
Solving the Minimum String Cover Problem∗

Stefan Canzar† Tobias Marschall† Sven Rahmann‡ Chris Schwiegelshohn§

December 12, 2011

Abstract

A string cover C of a set of strings S is a set of substrings
from S such that every string in S can be written as a
concatenation of the strings in C. Given costs assigned
to each substring from S, the Minimum String Cover
(MSC) problem asks for a cover of minimum total cost.
This NP-hard problem has so far only been approached
from a purely theoretical perspective. A previous inte-
ger linear programming (ILP) formulation was designed
for a special case, in which each string in S must be
generated by a (small) constant number of substrings.
If this restriction is removed, the ILP has an exponen-
tial number of variables, for which we show the pricing
problem to be NP-hard. We propose an alternative flow-
based ILP formulation of polynomial size, whose struc-
ture is particularly favorable for a Lagrangian relaxation
approach. By making use of the strong bounds ob-
tained through a repeated shortest path computation in
a branch-and-bound manner, we show for the first time
that non-trivial MSC instances can be solved to prov-
able optimality in reasonable time. We also provide and
solve real-world instances derived from the classic text
“Alice in Wonderland”. On almost all instances, our
Lagrangian relaxation approach outperforms a CPLEX-
based implementation by an order of magnitude. Our
software is available under the terms of the GNU general
public license.

1 Introduction.

Let S be a set of strings. We call a set of substrings
of the strings in S a cover of S if concatenations of
these substrings generate the original strings. In the
unweighted Minimum String Cover (MSC) problem, we
want to find a cover with minimal cardinality. In a more

∗Supported by DFG SFB 876 “Providing Information by

Resource-Constrained Data Analysis”
†Centrum Wiskunde & Informatica (CWI), Science Park 123,

1098 XG Amsterdam, Netherlands.
‡Genome Informatics, Faculty of Medicine, University of

Duisburg-Essen, and Bioinformatics, Computer Science XI,

TU Dortmund, Germany.
§Algorithms and Complexity Theory, Computer Science II,

TU Dortmund, Germany.

general version, we assign a cost to each substring and
aim at a cover of minimal total cost.

The paper is organized as follows. First, we briefly
review the history of the problem and define the prob-
lem formally. After that, we discuss an existing inte-
ger linear programming (ILP) formulation by Hermelin
et al. [4] of exponential size (Section 2) and present
a new polynomial-size flow-based formulation in Sec-
tion 3. Additionally, in Section 4, we show that a cer-
tain Lagrangian relaxation of our formulation leads to a
shortest path problem in a directed acyclic graph asso-
ciated with the strings of the problem instance. These
properties result in the first practical method to solve
non-trivial MSC instances. We describe our implemen-
tation (Section 5) and evaluate it on benchmark in-
stances (Section 6). A brief discussion concludes the
paper (Section 7).

1.1 Previous Work. Bodlaender et al. [2] used the
name Dictionary Generation for MSC, because in com-
puter linguistics, it is a common task to find words,
stems, suffixes and affixes, or syllables from text cor-
pora with unknown structure, and MSC thus might
complement language-specific stemming algorithms by
discovering these building blocks (semi-)automatically.
Bodlaender et al. [2] also suggested that MSC might be
applicable to discover protein domains from collections
of protein sequences. Furthermore, MSC may be rele-
vant to data storage as an MSC optimization yields a
compact representation of a string set S. Despite these
potential applications, in none of the areas mentioned
above, real problems are solved with MSC algorithms.
This might be due to the lack of efficient and practi-
cal algorithms for MSC, as previous work has mostly
addressed theoretical aspects of MSC.

NP-completeness of the unweighted MSC problem
was determined in 1990 by Néraud [6], who showed that
it is co-NP-complete to decide whether a given set of
strings is elementary. A set of strings X is elementary if
there exists no set of strings Y with |Y | < |X|, such that
the strings in X can be written as concatenations of the
strings in Y . For example, {ABC,BCA} is elementary,
but {ABC,BCA,A} is not because these strings can be

75 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

written as concatenations of strings in the smaller set
{A,BC}.

Hermelin et al. [4] generalized the unweighted MSC
problem by assigning costs to each substring and showed
that approximating the solution within factors of c·ln |S|
and bmaxs∈S |s|/2c − 1 − ε, for some c > 0 and for all
ε > 0, is NP-hard. In addition, the authors presented an
ILP formulation (see Section 2) and two approximation
algorithms based on dynamic programming and LP
rounding, respectively.

The ILP formulation appears to never have been
implemented, and we are not aware that any other
algorithm has ever been used to solve real instances
either. In summary, no practical exact method exists
yet to solve non-trivial MSC instances. The purpose
of this article is to provide such a method and to
make a tool available for researchers working in the
aforementioned domains.

1.2 Notation and Problem Definition. Given a
finite alphabet Σ and a string s ∈ Σ∗, the length of s
is denoted by |s| and its characters are indexed starting
at zero, i.e. s = s[0] . . . s[|s| − 1].

Substrings are written s[i . . . j] := s[i] · · · s[j]. The
set of all (distinct) substrings of s excluding the empty
string is denoted by T (s). A string can contain the same
substring more than once. Therefore, we distinguish
between substrings and intervals of a string. While
substring t ∈ T (s) is a string from Σ∗, intervals are
denoted by tuples (s, i, j) referring to the range from i
to j in s. The set of all intervals of s is written I(s). We
write It(s) to denote the set of all intervals that spell t
in s, formally It(s) := {(s, i, j) ∈ I(s) : s[i . . . j] = t}.

A factorization of s is a sequence of intervals of s,
((s, i1, j1), . . . , (s, iK , jK)) for some K ≥ 1 with 0 = i1;
ik ≤ jk for k = 1, . . . ,K; jk−1 +1 = ik for k = 2, . . . ,K;
and jK = |s| − 1, so that the concatenation of the
substrings spelled by the intervals is s. The set of
all factorizations of s is denoted by F (s). Note that
|F (s)| = 2|s|−1 is exponentially large in the string
length. For a given f ∈ F (s), we slightly abuse notation
and define T (f) to be the set of all substrings of s spelled
by the intervals in f . Furthermore, Ft(s) := {f ∈ F (s) :
t ∈ T (f)} denotes the set of all factorizations containing
the substring t ∈ T (s) at least once.

Throughout this paper, S denotes a finite set of
strings. The definitions of T , F and I naturally extend
to sets of strings through T (S) :=

⋃
s∈S T (s), etc.

A set of strings C ⊂ T (S) is a cover of S if, for
every s ∈ S, there exists a factorization fs ∈ F (s) such
that T (fs) ⊂ C.

Problem 1. (Minimum String Cover) For a given
finite alphabet Σ, a finite string set S ⊂ Σ∗, and a

cost function w : T (S) → Q+
0 , the Minimum String

Cover problem consists of finding a cover C of S
such that its total cost w(C) :=

∑
t∈C w(t) is minimal

among all covers of S. The tuple (S,w) is called an
instance of the Minimum String Cover problem, the
underlying alphabet Σ being derived from S. If w ≡ 1,
the problem is called the unit cost (also unweighted)
Minimum String Cover problem.

2 An Initial ILP formulation.

We briefly restate the ILP formulation introduced by
Hermelin et al. [4]. For every substring t ∈ T (S) we
use a binary variable xt indicating whether substring t
is contained in the sought string cover C. For every
string s ∈ S and every factorization f ∈ F (s), a binary
variable ys,f indicates whether f is used to factorize s.
Using these variables, the Minimum String Cover
problem can then be cast as the following ILP SCfact.

min
∑

t∈T (S)

w(t) xt,(SCfact)

s.t.
∑

f∈Ft(s)

ys,f ≤ xt ∀ s ∈ S, t ∈ T (S),(2.1)

∑
f∈F (s)

ys,f ≥ 1 ∀ s ∈ S,(2.2)

xt, ys,f ∈ {0, 1} ∀ t ∈ T (S),(2.3)

s ∈ S, f ∈ F (s).

The first set of constraints (2.1) ensures that a factor-
ization can be used to cover an input string only if all its
substrings are contained in the solution cover C. Con-
straints (2.2) require that all strings are covered by at
least one factorization.

ILPs are solved by commercial solvers by a repeated
solution of the linear programming (LP) relaxation of
variants of the problem. Therefore, besides the strength
of the obtained bound, the ability to solve the LP relax-
ation efficiently plays a key role in the practical perfor-
mance of an ILP-based approach. In SCfact, however,
the number of factorizations and thus the number of
y-variables grows exponentially with the length of the
strings. Previous work, including [4], therefore focused
on the `-cover problem, a variant in which each string
must be produced by a concatenation of at most ` sub-
strings, where ` is assumed to be constant. Thus, the
number of factorizations is no longer exponential in the
string length, and solving the ILP becomes feasible for
reasonably small `. For the general Minimum String
Cover problem we consider here, solving this ILP di-
rectly is infeasible. Alternatively, one can study the
pricing problem, or equivalently, the separation prob-
lem for the exponentially large class of constraints in

76 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

the dual of its LP relaxation. If the separation prob-
lem can be solved in polynomial time, then an optimal
solution to the LP relaxation can still be found in poly-
nomial time [7]. In this case, practically efficient algo-
rithms for solving the LP relaxation based on delayed
column generation, respectively cutting planes, might
exist. However, we show next that an efficient algo-
rithm for solving the separation problem for the dual of
the LP relaxation of SCfact, in which constraints (2.3)
are replaced by constraints xt, ys,f ≥ 0, is unlikely to
exist. By the equivalence of separation and optimiza-
tion [7] we conclude that there is no polynomial time
algorithm to solve the LP relaxation, unless P=NP.

Theorem 2.1. The separation problem for the dual of
SCfact is NP-hard.

Proof. Consider the dual of the LP relaxation of SCfact,
taking into account that every optimal solution for the
primal problem satisfies xt, ys,f ≤ 1,

max
∑
s∈S

ps,(DSCfact)

s.t.
∑

t∈T (f)

qs,t ≥ ps ∀s ∈ S, ∀f ∈ F (s),(2.4)

qs,t ≤ w(t) ∀s ∈ S, ∀ t ∈ T (s),(2.5)

ps, qs,t ≥ 0 ∀s ∈ S, ∀ t ∈ T (s).(2.6)

For details on how to obtain the dual of a linear
program, we refer to textbooks such as [1]. The
separation problem consists of deciding whether a given
vector (q, p) is feasible for DSCfact and, if not, to find a
violated constraint. For constraints (2.5) and (2.6) this
is a trivial task. For constraints (2.4) we have to decide
for every string s, whether minf∈F (s)

∑
t∈T (f) qs,t ≥

ps. Computing the left hand side of this inequality is
equivalent to solving a minimum string cover instance
with s as the only input string and costs given by
w′(t) := qs,t. Note that constraints (2.5) do not pose
any restriction on this minimum string cover instance,
since the costs w(t) can always be scaled accordingly.
The claim now follows from the following lemma.

Lemma 2.1. Minimum String Cover with |S| = 1 is
NP-hard.

Proof. Given an instance I = (S,w) of the unweighted
Minimum String Cover problem, i.e. w ≡ 1, with
S = {s1, s2, . . . , sn} and n > 1, we construct an
equivalent instance I ′ = (S′, w′) with |S′| = 1 as follows:
We concatenate all strings in S to a single string in S′,
separated by a character $, which we assume not to be
present in S. Thus S′ = {s1$s2$ · · · $sn}. We define the
cost function w′ as w′(t) := 1 for t ∈ T (S), w′(t) := 1+n

for t ∈ T (S′) \ {T (S) ∪ {$}}, and w′($) := 0. Clearly,
the set C = S ∪ {$} is a feasible solution for instance
I ′ and thus n provides an upper bound on the cost of
an optimal solution C̄∗. Therefore, for every substring
t ∈ C̄∗ it holds t = u$v ⇒ u = ε∧v = ε and thus C̄∗\{$}
is a feasible solution for I of same cost. In the reverse
direction, we can derive from an optimal solution C∗

for I a feasible solution C ′ for I ′ of same cost by simply
setting C ′ := C∗ ∪ {$}.

3 A polynomial-size ILP formulation.

We propose a polynomial size ILP formulation for the
minimum string cover problem. The idea is to model
factorizations of a string by paths in the substring graph
of a string, which we define in the following. In essence,
its directed edges correspond to substring intervals, and
the nodes to positions between characters. Formally, for
a string s of length n, let

Vs := {(s, 0), (s, 1), . . . , (s, n)},
Es := {((s, p)→ (s, q)) : p < q, (s, p) ∈ Vs, (s, q) ∈ Vs}.

The directed edge ((s, p) → (s, q)) represents the sub-
string interval (s, p, q−1), spelling a substring of length
q−p. From now on, we identify the interval (s, i, j) with
the edge (s, i)→ (s, j + 1).

A factorization of s is now equivalent to a path in
the substring graph Gs = (Vs, Es), starting at (s, 0) and
ending at (s, |s|). We write δ−(v) and δ+(v) for the sets
of incoming and outgoing edges of v ∈ Vs, respectively.

Our ILP formulation SCflow uses a binary variable
zs,i,j for every edge, i.e. interval (s, i, j) ∈ I(S), and
models a path from the source (s, 0) to the sink (s, |s|)
as a unit flow. Let V ±s := Vs \ {(s, 0), (s, |s|)}.

min
∑

t∈T (S)

w(t)xt , s.t.(SCflow)

zs,i,j ≤ xs[i...j] ∀ (s, i, j) ∈ I(S),(3.7)

∑
(s,i,j)∈δ+((s,0))

zs,i,j = 1 ∀ s ∈ S,
(3.8)

∑
(s,i,j)∈δ−(v)

zs,i,j =
∑

(s,i,j)∈δ+(v)

zs,i,j ∀ s ∈ S, v ∈ V ±s ,(3.9)

xt, zs,i,j ∈ {0, 1} ∀ t ∈ T (S),(3.10)

(s, i, j) ∈ I(S).

Note that constraints (3.8) and (3.9) together imply
that a unit flow arrives at the sink (s, |s|). We also
call (3.9) the “flow balance constraints”. We solve
SCflow using a Lagrangian relaxation approach, as de-
scribed in the next section.

77 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

4 Lagrangian Relaxation.

The ILP formulation derived in the previous section
exhibits a structure that is favorable for a Lagrangian
relaxation approach. The general idea of Lagrangian
relaxation is to relax the “complicating” constraints and
penalize their violation in the objective function, such
that an “easy-to-solve” subproblem remains. In our
case, solutions satisfying constraints (3.8)–(3.9) encode
a unit flow and thus a path from node (s, 0) to node
(s, |s|) in the substring graph of every string s ∈ S.
The link between these paths and the chosen substrings
is established through constraints (3.7). Therefore, by
relaxing these “linking constraints” and by penalizing
their violation with non-negative multipliers λ in the
objective function, an optimal solution to the resulting
problem can be obtained by computing shortest paths
in the substring graphs independently for each string.

min
∑

t∈T (S)

w(t)xt +
∑

(s,i,j)∈I(S)

λs,i,j(zs,i,j − xs[i...j]),
(LRλ)

such that∑
(s,i,j)∈δ+((s,0))

zs,i,j = 1 ∀ s ∈ S,

∑
(s,i,j)∈δ−(v)

zs,i,j =
∑

(s,i,j)∈δ+(v)

zs,i,j ∀ s ∈ S, v ∈ V ±s ,

xt, zs,i,j ∈ {0, 1} ∀ t ∈ T (S),

(s, i, j) ∈ I(S).

We denote the problem of finding an optimal solu-
tion to this Lagrangian relaxation for given Lagrangian
multipliers λs,i,j ≥ 0 by (LRλ), and its optimal cost by
v(LRλ).

The shortest paths are computed with respect to
weights λs,i,j assigned to the z-variables in the objective
function. We set zs,i,j = 1 if the edge from node (s, i)
to node (s, j + 1) lies on the shortest path from (s, 0)
to (s, |s|) in the substring graph of s and zs,i,j = 0
otherwise.

Since the x-variables are not further constrained in
(LRλ), we simply set xt = 1 if its associated coefficient
in the objective function is non-positive, and xt = 0
otherwise:

(4.11) xt =

{
1 if w(t)−

∑
(s,i,j)∈It(S) λs,i,j ≤ 0,

0 otherwise.

If λs,i,j ≥ 0 for all (s, i, j) ∈ I(S), then the terms
in the second sum in objective function (LRλ) are
all non-positive if the solution is also feasible for the
original problem formulation SCflow and in particular if

it satisfies constraints (3.7). Since every solution feasible
for the original problem formulation SCflow is also
feasible for the Lagrangian relaxation (LRλ), v(LRλ)
provides a lower bound on the optimal cost of problem
SCflow. Naturally, we are interested in strong bounds
on the optimal cost in order to be able to prune large
parts of the solution space during implicit enumeration
performed by branch-and-bound approaches. Hence we
want to determine multipliers λ∗(s,i,j) ≥ 0 such that the
cost of an optimal solution to the Lagrangian relaxation
is as large as possible. This problem is referred to as the
Lagrangian dual problem:

(LD) λ∗ = argmax
λ≥0

v(LRλ)

Since the Lagrangian function f(λ) = v(LRλ) is a con-
cave function in λ but not differentiable at points where
the optimal solution to (LRλ) is not unique, a com-
monly used approach [3] to determine near-optimal mul-
tipliers efficiently is based on the vector of subgradients
associated with a given λ. A subgradient at a point
λ0 is given by the vector of slacks of the dualized con-
straints (3.7) given an optimal solution to (LRλ0). The
iterative approach proposed by Held and Karp [3] gen-
erates a sequence of Lagrangian multipliers λ0, λ1, . . .
by taking at iteration k+1 a step in the direction oppo-
site to a subgradient of f(λk), projecting the resulting
point onto the non-negative orthant. We refer to [3] for
details on this approach.

5 Implementation.

Using the subgradient optimization approach described
in the previous section, convergence towards the optimal
Lagrangian multipliers can be slow in practice. There-
fore, we opt for near-optimal multipliers and employ the
resulting lower bounds in a branch-and-bound (b&b)
framework to efficiently find the global optimum. Gen-
erally, we proceed as described in [5]. In the remainder
of this section, we provide the algorithmic details needed
to reproduce our results.

A node in the b&b tree represents a set of substrings
that must be included into the solution and a set of sub-
strings that are forbidden. Furthermore, it contains the
current Lagrangian multipliers. Branching at a specific
substring means cloning the current node into two child
nodes and including the given substring in one while for-
bidding it in the other. Included substrings can be taken
into account while solving the Lagrangian dual problem
by forcing xt = 1 for every included substring t, while
setting the multipliers of the corresponding intervals to
zero. To respect forbidden substrings, the respective
edges in the substring graphs are deleted.

As the nodes of substring graphs are ordered by

78 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

construction, we know a topological sorting and can
solve the shortest path problem for every s ∈ S by
straightforward dynamic programming. The sum of
lengths of the shortest paths over all s ∈ S yields a
lower bound as explained in Section 4. By selecting each
substring being part of a shortest path from the source
node to the sink node, we obtain a feasible solution
and therefore an upper bound on the optimal cost. In
each iteration, we check whether this feasible solution
improves the best one known so far and, if so, store it.

Finally, we need to address the questions of node
and variable selection. That is, we have to decide at
which string to branch for a given branching node and
in which order to process the nodes of the b&b tree.
To choose the substring to branch on, we consider the
multipliers associated with the edges on the shortest
path computed in a given branching node. For each
substring t ∈ T (S), we sum the multipliers of the
selected edges and divide by the total sum of multipliers
for all edges associated with the substring, that is, we
compute the quantity

rt :=

∑
(s,i,j)∈It(S) λs,i,j · zs,i,j∑

(s,i,j)∈It(S) λs,i,j
.

Intuitively, the ratio rt is a measure for whether the
substring t should be included in the final solution
or not. We then branch at the substring for which
this ratio is closest to 0.5 meaning that we are “most
uncertain” whether to include it or not. We keep all
branching nodes that have not yet been considered in
a priority queue and process them following a best-node
first strategy which aims to minimize the total number
of nodes evaluated in the tree [5]. According to this
strategy, always the node with the lowest lower bound,
i.e. the node which potentially permits the best solution,
is chosen.

The performance of the subgradient optimization
can strongly be influenced by the choice of the initial
multipliers. We set them as

λs,i,j :=
w(s[i . . . j])

|Is[i...j](S)|
.

These initial multipliers have the special property that
all coefficients of x variables in the objective function
(LRλ) become zero. Therefore, the lower bound is solely
determined by the sum of lengths of the shortest paths.
If all edges belonging to a substring are chosen, then
the complete weight of this substring contributes to the
lower bound. Furthermore, these multipliers encourage
the use of substrings which occur frequently and/or have
low weight. This, intuitively, is beneficial for obtaining
a good initial feasible solution.

In the subgradient optimization approach, the size
of the step taken in the direction opposite to a subgradi-
ent (see Section 4) is controlled by a parameter µ. Con-
cerning its adaption, our approach slightly differs from
the classical Held-Karp method [3]. For each branching
node, µ is initially set to 2.0 and halved after five itera-
tions in which the lower bound has not been improved
or after 15 iteration in which the gap between lower and
upper bound has not been reduced by at least 1 %. If
µ reaches 0.125 before lower and upper bound meet, we
branch. In the branching tree’s root node, we invest
more effort in computing strong bounds: we decrease
µ after 30 non-improving iterations or 90 iterations not
reducing the gap by at least 1 % and iterate until it
reaches 0.001.

6 Evaluation.

Despite the theoretical considerations in Sections 2 to 4,
only experiments can show which approach works best
in practice. Until now, however, no practical approach
to solve minimum string cover existed and hence no
benchmark data sets are publicly available. Therefore,
we generate benchmark data sets by random sampling
and using the sentences of a novel.

The purpose of Section 6.1 is to provide guidance
as to which kind of problem instances (in terms of
alphabet size, input size, solution size, etc.) can be
solved to provable optimality in reasonable time by our
implementation, and to compare the performance of
the commercial general-purpose ILP solver CPLEX to
our Lagrangian-based b&b approach. In contrast, the
purpose of Section 6.2 is to attempt to model a real-
world problem (word boundary detection in an English
text) with MSC, using an appropriate cost function.

Our software has been implemented in C++ and
was compiled using GNU gcc version 4.4.5. It is avail-
able under the terms of the GNU general public li-
cense at http://string-cover.googlecode.com. To
solve the ILP introduced in Section 3 directly, the com-
mercial general-purpose ILP solver CPLEX 12.2 (http:
//www.cplex.com) with Concert Technology has been
used. Time measurements were taken on a compute
cluster whose nodes are equipped with two Intel Quad-
Core processors with clock-rates between 2.26 GHz and
2.5 GHz and 24 GB of RAM, running 64 bit Linux.

6.1 Random Instances. In order to compare both
approaches in a controlled setting and to provide an
overview of runtimes to be expected when facing the
string cover problem in practice, we randomly generated
a total of 1 800 instances divided into 36 groups (50
instances each). For every group, the instances were
sampled using different parameters as detailed below.

79 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

We used three different alphabet sizes of 4, 20, and
50, the first two being inspired by the DNA and amino
acid alphabets, respectively. To obtain instances with
non-trivial solutions, we did not use completely random
texts but sampled a solution set first and subsequently
generated problem instances by randomly concatenat-
ing strings from the solution set. Sampling the solution
set was controlled by two parameters, a range for the
set size and a range for the string length. Within the
given ranges, the set size and the length of each solu-
tion string was sampled uniformly. All characters in
each solution string were drawn independently and uni-
formly. From the solution set constructed in this way,
a prespecified number of strings were constructed by
concatenating randomly drawn strings from the solu-
tion set. The length of each string was determined by
sampling a lower bound for its length from an interval
given as parameter; as long as this lower bound was not
reached, another string was drawn from the solution set
and appended. All used parameter values are summa-
rized in Table 1. The groups of parameters are obtained
by considering all combinations excluding those where
the number of strings in the solution set would be larger
than the number of generated strings.

For instances with alphabet size four and twenty,
we introduced an additional constraint restricting the
minimum length of a string in the solution to three and
two, respectively. This allows avoiding trivial solutions
containing just the input alphabet. For this benchmark,
we considered only the unit weight case because choos-
ing an appropriate weight function greatly depends on
the specific application. In Section 6.2, we then con-
sider one specific example of a problem instance with
an application-tailored weight function. All instances
were (attempted to be) solved with CPLEX and our
Lagrangian relaxation approach within a time limit of
1h and using up to 8 GB of memory. If either the
time or the memory limit was exceeded, the compu-
tation was aborted. CPLEX was able to solve 1 432

Table 1: Overview of (alternative) parameters used for
the generation of random instances.

General parameters
Alphabet size: {4, 20, 50}
Parameters controlling solution
Solution size: {2–10, 20–30}
Solution string lengths: {3–10, 20–30}
Parameters controlling instance strings
Number of strings: {10, 100}
String lengths: {50–100, 250–300}

instances (79.6 %) while our Lagrange implementation
successfully solved 1 747 instances (97.1 %). For those
instances successfully solved, minimum, median, and
maximum runtimes are shown in Table 2 for each group
of instances. For all of these groups, our approach out-
performs CPLEX in terms of minimum, median, and
maximum runtime, often by orders of magnitude.

6.2 Alice in Wonderland. We investigate to what
extent MSC might be useful to recognize building
blocks (such as words) of natural language texts. On
English texts, the unit cost MSC problem will usually
yield the alphabet as the optimal solution. Therefore,
choosing a reasonable cost function is essential.

Here we report results on an instance derived from
Alice in Wonderland by Lewis Carroll as follows. The
text was obtained from http://www.gutenberg.org/

files/11/11.txt and the header removed. Double
dashes (--) and potential sentence separators (?!;:)
were replaced by full stops, simple dashes and newlines
by spaces. The text was split into sentences at the
resulting full stops. All letters were converted into
lower case. In principle, instances with alphabet size
26 can now be obtained by considering each sentence
(without the full stop) as one string and removing the
spaces between words in each sentence. The goal is to
recover the word boundaries as the solution of the MSC
problem.

However, to generate non-trivial but still solvable
instances, some adjustments were necessary. Allowing
words of size 1 or 2 leads to trivial solutions, so
we prescribed a minimum word length m ∈ {3, 4}.
We only kept sentences with at least 6 words with
total length at least 50. We also ensured that each
word that occurs at all occurs at least twice. We
aimed for instances with n ∈ {50, 70, 80, 100, 150, 200}
sentences, and maximally many sentences. Due to
the above restrictions, the desired values of n could
not always be obtained exactly, so the next obtainable
larger value was taken. Costs were computed for
every occurring substring of length between m and 13
(shorter and longer strings were excluded by assigning
infinite costs) as follows. We estimated Markovian
text models of orders 0 (i.i.d model) and 1 from the
instance by counting the frequency of single letters and
2-grams, respectively. The p-value of a string t with k
observed occurrences is defined as the probability that
t occurs at least k times in a set of the same size as
the given one, chosen according to the random text
model. The conditional p-value is the corresponding
conditional probability, given that the string occurs at
least once. The score of t is the natural logarithm of
the conditional p-value. Intuitively, it measures the

80 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Table 2: Performance comparison of CPLEX and the Lagrange-based optimization. For both, the minimal,
median, and maximal runtime is reported along with the number of instances aborted due to memory (8gb) or
time (1h) constraints (column “abrt.”).

Solution Solution String Runtime CPLEX [s] Runtime Lagrange [s]
size str. len. lengths abrt. / min / median / max abrt. / min / median / max

Instances with 10 strings
Alphabet size 4

2-10 20-30 250-300 0 / 26.7 / 368.0 / 1088.6 0 / 0.5 / 0.8 / 9.9
2-10 20-30 50-100 0 / 0.7 / 1.9 / 8.8 0 / 0.01 / 0.04 / 0.6
2-10 3-10 250-300 0 / 8.2 / 79.3 / 248.3 0 / 0.6 / 4.3 / 30.3
2-10 3-10 50-100 0 / 0.5 / 1.5 / 6.2 0 / 0.01 / 0.1 / 0.5

Alphabet size 20
2-10 20-30 250-300 0 / 13.5 / 310.1 / 1289.6 0 / 0.7 / 0.8 / 19.5
2-10 20-30 50-100 0 / 0.5 / 1.8 / 6.9 0 / 0.01 / 0.04 / 1.4
2-10 3-10 250-300 0 / 9.8 / 74.8 / 183.5 0 / 0.7 / 0.9 / 5.6
2-10 3-10 50-100 0 / 0.6 / 1.6 / 8.6 0 / 0.0 / 0.0 / 0.3

Alphabet size 50
2-10 20-30 250-300 0 / 13.5 / 347.5 / 1832.2 0 / 0.7 / 0.8 / 3.2
2-10 20-30 50-100 0 / 0.9 / 1.9 / 12.3 0 / 0.01 / 0.04 / 0.4
2-10 3-10 250-300 0 / 9.3 / 75.0 / 318.4 0 / 0.7 / 0.9 / 7.3
2-10 3-10 50-100 0 / 0.6 / 1.8 / 8.4 0 / 0.01 / 0.03 / 0.3

Instances with 100 strings
Alphabet size 4

20-30 20-30 250-300 50 / – / – / – 49 / 169.4 / 169.4 / 169.4
20-30 20-30 50-100 0 / 23.2 / 41.8 / 67.8 0 / 7.2 / 12.8 / 20.3
20-30 3-10 250-300 2 / 1265.7 / 1888.5 / 2919.5 4 / 145.6 / 277.4 / 1098.4
20-30 3-10 50-100 0 / 18.9 / 30.6 / 55.9 0 / 6.9 / 13.0 / 25.7
2-10 20-30 250-300 50 / – / – / – 0 / 4.3 / 7.8 / 9.0
2-10 20-30 50-100 0 / 57.9 / 217.6 / 531.7 0 / 0.1 / 0.3 / 4.2
2-10 3-10 250-300 28 / 1307.2 / 2757.5 / 3574.6 0 / 7.4 / 47.6 / 215.3
2-10 3-10 50-100 0 / 27.6 / 55.2 / 187.8 0 / 0.2 / 2.1 / 11.6

Alphabet size 20
20-30 20-30 250-300 27 / 2062.2 / 2915.2 / 3530.9 0 / 9.7 / 10.9 / 11.8
20-30 20-30 50-100 0 / 12.0 / 16.5 / 24.2 0 / 0.5 / 0.6 / 0.7
20-30 3-10 250-300 0 / 433.4 / 707.4 / 1170.3 0 / 10.1 / 14.6 / 77.2
20-30 3-10 50-100 0 / 11.4 / 14.6 / 20.1 0 / 0.4 / 1.0 / 4.0
2-10 20-30 250-300 50 / – / – / – 0 / 4.0 / 8.0 / 9.2
2-10 20-30 50-100 0 / 39.6 / 214.6 / 489.6 0 / 0.1 / 0.3 / 0.5
2-10 3-10 250-300 20 / 1209.0 / 2363.4 / 3586.9 0 / 6.9 / 10.1 / 65.2
2-10 3-10 50-100 0 / 27.0 / 42.2 / 131.8 0 / 0.2 / 0.4 / 3.0

Alphabet size 50
20-30 20-30 250-300 50 / – / – / – 0 / 10.0 / 11.1 / 11.8
20-30 20-30 50-100 0 / 13.4 / 21.1 / 38.5 0 / 0.5 / 0.6 / 3.5
20-30 3-10 250-300 8 / 835.0 / 1275.8 / 1877.4 0 / 10.4 / 17.9 / 49.5
20-30 3-10 50-100 0 / 15.9 / 26.1 / 36.9 0 / 0.5 / 1.0 / 3.2
2-10 20-30 250-300 50 / – / – / – 0 / 4.3 / 8.0 / 8.9
2-10 20-30 50-100 0 / 70.2 / 252.0 / 685.9 0 / 0.2 / 0.3 / 0.5
2-10 3-10 250-300 33 / 1469.2 / 3000.0 / 3608.4 0 / 6.9 / 10.4 / 70.2
2-10 3-10 50-100 0 / 32.9 / 84.3 / 275.4 0 / 0.2 / 0.4 / 0.6

81 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Table 3: Alice in Wonderland MSC results. Instance properties: m: minimum substring/interval length; n:
number of strings in instance; size: total number of characters; substrings: number of substrings of length between
m and 13. Solution properties: true cost: cost of true solution, using the known word boundaries; optimal: cost
of optimal solution found by the ILP solver; prec.: precision of the optimal solution, i.e., percentage of substrings
in the solution that are true words; recall: recall of the optimal solution, i.e., percentage of true words that are
discovered by the optimal solution.

m n size substrings true cost > optimal prec. [%] recall [%]
3 50 4095 31608 11864 > 11433 87.9 86.4
3 70 5938 44659 23772 > 23206 88.2 87.0
3 80 6683 50083 26064 > 25314 87.6 86.2
3 101 8395 62649 31838 > 30935 86.8 85.7
3 150 12474 89171 70963 > 68838 86.2 84.4
3 200 16460 115100 121529 > 116399 86.3 83.3
3 620 51076 321621 626928 > 581239 86.3 67.8
4 51 3457 25714 14632 > 14536 93.1 93.1
4 71 4823 35355 25110 > 24910 95.9 95.5
4 81 5509 40291 33374 > 33139 95.9 95.4
4 100 6930 50487 44315 > 44044 95.1 94.7
4 150 10548 75419 86398 > 85611 94.0 93.3
4 200 14244 100051 126928 > 125261 94.3 93.3
4 363 26558 178397 301321 > 296109 91.2 90.0

observed exceptionality of t’s frequency in comparison
to a random text. We take the lower score among the
two text models, i.i.d. and Markov order 1. We define
the cost of t by w(t) := round(M − score(t) + 1), where
M := maxτ∈T (S) score(τ). Thus, all costs are positive
integers.

Table 3 shows the instance properties and optimal
solutions vs. the ground truth (true word boundaries).
Note that the optimal solution has slightly lower cost
than the true words. This indicates that the chosen
cost function cannot model the word boundary problem
perfectly, but comes close, as we see from the precision
and recall values. For m = 3, most precision and
recall percentages are well above 80%, the difficult
n = 620 instance being a notable exception. For m = 4,
all precision and recall percentages are above 90%.
Differences mainly result from the optimal solution
using concatenations of words instead of separate words,
where this is possible. The optimal solution always uses
slightly fewer substrings than there are true words.

Concerning runtimes, most instances were solved
in a few seconds by both CPLEX and our Lagrangian
approach, with the exception of (m,n) = (4, 363), which
took slightly over 2 minutes, and (3, 620), which was
solved in about 3 hours by CPLEX but did not finish
within 24h using the Lagrangian relaxation approach.
This might be due to the more sophisticated branching
scheme implemented in CPLEX (see Discussion).

The generally short running times indicate that

most of the instances are easy, especially for m = 4.
Indeed, to avoid trivial solutions and provide a reason-
able cost function, we had to give away many hints to-
wards the solution (e.g., substring length constraints).
However, we point out that these instances are the first
weighted instances for the MSC problem inspired by a
real-world application.

7 Discussion.

In the present work, we introduce the first practical al-
gorithm to solve non-trivial instances of the Minimum
String Cover problem. As we show, the separation
problem for the exponentially sized ILP introduced by
Hermelin et al. [4] is NP-hard. Therefore we intro-
duce a novel, polynomially-sized flow-based formulation
which is amenable to Lagrangian relaxation with re-
spect to one class of linking constraints. This relaxation
leads to a simple shortest path problem on a directed
acyclic graph. Combining subgradient optimization and
branch-and-bound search leads to a practical algorithm,
an implementation of which is available as open source
software.

CPLEX is a fast general purpose ILP solver. Thus,
we use CPLEX to solve the new flow-based ILP and
compare the runtimes to those of our approach. Table 2
shows that the Lagrangian approach indeed outperforms
CPLEX by orders of magnitude on most instances.

So far, we know of no work that models a real-world
problem usefully as a (weighted) MSC problem. Here

82 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

we took a first step by inferring word boundaries in sen-
tences from “Alice in Wonderland”. Clearly, design-
ing a cost function that models the real-world problem
remains a challenge; yet our approach allows to solve
weighted instances of reasonable size efficiently. How-
ever, the relative importance of a state-of-the art im-
plementation of the branch-and-bound scheme increases
with the complexity of the instances, as indicated by the
fact that CPLEX outperforms our implementation for
the difficult instance (3, 620), where a lot of branching
is required. The strength of the Lagrangian approach
lies in the efficient computation of strong bounds. We
expect that it can greatly be improved on such difficult
instances by tuning the branching behaviour.

We note that the non-existence of a polynomial-
time algorithm for the LP relaxation given in [4] (The-
orem 2.1) does not necessarily exclude practical useful
approaches based on advanced techniques like delayed
column generation. We plan to address this question in
future research.

Furthermore, we are interested in variants of the
Minimum String Cover problem. For instance, al-
lowing a limited number of positions to remain uncov-
ered might broaden the range of applications. Espe-
cially when dealing with noisy data, as ubiquitous in
computational biology, this might be beneficial as it al-
lows the algorithm to ignore parts of the input that
cannot be explained by a string cover.

Acknowledgments. SR and CS are supported by
the Collaborative Research Center (Sonderforschungs-
bereich, SFB) 876 “Providing Information by Resource-
Constrained Data Analysis” within projects B1 and C4,
respectively (http://sfb876.tu-dortmund.de).

We thank the reviewer of an earlier version of this
paper for her/his constructive comments and sugges-
tions.

References

[1] Dimitris Bertsimas, John N. Tsitsiklis, Dimitris Bert-
simas, and John Tsitsiklis. Introduction to Linear Op-
timization. Athena Scientific, February 1997.

[2] Hans L. Bodlaender, Rodney G. Downey, Michael R.
Fellows, Michael T. Hallett, and Harold T. Wareham.
Parameterized complexity analysis in computational
biology. Computer Applications in the Biosciences,
11(1):49–57, 1995.

[3] M. Held and R.M. Karp. The traveling salesman prob-
lem and minimum spanning trees: Part II. Mathemat-
ical Programming, 1:6–25, 1971.

[4] Danny Hermelin, Dror Rawitz, Romeo Rizzi,
and Stéphane Vialette. The minimum substring

cover problem. Information and Computation,
206(11):1303–1312, November 2008.

[5] Georg L. Nemhauser and Laurence A. Wolsey. Integer
and combinatorial optimization. Wiley, Chichester,
1988.

[6] Jean Néraud. Elementariness of a finite set of words is
co-NP-complete. Theoretical Informatics and Applica-
tions, 24:459–470, 1990.

[7] Alexander Schrijver. Theory of linear and integer
programming. repr. 94. Wiley, Chichester, 1986.

83 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/2

6/
20

 to
 1

30
.2

25
.0

.2
51

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

