pmi [t1, t2) is the total processing time on a machine mi in in-

terval [t1, t2) of schedule S with Pmi−1 [t1, t2) ≥ Pmi [t1, t2) for i ∈
{2, . . . ,m}.

Note that Pmi [t1, t2) is a final value of S while l(mi) is a dynamic

value that changes with progression of time and acceptance of new

jobs. Machine mi in Pmi [t1, t2) does not necessarily represent a

single physical machine due to possible index changes during the

execution of Algorithm 1. It merely corresponds to the (potentially

changing) machine with ith largest load. Finally, Pmi [t1, t2) may

only contain parts of a job
3
.

P−[t1, t2) describes the total processing time of all jobs in sched-

ule S that any schedule must execute in interval [t1, t2) if it also
accepts the jobs that contribute to the load in interval [t1, t2).

Definition 3. The performance ratio of an interval [t1, t2) is

R[t1, t2) =
m · (t2 − t1) − P−[t1, t2)∑m

i=1 Pmi [t1, t2)
+ 1. (11)

3
These are remnants of either a job started before t1 or a job completed after t2 .

It is perhaps instructive to note that P−[t1, t2) =
∑m
i=1 Pmi [t1, t2)

if there exists no flexibility in the schedule, that is, all jobs have start-

ing times and deadlines in [t1, t2]. In this case, R[t1, t2) is merely

an upper bound on the ratio between optimal load and S in in-

terval [t1, t2). If P
−[t1, t2) = 0 then deadlines are large, and the

optimum schedule moves jobs out of interval [t1, t2). In this case,

our performance ratio increases by 1.

For our analysis, we define a special form of a covered interval.

Definition 4. A basic covered interval is a covered interval [ts , te)
that satisfies the following two conditions:

submission All jobs contributing to
∑m
i=1 Pmi [ts , te) have at

least submission time ts .
monotony If h < k machines are busy at some time t ∈ [ts , te)

then at most h machines are busy at any moment in interval
[t, te).

We use tk ∈ [ts , te) to denote the first time with less than k
busy machines in the basic covered interval [ts , te). Then we have

Pmk [ts , tk) = tk − ts and Pmi [ts , te) = p = Pmi [ts , ts + p) for any
i ∈ {1, . . . ,k}.

The proof of Theorem 2 consist of three parts:

(1) We prove our claim for a basic covered interval [ts , te).
(2) We extend the result to a covered interval [ts , te) that still

satisfies the submission condition of Definition 4.

(3) We relax the submission condition of Definition 4 and show

its impact on the performance ratio.

The first part is the most important one since the second part is

mostly technical and the impact of the third part is minor.

Although its proof is rather simple, the next lemma describes a

key property of our algorithm.

Lemma 5. Assume that Algorithm 1 allocates job Jj to machine
mi with i ∈ {2, . . . ,m}.

• For any t > r j + l(mi−1)|j , Jj contributes at least processing
time min{pj , t − r j − l(mi−1)|j } to P−[r j , t).

• For i > k , Jj contributes at least processing time

max

h∈{k , ...,i−1}
{l(mh)|j · (fh − 1)}

to P−[r j ,dl im |j).
• For i > k , we have l(mk)|j < pj .

Proof. If Algorithm 1 does not allocate Jj to machine i − 1 then

we have r j + l(mi−1)|j + pj > dj . The last starting time of Jj in
any schedule is dj − pj < r j + l(mi−1)|j . The first claim follows

immediately.

For i > k and any h ∈ {k, . . . , i − 1}, we have

r j + l(mh)|j · fh
(9)

= dl im,h |j

(10)

≤ dl im |j ≤ dj < r j + l(mh)|j + pj (12)

⇒ l(mh)|j
(6)

≤ (fh − 1) · l(mh)|j < pj (13)

The second claim follows from (12) and the first claim. The third

claim follows directly from (13) for h = k . �

The third claim of Lemma 5 states that any allocation of a job to

a machinemi with i > k guarantees that this machine afterwards

receives an index smaller than k . Therefore, the machine cannot

immediately cause a large threshold deadline by using a large factor

fh . Intuitively, this approach guarantees that the growth of a cov-

ered interval due to a larger threshold deadline goes along with an

increase of the load of the online schedule in the covered interval

and therefore limits the increase of the performance ratio.

Since it is difficult determining P−[ts , te) of a basic covered inter-
val [ts , te) with dynamic load parameters for the first k machines,

we use Pmi [ts , te) instead.

Lemma 6. Assume a basic covered interval [ts , te) and some time
t ∈ [ts , te]. Then we have

k∑
i=2

min{Pmi [ts , t), t − ts − Pmi−1 [ts , t)} ≤ P−[ts , t). (14)

Proof. Since Pmh [ts , t) always refers to interval [ts , t) in this

proof, we omit the interval when using this notation. First, we

establish some relationship between l(mh) and Pmh .

Let Jj be a job with r j ∈ [ts , t). Assume that l(mh)|j > 0 holds

for some h ∈ {1, . . . ,k}. Then we have

Pmh

{
= t − ts for t ≤ r j + l(mh)|j
≥ r j + l(mh)|j − ts else

since at least h machines are always busy in interval [ts , r j).
Assume that Algorithm 1 has accepted Jj and allocated it to ma-

chinemi with i ∈ {1, . . . ,m}. Then Jj completes at r j +pj + l(mi)|j ,

and we define c j = min{t − r j ,pj + l(mi)|j }. For h ∈ {2, . . . , i}, Jj
increases Pmh by

∆j (h) =

{
min{0, c j − l(mh)|j } for c j < l(mh−1)|j
l(mh−1)|j − l(mh)|j for c j ≥ l(mh−1)|j

(15)

while we have ∆j (h) = 0 for h ∈ {i + 1, . . . ,m}.

Assume h ∈ {2, . . . ,k}. For Pmh = r j + l(mh)|j − ts ≥ (t − ts)/2,
the term min{Pmh , t − ts − Pmh−1 } on the left hand side of (14)

does not increase. For Pmh < (t − ts)/2 ≤ Pmh−1 , the above term

increases by at most t − ts − Pmh−1 − Pmh ≤ (t − ts)/2 − Pmh . For

Pmh−1 < (t − ts)/2, the increase is at most ∆j (h).
We prove (14) with an inductive approach in the sequence of

jobs contributing to interval [ts , t). Clearly, (14) holds before the
first job contributes to interval [ts , t). We assume that (14) holds

before the acceptance of Jj and discuss the impact of the allocation

of Jj .

Since (15) yields

∑k
h=2 ∆j (h) ≤ pj , the first claim of Lemma 5

guarantees (14) for pj ≤ t − r j − l(mi−1)|j .

We consider pj > t − r j − l(mi−1)|j and determine the largest

value q ∈ {1, . . . ,m}} with r j + l(mq)|j − ts ≥ (t − ts)/2. Since (14)
holds for q ≥ i and q ≥ k , we assume q < min{i,k}.

Assume t − r j − l(mi−1)|j > (t − ts)/2. If there is no q then∑k
h=2 ∆j (h) ≤ l(m1)|j − l(mk)|j ≤ (t − ts)/2 < t −r j − l(mi−1)|j and

(14) holds. Otherwise, termmin{Pmq+1 , t−ts −Pmq } increases by at

most t−ts−Pmq −Pmq+1 ≤ (t−ts)/2−Pmq+1 . Then the left hand side

of (14) increases at most by (t−ts)/2−Pmq+1+l(mq+1)|j −l(mk)|j ≤

(t − ts)/2 and (14) is valid.

For t − r j − l(mi−1)|j ≤ (t − ts)/2, we have r j + l(mi−1)|j − ts ≥

t −ts −(t −ts)/2 = (t −ts)/2 and q = i−1. Then the increase of term

min{Pmi , t−ts−Pmi−1 } is limited by t−ts−Pmi−1 = t−r j−l(mi−1)|j
and (14) is valid. �

Nowwe analyze the performance ratio of a basic covered interval

[ts , te). In particular, the next lemma considers the case tk − ts <
te − ts ≤ fk · (tk − ts). This case occurs if machinemk has caused

the largest deadline threshold in [ts , te). The other cases are useful
if another machine is responsible for the largest deadline threshold.

Lemma 7. Assume a basic covered interval [ts , te) with t ∈ [ts , te].
Then we have

R[ts , t) ≤


m ·

t−ts
tk −ts

+1

k for t ≥ 2tk − ts
(m−k+1)· t−tstk −ts

+2k−1

k for tk ≤ t < 2tk − ts
m ·fk+1

k for t−ts
tk−ts

≤ fk

Proof. Since we always refer to interval [ts , t) in this proof, we

omit all references to this interval in the notation Pmi .

First we consider t ≥ tk : remember that we have Pmk = tk − ts
in a basic covered interval. Due to Lemma 6, any machinemi with

i ∈ {2, . . . ,k} contributes at least t − ts − Pmi−1 to P−[ts , t) if
Pmi−1 + Pmi ≥ t − ts holds. If there are h < k − 1 such machines,

then any machine mi with i ∈ {h + 2 . . . ,k} contributes Pmi to

P−[ts , t). Then we obtain

R ≤
(m − h) · (t − ts) +

∑h
i=1 Pmi −

∑k
i=h+2 Pmi∑k

i=1 Pmi

+ 1

≤
(m − h) · (t − ts) + 2 ·

∑h
i=1 Pmi + Pmh+1∑k

i=1 Pmi

≤
(m − h) · t−ts

tk−ts
· Pmk + 2 ·

∑h
i=1 Pmi + Pmh+1∑k

i=1 Pmi

≤
(m − h) · t−ts

tk−ts
· Pmk + (2 · h + 1) · Pmk

k · Pmk

=
(m − h) · t−ts

tk−ts
+ 2 · h + 1

k
.

For t − ts ≥ 2 · (tk − ts), we select h = 0 and obtain the first claim

while the second claim results from h = k −1 for t −ts < 2 · (tk −ts).
The first claim and fk ≥ 2 lead to the third claim. �

To conclude our analysis of basic covered intervals, we must

extend Lemma 7 to consider the case that a machine mi with

i ∈ {k + 1, . . . ,m} determines the largest threshold of the basic cov-

ered interval [ts , te). Using Lemma 5, we argue that only a specific

sequence of accepted jobs causes such situation.

Let us assume that te = dl im,i |j caused the rejection of job Jj .
At time r j , there must be a load on machinesm1 tomi . Remember

that after Algorithm 1 has allocated a new job to a machinemh
with h > k , the new index of this machine is less than k , see
Lemma 5, and the indexes of machinesmk tomh−1 increase by 1

each. Therefore, the physical machine with index i at time r j once
had index k , and a sequence of jobs Jjk , . . . , Jji−1 has increased its

index step by step. More precisely, this machine had index h when

Algorithm 1 has accepted job Jjh and allocated it to a machine with

a larger index than h. During time interval [r jk , r j), there was no
new load allocation to this machine, see Lemma 5.

The following properties hold for this sequence:

(1) Algorithm 1 does not allocate any two jobs of this sequence

to the same machine since any index increase is only an in-

crement and the machine that receives job Jh had a previous

index larger than h and has a new index smaller than k .
(2) l(mh)|jh = l(mi)|j + r j − r jh .
(3) Due to Lemma 5 and dl im |jh ≤ dl im |j , Jjh contributes at

least l(mh)|jh · (fh − 1) to P−[r jh ,dl im |j).

Lemma 8. Let [ts , te) be a basic covered interval and Jj be a rejected
job with te = dl im,i |j = dl im |j and i ∈ {k +1, . . . ,m}. Then we have

R[ts , te) ≤
m · fi + 1∑i−1

h=k (fh − 1) + k
=
m · fk + 1

k
.

Proof. We use the previously described sequence Jjk , . . . , Jji−1 .
Whenever Algorithm 1 allocates job Jjh with h ∈ {k, . . . , i − 1}, it

cannot allocate it to machinemh . Therefore, the contribution of

this job sequence to P−[r j ,dl im |j) is at least

l(mi)|j ·

i−1∑
h=k

(fh − 1) =

i−1∑
h=k

(
l(mh)|jh − r j + r jh

)
· (fh − 1)

(6)

≤

i−1∑
h=k

l(mh)|jh · (fh − 1).

For te − ts ≤ fk · (r j + l(mi)|j − ts) ≤ fk · (tk − ts), we use the
third claim of Lemma 7 and obtain R[ts , te) ≤ (fk ·m + 1)/k .

Therefore, we assume te − ts > fk · (r j + l(mi)|j − ts). There
are at least k machines that are always busy in interval [ts , r j).
We temporarily remove all the parts of jobs from the sequence

Jjk , . . . , Jji−1 that are scheduled at r j or later and all jobs scheduled

on the same physical machine after a job of the sequence. Since

a part r j − r jh of job Jjh contributes to P−[r jh ,dl im |j) but not to

P−[r j ,dl im |j), we can apply Lemma 6 to the remaining schedule

and obtain a partial performance ratio

Rp [ts , te) ≤
m ·

te−ts
r j+l (mi) |j−ts

+ 1

k
≤

m ·
fi ·l (mi) |j
l (mi) |j

+ 1

k

due to the first claim of Lemma 7. We re-introduce the removed

parts of the jobs of the sequence and obtain our final result

R[ts , te) ≤
m · fi · l(mi)|j + l(mi)|j

(
∑i−1
h=k (fh − 1) + k) · l(mi)|j

≤
m · fi + 1∑i−1

h=k (fh − 1) + k

(5)

=
m · fk + 1

k
.

�

To generalize our results to all covered intervals, we define a

subinterval [th, th+1) of a covered interval with some time th,h+1 ∈

(th, th+1) such that in the online schedule, at least k machines are

always busy in interval [th, th,h+1) and less than k machines are

busy at any time instance in interval [th,h+1, th+1), respectively.
Further, at the submission of some job Jh,h+1 with submission time

rh,h+1 ∈ [th, th,h+1], some machine determines the largest deadline

threshold dh,h+1 generated in this subinterval.

Since at the end of a covered interval [ts , te), less thank machines

are busy, we can partition any covered interval into a sequence of

such subintervals. We prove the generalization of our results by

applying induction in the sequence of subintervals in the partition

of a covered interval.

Lemma 9. Let [ts , te) be a covered interval such that every job
contributing to [ts , te) has at least submission time ts . Then we have

R[ts , te) ≤
m · fk + 1

k
.

Proof. Let [t1, t2) be a subinterval in the partition of covered

interval [ts , te). For the induction, we assume that the claim holds

for interval [ts ,d1,2) and that the validity of the claim does not

require the consideration of any job submitted after r1,2.
For ts = t1, interval [ts , t2) only contains a single subinterval.

If we ignore all jobs submitted after J1,2 then [ts ,d1,2) is a basic
covered interval and Lemmas 7 and 8 yield the claim.

Let [t2, t3) be the next subinterval in the partition of [ts , te). For
d1,2 ≥ d2,3, the claim holds due to our assumption and we proceed

with the next subinterval of the partition until we find a subinterval

[t3, t4) with d1,2 < d3,4. Note that t2 = t3 is possible.
We must show that we can apply Lemmas 7 and 8 to subinterval

[t3, t4). Since less than k machines are busy just before t3, we must

only show the validity of Lemma 6 for subinterval [t3,d3,4) when
ignoring all jobs submitted after J3,4.

The validity of Lemma 6 is obvious for all jobs unless they

have a release date less than t3 and complete after t3. Consider
a job Jj with completion time Cj > t3 > r j in the online sched-

ule. We use ∆j to denote the difference between its contribution

to P−[ts ,d3,4) and to P−[ts , t3). Note that we have P−[ts , t3) +
P−[t3,d3,4) < P−[ts ,d3,4) unless dj is sufficiently large such that

Jj does not contribute to P−[ts ,d3,4). We increase P−[t3,d3,4) by
allocating the whole amount ∆j to P

−[t3,d3,4). This allocation does

not change P−[ts ,d1,2) and the validity of the claim for interval

[ts ,d1,2). Next, we assume a job J ′j with release date t3, process-

ing time min{pj ,Cj − t3}, and deadline dj . Job J ′j replaces job Jj
in interval [t3,max{Cj ,d3,4}) of the online schedule. We consider

its contribution ∆′
j to P−[t3,d3,4) and compare it to ∆j . Clearly,

∆′
j ≤ ∆j holds. Therefore, Lemma 6 is valid for subinterval [t3,d3,4)

due to the allocation of ∆j . �

Next, we relax the submission time restriction of a basic covered

interval, that is, Algorithm 1 can execute jobs with a submission

time earlier than the start time of a covered interval within this

covered interval although some machines are free earlier to execute

these jobs. We call this property of Algorithm 1 a delayed execution.

Such delayed execution does not contribute to P−[ts , te) of covered
interval [ts , te) and therefore leads to a larger performance ratio

of the covered interval. Clearly, any delayed execution can only

occur on machines that are busy for some time before the start of

the covered interval. However, the impact of a delayed execution is

only minor.

Lemma 10. For k ∈ {1, 2, 3}, delayed execution does not increase
the performance ratio of Lemmas 7 and 8.

Proof. Due to Lemma 5, only machinesmi with i ∈ {2, . . . ,m}

can contribute to P−[ts , te) for a covered interval [ts , te). Since at
most k − 1 machines are busy at any time in an uncovered interval,

any delayed execution cannot occur on machine k . Therefore, there
is no impact on the performance ratio for k = 1 and k = 2. Since

the case k = 3 requires more work without providing more insight,

we skip it. �

Lemma 11. Delayed execution caused by Algorithm 1 can increase
the performance ratio of Lemma 7 by at most (3 − e)/(e − 1) ≈ 0.164.

Proof Sketch. We ignore that machinesm1 andmk cannot sup-

port delayed execution and apply a continuous extension assuming

m → ∞. Then we optimize the resulting continuous optimization

problem. �

We conclude the proof of Theorem 2 by combining our previous

results.

Proof of Theorem 2. Lemma 9 specifies the performance ratio

for a covered interval if for every job contributing to this interval,

its submission time is at least the start time of the covered interval.

For k ≤ 3, this result also holds if we remove the submission

time restriction, see Lemma 10. For k > 3, Lemma 11 shows that

removing this restriction adds at most 0.164 to the performance

ratio.

The competitive ratio of the problem cannot exceed the maxi-

mum performance ratio over all covered intervals. �

Finally, we remark that applying the static-classification-and-
select technique, see, for instance, [1, 24, 26, 27], we can use the

algorithm for parallel machines to obtain a randomized algorithm

for a single machine. Our general idea is the simulation ofm parallel

machines followed by scheduling the jobs of a randomly selected

machine. Then the load of a parallel schedule will always bewithin a

constant factor of the load of an optimal single-machine schedule if

m is large enough. Since the technique is nowadays fairly standard,

we only state the result.

Corollary 1. There exists a randomized O
(
log

1

ε

)
competitive

algorithm for 1|online, ε, immediate|
∑
pj · (1 −Uj).

REFERENCES
[1] B. Awerbuch, Y. Azar, and S.A. Plotkin. 1993. Throughput-Competitive On-Line

Routing. In Proc. of the 34th Annual Symposium on Foundations of Computer
Science (FOCS). 32–40.

[2] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. Naor, and J. Yaniv. 2015. Truthful

Online Scheduling with Commitments. In Proc. of the Sixteenth ACM Conference
on Economics and Computation (EC). 715–732.

[3] A. Bar-Noy, R. Canetti, S. Kutten, Y. Mansour, and B. Schieber. 1999. Bandwidth

Allocation with Preemption. SIAM J. Comput. 28, 5 (1999), 1806–1828.
[4] S.K. Baruah, J.R. Haritsa, and N. Sharma. 1994. On-Line Scheduling to Maximize

Task Completions. In Proceedings of the 15th IEEE Real-Time Systems Symposium
(RTSS ’94), San Juan, Puerto Rico, December 7-9, 1994. 228–236. https://doi.org/10.

1109/REAL.1994.342713

[5] S.K. Baruah, G. Koren, B. Mishra, A. Raghunathan, L.E. Rosier, and D.E. Shasha.

1991. On-line Scheduling in the Presence of Overload. In 32nd Annual Symposium
on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. 100–
110.

[6] S. K. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. E. Rosier, D.

Shasha, and F. Wang. 1992. On the Competitiveness of On-Line Real-Time Task

Scheduling. Real-Time Systems 4, 2 (1992), 125–144.
[7] D.P. Bunde and M.H. Goldwasser. 2010. Dispatching Equal-Length Jobs to Parallel

Machines to Maximize Throughput. In Algorithm Theory - SWAT 2010, 12th

Scandinavian Symposium and Workshops on Algorithm Theory, Bergen, Norway,
June 21-23, 2010. Proceedings. 346–358.

[8] L. Chen, F. Eberle, N.Megow, K. Schewior, and C. Stein. 2019. A general framework

for handling commitment in online throughput maximization. In Proccedings of
the 20th IPCO 2019, Ann Arbor, MI, USA. 141–154.

[9] M. Chrobak, W. Jawor, J. Sgall, and T. Tichý. 2007. Online Scheduling of Equal-

Length Jobs: Randomization and Restarts Help. SIAM J. Comput. 36, 6 (2007),
1709–1728.

[10] B. DasGupta and M.A. Palis. 2001. Online real-time preemptive scheduling of jobs

with deadlines on multiple machines. Journal of Scheduling 4, 6 (2001), 297–312.

[11] J. Ding, T. Ebenlendr, J. Sgall, and G. Zhang. 2007. Online Scheduling of Equal-

Length Jobs on Parallel Machines. In Algorithms - ESA 2007, 15th Annual European
Symposium, Eilat, Israel, October 8-10, 2007, Proceedings. 427–438.

[12] J. Ding and G. Zhang. 2006. Online Scheduling with Hard Deadlines on Parallel

Machines. In Algorithmic Aspects in Information and Management, Second Inter-
national Conference, AAIM 2006, Hong Kong, China, June 20-22, 2006, Proceedings.
32–42.

[13] T. Ebenlendr and J. Sgall. 2008. A Lower Bound for Scheduling of Unit Jobs with

Immediate Decision on Parallel Machines. In Approximation and Online Algo-
rithms, 6th International Workshop, WAOA 2008, Karlsruhe, Germany, September
18-19, 2008. Revised Papers. 43–52.

[14] F. Eberle, N. Megow, and K. Schewior. 2019. Optimally handling commit-

ment issues in online throughput maximization. CoRR abs/1912.10769 (2019).

arXiv:1912.10769 http://arxiv.org/abs/1912.10769

[15] S.P.Y. Fung. 2014. Online scheduling with preemption or non-completion penal-

ties. J. Scheduling 17, 2 (2014), 173–183.

[16] J.A. Garay, J. Naor, B. Yener, and P. Zhao. 2002. On-line Admission Control and

Packet Scheduling with Interleaving. In Proc. of the 21st Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM). 94–103.

[17] S.A. Goldman, J. Parwatikar, and S. Suri. 2000. Online Scheduling with Hard

Deadlines. Journal of Algorithms 34, 2 (2000), 370 – 389.

[18] M.H. Goldwasser. 1999. Patience is a Virtue: The Effect of Slack on Competi-

tiveness for Admission Control. In Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 396–405.

[19] M.H. Goldwasser. 2003. Patience is a virtue: the effect of slack on competitiveness

for admission control. Journal of Scheduling 6, 2 (2003), 183–211.

[20] M.H. Goldwasser and B. Kerbikov. 2003. Admission Control with Immediate

Notification. J. Scheduling 6, 3 (2003), 269–285.

[21] M.H. Goldwasser and M. Pedigo. 2008. Online nonpreemptive scheduling of

equal-length jobs on two identical machines. ACM Trans. Algorithms 5, 1 (2008),
2:1–2:18.

[22] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. 1979. Optimiza-

tion and Approximation in Deterministic Sequencing and Scheduling: a Survey.

In Discrete Optimization II, P.L. Hammer, E.L. Johnson, and B.H. Korte (Eds.).

Annals of Discrete Mathematics, Vol. 5. Elsevier, 287 – 326.

[23] J.H. Kim and K.-Y. Chwa. 2001. On-Line Deadline Scheduling on Multiple Re-

sources. In Proc. of the 7th Annual International Conference of Computing and
Combinatorics (COCOON). 443–452.

[24] C.-Y. Koo, T. W. Lam, T.-W. Ngan, and K.-K. To. 2002. Extra processors versus

future information in optimal deadline scheduling. In SPAA. 133–142.
[25] G. Koren and D.E. Shasha. 1995. Dˆover: An Optimal On-Line Scheduling Algo-

rithm for Overloaded Uniprocessor Real-Time Systems. SIAM J. Comput. 24, 2
(1995), 318–339.

[26] J. Lee. 2003. Online deadline scheduling: multiple machines and randomization.

In Proc. of the Fifteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). 19–23.

[27] R.J. Lipton and A. Tomkins. 1994. Online Interval Scheduling. In Proceedings of
the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. 23-25 January
1994, Arlington, Virginia. 302–311.

[28] B. Lucier, I. Menache, J. Naor, and J. Yaniv. 2013. Efficient online scheduling for

deadline-sensitive jobs: extended abstract. In Proc. of the 25th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). 305–314.

[29] C. Schwiegelshohn and U. Schwiegelshohn. 2016. The Power of Migration for

Online Slack Scheduling. In 24th Annual European Symposium on Algorithms
(ESA). 75:1–75:17.

[30] M. Skutella and J. Verschae. 2016. Robust Polynomial-Time Approximation

Schemes for Parallel Machine Scheduling with Job Arrivals and Departures.

Math. Oper. Res. 41, 3 (2016), 991–1021.
[31] N. Thibault and C. Laforest. 2009. Online time constrained scheduling with penal-

ties. In 23rd IEEE International Symposium on Parallel and Distributed Processing,
IPDPS 2009, Rome, Italy, May 23-29, 2009. 1–8.

https://doi.org/10.1109/REAL.1994.342713
https://doi.org/10.1109/REAL.1994.342713
https://arxiv.org/abs/1912.10769
http://arxiv.org/abs/1912.10769

	Abstract
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Related Work

	2 Definitions and Preliminaries
	3 Lower Bounds
	4 Online Algorithm
	References

