
Similarity Search for Dynamic Data Streams
Marc Bury, Chris Schwiegelshohn , and Mara Sorella

Abstract—Nearest neighbor searching systems are an integral part of many online applications, including but not limited to pattern

recognition, plagiarism detection, and recommender systems. With increasingly larger data sets, scalability has become an important

issue. Many of the most space and running time efficient algorithms are based on locality-sensitive hashing. Here, we view the data set

as an n by jU jmatrix where each row corresponds to one of n users and the columns correspond to items drawn from a universe U.

The de-facto standard approach to quickly answer nearest neighbor queries on such a data set is usually a form of min-hashing. Not

only is min-hashing very fast, but it is also space efficient and can be implemented in many computational models aimed at dealing with

large data sets such as MapReduce and streaming. However, a significant drawback is that minhashing and related methods are only

able to handle insertions to user profiles and tend to perform poorly when items may be removed. We initiate the study of scalable

locality-sensitive hashing (LSH) for fully dynamic data-streams. Specifically, using the Jaccard index as similarity measure, we design

(1) a collaborative filtering mechanismmaintainable in dynamic data streams and (2) a sketching algorithm for similarity estimation. Our

algorithms have little overhead in terms of running time compared to previous LSH approaches for the insertion only case, and

drastically outperform previous algorithms in case of deletions.

Index Terms—Dynamic streaming, locality-sensitive hashing, nearest neighbor searching

Ç

1 INTRODUCTION

FINDING the most interesting pairs of points, i.e., typically
those having small distance or, conversely, of high simi-

larity, known as the nearest-neighbor search problem, is a task
of primary importance, that has many applications such as
plagiarism detection [2], clustering [3] and association rule
mining [4]. The aim is to maintain a data structure such that
we can efficiently report all neighbors within a certain dis-
tance from a candidate point. Collaborative filtering [5] is an
approach to produce such an item set by basing the recom-
mendation on the most similar users in the data set and sug-
gesting items not contained in the intersection. To apply
such an approach, one typically requires two things: (1) a
measure of similarity (or dissimilarity) between users and
(2) scalable algorithms for evaluating these similarities. In
these contexts scalability can mean fast running times, but
can also require strict space constraints.

Though it is by no means the only method employed in
this line of research, locality-sensitive hashing (LSH) satis-
fies both requirements [4], [6]. For a given similarity mea-
sure, the algorithm maintains a small number of hash-
values, or fingerprints that represent user behavior in a
succinct way. The name implies that the fingerprints have
locality properties, i.e., similar users have a higher proba-
bility of sharing the same fingerprint whereas dissimilar
users have a small probability of agreeing on a fingerprint.

The fingerprints themselves allow the recommendation
system to quickly filter out user pairs with low similarity,
leading to running times that are almost linear in input
and output size.

A crucial property of LSH-families is that they are data-
oblivious, that is the properties of the hash family depend
only on the similaritymeasure but not on the data. Therefore,
LSH-based filtering can be easily facilitated in online and
streaming models of computation, where user attributes are
added one by one in an arbitrary order. The fingerprint com-
putation may fail, however, if certain attributes get deleted.
Attribute deletion occurs frequently, for instance, if the
data set evolves over time. Amazon allows users to unmark
certain bought items for recommendations, Twitter users
have an unfollow option, Last.fm users may delete songs or
artists from the library. A naive way to incorporate deletions
within the context of LSH is to recompute any affected fin-
gerprint, which requires scanning the entire user profile and
is clearly infeasible.

1.1 Contributions

We initiate the study of locality-sensitive nearest neighbors
search in the dynamic data-stream model. Our input con-
sists of sequence of triples ði; j; kÞ, where i 2 ½n� is the user
identifier, j 2 jUj is the item identifier and k 2 f�1; 1g signi-
fying insertion or deletion. Instead of maintaining an n� jU j
user/attribute matrix, we keep a sketch of polylogðn � jUjÞ
bits per user.

In a first step, we show that the Jaccard distance 1� jA\Bj
jA[Bj

can be ð1� "Þ-approximated in dynamic streams. Moreover,
the compression used in this approximation is a black-box
application of ‘0 sketches, which allows for extremely effi-
cient algorithms from theory and practice. This also enables
us to efficiently compress the n by n distance matrix using

� M. Bury is with TU Dortmund, Dortmund 44227, Germany.
E-mail: marc.bury@tu-dortmund.de.

� C. Schwiegelshohn and M. Sorella are with the Sapienza University of Rome,
Rome 00185, Italy. E-mail: {schwiegelshohn, sorella}@diag.uniroma1.it.

Manuscript received 13 Aug. 2018; revised 31 Mar. 2019; accepted 28 Apr.
2019. Date of publication 14 May 2019; date of current version 6 Oct. 2020.
(Corresponding author: Chris Schwiegelshohn.)
Recommended for acceptance by K. Yi.
Digital Object Identifier no. 10.1109/TKDE.2019.2916858

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2020 2241

1041-4347� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1202-0805
https://orcid.org/0000-0002-1202-0805
https://orcid.org/0000-0002-1202-0805
https://orcid.org/0000-0002-1202-0805
https://orcid.org/0000-0002-1202-0805
https://orcid.org/0000-0003-0622-2109
https://orcid.org/0000-0003-0622-2109
https://orcid.org/0000-0003-0622-2109
https://orcid.org/0000-0003-0622-2109
https://orcid.org/0000-0003-0622-2109
mailto:
mailto:

n polylog ðnjU jÞ bits, similar in spirit to the compression by
Indyk and Wagner [7] for euclidean spaces. This enables us
to run any distance matrix-based algorithm in a dynamic
semi-streaming setting.

Known lower bounds on space complexity of set intersec-
tion prevent us from achieving a compression with mul-
tiplicative approximation ratio for Jaccard similarity, see for
instance [8]. From the multiplicative approximation for
Jaccard distance we nevertheless get an "-additive approxi-
mation to Jaccard similarity, which may be sufficient if the
interesting similarities are assumed to exceed a given thresh-
old. The same reduction further extends to a wide class of
similarity functions on sets such as rational set similarities and
root similarities, see Gower and Legendre [?]. However, even
with this assumption, such a compression falls short of the
efficiencywe are aiming for, as it is not clear whether the rele-
vant similarities can be found more quickly than by evaluat-
ing all similarities.

Our main contribution lies now in developing a compres-
sion scheme that simultaneously supports locality-sensitive
hashing while satisfying a weaker form of approximation
ratio. The construction is inspired by bit-hashing techniques
used both by ‘0 sketches and min-hashing. In addition, our
approach can be extended to similarities admitting LSHs
other than min-hashing, such as Hamming, Anderberg, and
Rogers-Tanimoto similarities. This approach, despite having
provable bounds that are weaker than ‘0 sketches from an
approximation point of view, is extremely simple to imple-
ment. Our implementation further shows that our algorithms
have none to little overhead in terms of running time com-
pared to previous LSH approaches for the insertion only
case, and drastically outperform previous algorithms in case
of deletions.

2 PRELIMINARIES

We have n users and a universe set U of items. A dynamic
stream consists of sequence of triples ði; j; kÞ, where i 2 ½n� is
the user identifier, j 2 jUj is the item identifier and
k 2 f�1; 1g signifying deletion or insertion, respectively. A
user profile is a subset of U .

The symmetric difference of two sets A;B � U is
A4B ¼ ðA nBÞ [ðB nAÞ. The complement is denoted by
A ¼ U nA. Given x; y 	 0 and 0
 z
 z0, the rational set sim-
ilarity Sx;y;z;z0 between two item sets A and B is

Sx;y;z;z0 ðA;BÞ ¼
x � jA \Bj þ y � jA [Bj þ z � jA4Bj
x � jA \Bj þ y � jA [Bj þ z0 � jA4Bj

if it is defined and 1 otherwise. The distance function induced
by a similarity Sx;y;z;z0 is defined as Dx;y;z;z0 ðA;BÞ :¼ 1�
Sx;y;z;z0 ðA;BÞ. If Dx;y;z;z0 is a metric, we call Sx;y;z;z0 a metric
rational set similarity [9]. The arguably most well-known
rational set similarity is the Jaccard index SðA;BÞ ¼
S1;0;0;1ðA;BÞ ¼ jA\Bj

jA[Bj . A root similarity is defined as Sa
x;y;z;z0 :¼

1� ð1� Sx;y;z;z0 Þa for any 0 < a
 1. We denote numerator

and denominator of a rational set similarity by NumðA;BÞ
and DenðA;BÞ, respectively. For some arbitrary but fixed

order of the elements, we represent A via its characteristic

vector a 2 f0; 1gjU j with ai ¼ 1 iff i 2 A. The ‘p-norm of a

vector a 2 Rd is defined as ‘pðaÞ ¼
ffiPd

i¼1 jaijpp
q

. Taking the

limit of p to 0, ‘0ðxÞ is exactly the number of non-zero entries,

i.e., ‘0ðaÞ ¼ jfi j ai 6¼ 0gj.
An LSH for a similarity measure S : U � U ! ½0; 1� is a

set of hash functions H on U with an associated probability
distribution such that

Pr hðAÞ ¼ hðBÞ½ � ¼ SðA;BÞ

for h drawn from H and any two item sets A;B � U . We
will state our results in a slightly different manner. A
ðr1; r2; p1; p2Þ-sensitive hashing scheme for a similarity mea-
sure aims to find a distribution over a family of hash func-
tions H such that for h drawn from H and two item sets
A;B � U we have

Pr hðAÞ ¼ hðBÞ½ � 	 p1 if SðA;BÞ 	 r1

and

Pr hðAÞ ¼ hðBÞ½ �
 p2 if SðA;BÞ
 r2:

The former definition due to Charikar [10] has a number of
appealing properties and is a special case of the latter defini-
tion due to Indyk and Motwani [11]. Unfortunately, it is also
a very strong condition and in fact not achievable for
dynamic data streams. We emphasize that the general
notions behind both definitions are essentially the same.

3 RELATED WORK

3.1 Locality-Sensitive Hashing

Locality-sensitive hashing describes an algorithmic frame-
work for fast (approximate) nearest neighbor search inmetric
spaces. In the seminal paper by Indyk and Motwani [11], it
was proposed as away of copingwith the curse of dimensional-
ity for proximity problems in high-dimensional euclidean
spaces. The later, simpler definition by Charikar [10] was
used even earlier in the context ofmin-hashing for the Jaccard
index by Broder et al. [12], [13], [14]. Roughly speaking, min-
hashing computes a fingerprint of a binary vector by permut-
ing the entries and storing the first non-zero entry. For two
item setsA andB, the probability that the fingerprint is iden-
tical is equal to the Jaccard similarity ofA andB. When look-
ing for item sets similar to some set A, one can arrange
multiple fingerprints to filter out sets of small similarity while
retaining sets of high similarity (see Cohen et al. [4], and
Leskovec et al. [15] for details). We note that while this paper
is focused mainly on min-hashing, locality-sensitive hashing
has been applied to many different metrics, see Andoni and
Indyk [16] for an overview.

Instead of using multiple independent hash functions to
generate k fingerprints, Cohen and Kaplan suggested using
the k smallest entries after a single evaluation [17], [18]
which is known as bottom k-sampling, see also Hellerstein
et al. [19]. Min-hashing itself is still an active area of research.
Broder et al. [14] showed that an ideal min-hash family is
infeasible to store, which initiated the search formore feasible
alternatives. Indyk considered families of approximate min-
wise independence [20], i.e., the probability of an item becom-
ing the minimum is not uniform, but close to uniform, see
also Feigenblat et al. [21].

2242 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

Instead of basing requirements on the hash-function,
other papers focus on what guarantees are achievable by
simpler, easily stored and evaluated hash-functions with
limited independence. Of particular interest are 2-wise inde-
pendent hash functions. Dietzfelbinger [22] showed that,
given two random numbers a and b, the hash of x may be
computed via ðaxþ bÞ � k, where k is a power of 2 and �
denotes a bit shift operation. This construction is to the best
of our knowledge the fastest available and there exists theo-
retical evidence which supports that it may be, in many
cases, good enough. Chung et al. [23] showed that if the
entropy of the input is large enough, the bias incurred by
2-wise independent hash functions becomes negligible.
Thorup [24] further showed that 2-wise independent hashing
may be used for bottom k sampling with a relative error of
1ffiffiffiffi
fk

p , where f is the Jaccard similarity between two items.

Better bounds and/or running times are possible using more
involved hash functions such as tabulation hashing [25], [26],
linear probing [27], [28], one-permutation hashing [29], [30],
[31], and feature hashing [32], [33].

3.2 Profile Sketching

Using the index of an item as a fingerprint is immediate
and requires log 2jU j space. For two item sets A;B, we

then require roughly log 2jU j
"2�SðA;BÞ bits of space to get an ð1� "Þ-

approximate estimate of the similarity SðA;BÞ. It turns out
that this is not optimal, Bachrach and Porat [34], [35] and Li
and K€onig [36] proposed several improvements and constant
size fingerprints are now known to exist. Complementing
these upper bounds are lower bounds by Pagh [8] who
showed that that this is essentially optimal for summarizing
Jaccard similarity.

We note that one of the algorithms proposed by Bachrach
and Porat in [34] use an ‘2 estimation algorithm as a black

box to achieve fingerprint size of size ð1�SðA;BÞÞ2
"2

log 2jU j bits. It
is well known that the ‘2 norm of a vector can be maintained
in dynamic data streams. However, their algorithm only
seems to work for if the similarity is sufficiently large,
i.e., SðA;BÞ 	 0:5 and it does not seem to support locality-
sensitive hashing.

4 SIMILARITY SKETCHING IN DYNAMIC STREAMS

In this section, we aim to show that the distance function
of any rational set similarity with an LSH can be ð1� �Þ-
approximated in dynamic streams. First, we recall the follow-
ing theorem relating LSH-ability and properties of the
induced dissimilarity:

Theorem 1. Let x; y; z; z0 > 0. Then the following three state-
ments are equivalent.

1) Sx;y;z;z0 has an LSH.
2) 1� Sx;y;z;z0 is a metric.
3) z0 	 maxðx; y; zÞ.

(1))(2) was shown by Charikar [10], (2))(1) was shown
by Chierichetti and Kumar [37] and (2),(3) was proven by
Janssens [9]. We also recall the state of the art of ‘0 sketching
in dynamic streams.

Theorem 2 (Th. 10 of Kane, Nelson, andWoodruff [38]).
There is a dynamic streaming algorithm for ð1� "Þ-

approximating ‘0ðxÞ of a jU j-dimensional vector x using space

Oð 1
"2
log 2jUjÞ,1 with probability 2=3, and with Oð1Þ update and

query time.

With this characterization, we prove the following.

Theorem 3. Given a constant 0 < "
 0:5, two item sets
A;B � U and some rational set similarity Sx;y;z;z0 with
metric distance function 1� Sx;y;z;z0 , there exists a dynamic
streaming algorithm that maintains a ð1� "Þ approximation to
1� Sx;y;z;z0 ðA;BÞ with constant probability. The algorithm uses

Oð 1
"2
log 2jU jÞ space and hasOð1Þ update and query time.

Proof. We start with the observation that jA4Bj ¼ ‘0ða� bÞ
and jA [Bj ¼ ‘0ðaþ bÞ, where a and b are the characteristic
vectors of A and B, respectively. Since DenðA;BÞ�
NumðA;BÞ ¼ ðz0 � zÞ � jA4Bj is always non-negative due
to z0 	 z, we only have to prove thatDenðA;BÞ is always a
non-negative linear combination of terms that we can
approximate via sketches. First, consider the case x 	 y.
ReformulatingDenðA;BÞ, we have

DenðA;BÞ ¼ y � jUj þ ðx� yÞ � jA [Bj þ ðz0 � xÞ � jA4Bj:

Then both numerator and denominator of 1� Sx;y;z;z0 can
be written as a non-negative linear combination of n,
jA4Bj and jA [Bj. Given a ð1� "Þ of these terms, we

have an upper bound of 1þ"
1�"
 ð1þ "Þ � ð1þ 2"Þ
 ð1þ 5"Þ

and a lower bound of 1�"
1þ" 	 ð1� "Þ2 	 ð1� 2"Þ for any

"
 0:5.
Now consider the case x < y. We first observe

Sx;y;z;z0 ðA;BÞ ¼ Sy;x;z;z0 ðA;BÞ:
Therefore

DenðA;BÞ ¼ ðy� xÞ � jA [Bj þ x � jUj þ ðz0 � yÞ � jA4Bj:

Again, we can write the denominator as a non-negative
linear combination of jA4Bj, n and jA [Bj. Dynamic
updates can maintain an approximation of jA4Bj and
jA [Bj, leading to upper and lower bounds on the
approximation ratio analogous to those from case x 	 y.

By plugging in the ‘0 sketch of Theorem 2 and rescal-
ing " by a factor of 5, the theorem follows. tu
Using a similar approach, we can approximate the dis-

tance of root similarity functions admitting a locality hash-
ing scheme. We first repeat the following characterization.

Theorem 4 (Theorem 4.8 and 4.9 of [37]). The root similar-
ity Sa

x;y;z;z0 is LSH-able if and only if z0 	 aþ1
2 maxðx; yÞ and

z0 	 z.

Theorem 5. Given a constant 0 < "
 0:5, two item sets
A;B � U and some LSH-able root similarity Sa

x;y;z;z0 , there
exists a dynamic streaming algorithm that maintains a ð1� "Þ
approximation to 1� Sa

x;y;z;z0 ðA;BÞ with constant probability.

The algorithm uses Oð 1
"2
log 2jU jÞ space and each update and

query requires Oð1Þ time.

1. The exact space bounds of the ‘0 sketch by Kane, Nelson, and
Woodruff depends on the magnitude of the entries of the vector. The
stated space bound is sufficient for our purposes as we are processing
binary entries.

BURY ET AL.: SIMILARITY SEARCH FOR DYNAMIC DATA STREAMS 2243

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

Proof. We consider the case x 	 y, the case y 	 x can be
treated analogously. Again we will show that we can
ð1� "Þ-approximate the denominator; the remaining
arguments are identical to those of Theorem 3. Consider
the following reformulation of the denominator

DenðA;BÞ ¼ y � nþ ðx� z0Þ � jA \Bj þ ðz0 � yÞ � jA [Bj:

We first note that we can obtain an estimate of jA \Bj
in a dynamic data stream with additive approximation

factor " � jA [Bj by computing jAj þ jBj � djA [Bj, wheredjA [Bj is a ð1� "Þ-approximation of jA [Bj.
Due to Theorem 4, we have x� z0
 2 � z0 � z0
 z0 and

either z0 � y 	 z0
2 or y 	 z0

2 . Hence " � ðx� z0Þ
 " � z0

2" �maxðz0; ðz0 � yÞÞ. Since further jU j 	 jA [Bj, we then
obtain a ð1� 2"Þ-approximation to the denominator.
Rescaling " completes the proof. tu

Remark 1. Theorems 3 and 5 are not a complete characteri-
zation of dissimilarities induced by similarities that can
be ð1� "Þ-approximated in dynamic streams. Consider,

for instance, the Sørenson-Dice coefficient S2;0;0;1 ¼ 2�jA\Bj
jAjþjBj

with 1� S2;0;0;1 ¼ jA4Bj
jAjþjBj. Neither is 1� S2;0;0;1 a metric, nor

do we have z0 	 aþ1
2 x for any a > 0. However, both

numerator and denominator can be approximated using
‘0 sketches.

The probability of success can be further amplified to
1� d in the standard way by taking the median estimate of
Oðlog 2ð1=dÞÞ independent repetitions of the algorithm. For
n item sets, and setting d ¼ 1=n2, we then get the following
corollary.

Corollary 1. Let S be a rational set similarity with metric distance
function 1� S. Given a dynamic data stream consisting of
updates of the form ði; j; vÞ 2 ½n� � ½jUj� � f�1;þ1g meaning

that a
ðiÞ
j ¼ a

ðiÞ
j þ v where aðiÞ 2 f0; 1gjUj with i 2 f1; . . . ; ng,

there is a streaming algorithm that can compute with constant
probability for all pairs ði; i0Þ

� a ð1� "Þ multiplicative approximation of 1� Sðai; ai0 Þ
and

� an �-additive approximation of Sðai; ai0 Þ.
The algorithm uses Oðnlog 2n � "�2 � log 2jU jÞ space and
each update and query needs Oðlog 2nÞ time.

We note that despite the characterization of LSH-able
rational set similarities of Theorem 1, the existence of the
approximations of Corollary 1 hints at, but does not directly
imply the existence of a locality-sensitive hashing scheme or
even an approximate locality-sensitive hashing scheme on
the sketched data matrix in dynamic streams. Our second
and main contribution now lies in the design of a simple
LSH scheme maintainable in dynamic data streams, albeit
with weaker approximation ratios. The scheme is space effi-
cient, easy to implement and to the best of our knowledge
the first of its kind able to process deletions.

Remark 2. Corollary 1 also implies that any algorithm based
on the pairwise distances of a rational set similarity admits
a dynamic streaming algorithm using n � polylog ðnjU jÞ
bits of space. Notable examples include hierarchical clus-
tering algorithms such as single or complete linkage,

distancematrixmethods used in phylogeny, and visualiza-
tion methods such as heatmaps. Though the main focus in
the experimental section (Section 6) will be an evaluation
of the dynamic hashing performance, we also briefly
explore clustering and visualization methods based on the
sketched distancematrix.

5 AN LSH ALGORITHM FOR DYNAMIC

DATA STREAMS

In the following, we will present a simple dynamic stream-
ing algorithm that supports Indyk and Motwani-type sensi-
tivity. Recall that we want to find pairs of users with
similarity greater than a parameter r1, while we do not
want to report pairs with similarity less than r2. The precise
statement is given via the following theorem.

Theorem 6. Let 0 < "; d; r1; r2 < 1 be parameters. Given a
dynamic data stream with n users and jUj attributes, there exists
an algorithm that maintains a ðr1; r2; ð1� "Þr1; 6r2=ðdð1�
"=5

ffiffiffiffiffiffiffi
2r1

p ÞÞ-sensitive LSH for Jaccard similarity with probability

1� d. For each user,Oð 1
"4d5�r2

1

log 2
2jU jÞ bits of space are sufficient.

The update time isOð1Þ.
The proof of this theorem consists of two parts. First, we

give a probabilistic lemma from which we derive the sensi-
tivity parameters. Second, we describe how the sampling
procedure can be implemented in a streaming setting.

5.1 Sensitivity Bounds

While a black box reduction from any ‘0 sketch seems
unlikely, we note that most ‘0 algorithms are based on bit-
sampling techniques similar to those found in min-hashing.
Our own algorithm is similarly based on sampling a suffi-
cient number of bits or item indexes from each item set. Given
a suitably filtered set of candidates, these indexes are then
sufficient to infer the similarity. Let Uk � U be a random set
of elements where each element is included with probability
2�k. Further, for any item set A, let Ak ¼ A \ Uk. Note that in
Sx;y;z;z0 ðAk;BkÞ the value of jU j is replaced by jUkj. At the heart
of the algorithmnow lies the following technical lemma.

Lemma 1. Let 0 < "; d; r < 1 be constants and Sx;y;z;z0 be a ratio-
nal set similarity with metric distance function. Let A and B be
two item sets. Assume we sample every item uniformly at ran-

domwith probability 2�k, where k
 log 2
"2�d�r�Denx;y;z;z0 ðA;BÞ

100�z0

� �
.

Then with probability at least 1� d the following two state-
ments hold.

1) If Sx;y;z;z0 ðA;BÞ 	 r we have ð1� "ÞSx;y;z;z0 ðA;BÞ

SðAk;BkÞ
 ð1þ "ÞSx;y;z;z0 ðA;BÞ:

2) Sx;y;z;z0 ðAk;BkÞ
 2�Sx;y;z;z0 ðA;BÞ
dð1�ð"=5Þ� ffiffiffiffi

2r
p Þ :

We note that any metric distance function induced by
a rational set similarity satisfies z0 	 maxðx; y; zÞ, see
Theorem 1 in Section 4.

Proof. Let Denk ¼ DenðAk;BkÞ, Numk ¼ NumðAk;BkÞ, and
Xi ¼ 1 iff i 2 Uk. If Sx;y;z;zðA;BÞ 	 r then NumðA;BÞ 	
r �DenðA;BÞ. Thus, we have E½Numk� ¼ NumðA;BÞ=2k 	
r �DenðA;BÞ=2k and E½Denk� ¼ DenðA;BÞ=2k. Further, we

2244 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

have Var Xi½ � ¼ 2�k � ð1� 2�kÞ
 2�k. for any Xi. We first
give a variance bound on the denominator.

Var Denk½ �
¼ Var½x � jAk \Bkj þ y � ðjUkj � jAk [BkjÞj
þ z0 � jAk 4Bkj�

¼ x2
X

i2A\B
Var Xi½ � þ y2

X
i2A[B

Var Xi½ �

þ z02
X

i2A4B

Var Xi½ �

¼ ðx2 � y2ÞjA \Bj þ y2 � jU j�
þ ðz02 � y2ÞjA4Bj�Var Xi½ �

 ðx2 � y2ÞjA \Bj þ y2 � jU j þ ðz02 � y2ÞjA4Bj� �
=2k

 1

2k
maxfxþ y; z0 þ y; yg � ððx� yÞjA \Bjþ

y � dþ ðz0 � yÞjA4BjÞ

 2z0 � E Denk½ �
and analogously

Var Numk½ �
¼ Var½x � jAk \Bkj þ y � ðjUkj � jAk [BkjÞj

þ z � jAk 4Bkj�

 1

2k
maxfxþ y; zþ y; yg � ððx� yÞjA \Bjþ

y � dþ ðz0 � yÞjA4BjÞ

 maxfxþ y; zþ y; yg � E Numk½ �:

Using Chebyshev’s inequality we have

P jDenk � E Denk½ �j 	 "=5 � E Denk½ �½ �

 50z0

"2 � E Denk½ �

50z0 � 2k

"2 �NumðA;BÞ ;

and

P jNumk � E Numk½ �j 	 "=5 � E Numk½ �½ �

 25maxfxþ y; zþ y; yg
"2 � E Numk½ �
 50z0 � 2k

"2 �NumðA;BÞ :

If k
 log 2
"2drDenðA;BÞ

100z0
� �

 log 2
"2dNumðA;BÞ

100z0
� �

then both

Denk � E Denk½ �
 "
5E Denk½ � and Numk � E Numk½ �

"
5E Numk½ � hold with probability at least 1� d=2. Then we

can bound SðAk;BkÞ ¼ Numk=Denk from above by

NumðA;BÞ=2k þ "NumðA;BÞ
DenðA;BÞ=2k � "DenðA;BÞ=2kÞ
¼ 1þ "=5

1� "=5
� Sx;y;z;z0 ðA;BÞ

 ð1þ "Þ � Sx;y;z;z0 ðA;BÞ:

Analogously, we can bound Sx;y;z;z0 ðAk;BkÞ from below

by 1�"=5
1þ"=5 � Sx;y;z;z0 ðA;BÞ 	 ð1� "Þ � Sx;y;z;z0 ðA;BÞ which con-

cludes the proof of the first statement.
For the second statement, we note that the expectation

of Numk can be very small because we have no lower

bound on the similarity. Hence, we cannot use
Chebyshev’s inequality for an upper bound on Numk.
But it is enough to bound the probability that Numk is
greater than or equal to ð2=dÞ � E Numk½ � by d=2 using
Markov’s inequality. With the same arguments as above,
we have that the probability of Denk
 ð1� "0Þ � E Denk½ �
is bounded by "2rd

25�"02 which is equal to d=2 if "0 ¼ "=5 � ffiffiffiffiffi
2r

p
.

Putting everything together we have that

Sx;y;z;z0 ðAk;BkÞ
 2

dð1� ð"=5Þ � ffiffiffiffiffi
2r

p Þ � Sx;y;z;z0 ðA;BÞ

with probability at least 1� d. tu
We note that for similarities with y > x, we can obtain

the same bounds by sampling 0-entries instead of 1-entries.
Since we are not aware of any similarities with this property
used in practice, we limited our analysis to the arguably
more intuitive case x 	 y.

Applying this lemma on a few better known similarities
gives us the following corollary. We note that to detect
candidate high similarity pairs for an item set A, Den :¼
jA [Bj 	 jAj for Jaccard and Den :¼ jA [Bj þ jA4Bj 	
jAj for Anderberg. For Hamming and Rogers-Tanimoto
similarities, Den 	 jU j. More examples of rational set
similarities can be found in Naish, Lee, and
Ramamohanarao [39].

Corollary 2. Let a :¼ "2d � r. Then if we sample items with at
least probability 2�k, the similarity is preserved for any two
item sets A and B as per Lemma 1. The following table reports
suitable values of k for interesting rational set similarities.

Similarity Parameters k

Jaccard S1;0;0;1 log ajAj=100ð Þ
Hamming S1;1;0;1 log ajU j=100ð Þ
Anderberg S1;0;0;2 log ajAj=200ð Þ
Rogers-Tanimoto S1;1;0;2 log ajU j=200ð Þ

5.2 Streaming Implementation

When applying Corollary 2 or more generally Lemma 1 to a
dynamic streaming environment, we have to address a few
problems. First, wemay not know how to specify the number
of items we are required to sample. For Hamming and Rog-
ers-Tanimoto similarities, it is already possible to run a black
box LSH algorithm (such as the one by Cohen et al. [4]) if the
number of sampled items are chosen via Corollary 2. For
Jaccard (andAnderberg), the sample sizes depend on the car-
dinality ofA, which requires additional preprocessing steps.

5.3 Cardinality-Based Filtering

As a first filter, we limit the candidate solutions based on
their respective supports. For each item, we maintain the
cardinality, which can be done exactly in a dynamic stream
via counting. If the sizes of two item sets A and B differ by a
factor of at least r1, i. e., jAj 	 r1 � jBj, then the distance
between these two sets has to be

1� SðA;BÞ ¼ jA4Bj
jA [Bj 	

jAj � jBj
jAj 	 1� 1=r1:

BURY ET AL.: SIMILARITY SEARCH FOR DYNAMIC DATA STREAMS 2245

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

We then discard any item set with cardinality not in the
range of ½r1 � jAj; jAj�. Like the algorithm by Cohen et al. [4],
we can do this by sorting the rows or hashing.

5.4 Small Space Item Sampling

Since the cardinality of an item set may increase and
decrease as the stream is processed, we have to maintain
multiple samples Uk in parallel for various values of k. If a
candidate k is larger than the threshold given by Corollary 2,
we will sample only few items and still meet a small space
requirement. If k is too small, jUkj might be too large to
store. We circumvent this using a nested hashing approach
we now describe in detail.

Sampling with 2-Universal Hash Functions We first note
that Uk does not have to be a fully independent randomly
chosen set of items. Instead, we only require that the events
Xi are pairwise independent. The only parts of the analysis
of Lemma 1 that could be affected are the bounds on the
variances, which continue to hold for pairwise indepen-
dence. This allows us to emulate the sampling procedure
using universal hashing. Assume thatM is a power of 2 and
let h : ½jUj� ! ½M� be a 2-wise independent universal hash
function, i.e., P½hðaÞ ¼ j� ¼ 1

M, for all j 2 ½M�. We set
Uk ¼ fj 2 ½M� j lsbðhðjÞÞ ¼ kg, where lsbðxÞ denotes the first
non-zero index of x when x is written in binary and
lsbð0Þ ¼ log 2M. Since the image of h is uniformly distrib-
uted on ½M�, each bit of hðjÞ is 1 with probability 1=2, and
hence we have P½lsbðhðjÞÞ ¼ k� ¼ 2�k. Moreover, for any
two j; j0 the events that lsbðhðjÞÞ ¼ k and lsbðhðj0ÞÞ ¼ k are
independent. The value of M may be adjusted for finer (M
large) or coarser (M small) sampling probabilities. In our
implementation (see Section 6) as well as in the proof of
Theorem 6, we set M ¼ jU j. Following Dietzfelbinger [22], h
requires log 2jU j bits of space.

Recovery and Compression via Perfect Hashing To avoid
storing the entire domain of h in the case of large jUkj, we
pick, for each k 2 ½0; . . . ; log 2jU j�, another 2-wise indepen-
dent universal hash function hk : ½jUj� ! ½c2�, for some abso-
lute constant c to be specified later. For some j 2 ½jU j�, we
first check if lsbðhðjÞÞ ¼ k. If this is true, we apply hkðjÞ.

For the ith item set, wemaintain a set T i
k;� of buckets T

i
k;hkðjÞ

for all k 2 f0; . . . log 2jU jg and hkðjÞ 2 f0; . . . ; c2 � 1g. Each
such bucket T i

k;hkðjÞ contains the sum of the entries hashed to
it. This allows us to maintain the contents of T i

k;hkðjÞ under
dynamic updates. Note that to support similarity estimation
for sets that might have a low cardinality at query time, we
must also maintain a bucket set T i

0;� associated to a hash func-
tion h0, that will receive all items seen so far for a given set i,
i. e., each of them will be hashed to the bucket T i

0;h0ðjÞ with
probability 20 ¼ 1 (see line 7 in Algorithm 1).

For the interesting values of k, i. e., k 2 Qðlog 2jAjÞ, the
number of indexes sampled by h will not exceed some con-
stant c. This means that the sampled indexes will be per-
fectly hashed by hk, i. e., the sum contained in T i

k;hkðjÞ
consists of exactly one item index. If k is too small (i.e., we
sampled too many indexes), hk has the useful effect of com-
pressing the used space, as c2 counters require at most
Oðc2log 2jU jÞ bits of space.

We can then generate the fingerprint matrix, for instance,
by performing a min-hash on the buckets Bi

k;� and storing
the index of the first non zero bucket. For a pseudocode of

this approach, see Algorithm 1. Algorithm 2 describes an
example candidate generation as per Cohen et al. [4].

Algorithm 1. Dynamic Stream Update (Jaccard)

Input: Parameter c 2 N

Output: T
ðiÞ
k;l with i 2 ½n�; k 2 ½0; . . . ; log 2m�; l 2 ½c2�

Initialization:
si ¼ 0 for all i 2 ½n�
T

ðiÞ
k;l ¼ 0 for all i 2 ½n�; k 2 ½0; . . . ; log 2jU j�; l 2 ½c2�.

h : ½jU j� ! ½M� a 2-universal hash function.
h1 : ½M� ! ½c2� another 2-universal hash function.

1: On update ði; j; vÞ:
2: k ¼ lsbðhðjÞÞ
3: T

ðiÞ
k;h1ðjÞ ¼ T

ðiÞ
k;h1ðjÞ þ v

4: T
ðiÞ
0;h1ðjÞ ¼ T

ðiÞ
0;h1ðjÞ þ v

5: si ¼ si þ v

Algorithm 2. Filter Candidates (Jaccard)

Input: Thresholds 0 < r1;a < 1, B
ðiÞ
k;l from Alg.1 with k 2 f0; 1;

2; . . . ; log 2jU jg
Output: Set of candidate pairs

Initialization:
I ¼ f0; log 2ð1=r1Þ; 2log 2ð1=r1Þ; . . . ; log 2jU jg
Hi: empty list for i 2 I.

1: for i 2 ½n� do
2: s ¼ ‘0ðxðiÞÞ
3: for k 2 ½log 2ðr1 � a � sÞ; log 2ða � sÞ� \ I do

4: add ði;MinHashðT ðiÞ
k;�ÞÞ toHk

5: end for
6: end for
7: return fði; i0Þ j 9k : ði; hÞ; ði0; h0Þ 2 Hk and h ¼ h0g

Proof of Theorem 6. Fix items sets A and B and let a; b be
the corresponding characteristic vectors for the sets A
and B, respectively. Without loss of generality, assume

jAj 	 jBj. Set a ¼ "2�d
600. If SðA;BÞ 	 r1 then jAj=jBj
 1=r1,

then log 2ða � jBjÞ
 log 2ða � jAjÞ and log 2ðr1 � a � jBjÞ

log 2ða � jAjÞ. Both sets will then enter line 3 of Algorithm 2

for some common values of k, and must exist at least an

Hk containing min-hashes from both sets as per line 4.
Let 2k be the largest power of 2 such that k

log 2 a � r1jA [Bjð Þ
 log 2 a � jA \Bjð Þ. Let Uk be a subset
of indexes as determined by line 4 of Algorithm 1 and
define Ak :¼ Uk \A and Bk :¼ Uk \B.

In expectation, E½jAk [Bkj� ¼ jA [Bj=2k. By Markov’s

inequality, we have jAk [Bkj
 3
d
� jA [Bj=2k
 1800

"2d2�r1
with probability at least 1� d=3. By setting the number of

buckets in the order of

c2 ¼ jAk [Bkj2 2 O
1

"4d5 � r21

� �
; (1)

the elements of Ak [Bk will be perfectly hashed by hk

with probability at least 1� d=3 (line 3 of Algorithm 1).

Since deleting indexes where both vector entries are zero

does not change the Jaccard similarity, the probability

that the smallest index in the collection of buckets T
ðpÞ
k;� is

2246 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

equal to the smallest index in the collection of buckets

T
ðqÞ
k;� is equal to the similarity of Ak and Bk. Thus we have

P½MinHashðT ðpÞ
k;� Þ ¼ MinHashðT ðqÞ

k;� Þ� ¼ SðAk;BkÞ:

If SðA;BÞ 	 r1 we have by our choice of a and due to the

first part of Lemma 1, SðAk;BkÞ 	 ð1� "Þ � SðA;BÞ with
probability 1� d

3. If SðA;BÞ
 r2 < r1, we have due to

the second part of Lemma 1 SðAk;BkÞ
 6�SðA;BÞ
dð1�ð"=5Þ�

ffiffiffiffiffi
2r1

p
Þ
6r2

dð1�ð"=5Þ�
ffiffiffiffiffi
2r1

p
Þ with probability 1� d

3.

Conditioning on all events gives us a ðr1; r2; ð1� "Þr1;
6r2=ðdð1� "=5

ffiffiffiffiffiffiffi
2r1

p ÞÞ-sensitive LSH with probability
1� d.

To bound the space requirement, observe that for each
of the n item sets we have log 2jUj collections T

ðpÞ
k;� of

c2 2 O 1
"4d5�r2

1

� �
buckets due to Equation 1. Each bucket

contains a sum that uses at most log 2jU j bits. The space

required for each hash function is at most log 2jUj due to

Dietzfelbinger [22].
For every item insertion or deletion, we execute lines

2-5 of Algorithm 1. Each of these operations are elemen-
tary arithmetic operations that run in constant time. tu
The parameters in Theorem 6 can be chosen such that we

are able to use Algorithm 1 and Algorithm 2 similar to the
min-hashing technique in the non-dynamic scenario. This
also means that we can use similar tricks to amplify the
probability of selecting high similar items in Algorithm 2
and lower the probability in case of a small similarity as
long as ð1� "Þr1 > 6r2

dð1�"=5Þ ffiffiffiffi
r1

p , see also Leskovec et al. [15].

Let ‘;m 2 N. Then we repeat the hashing part of Algorithm 2
‘ times and only add a pair to the output set iff all ‘ hash
values are equal. This procedure is repeated m times and
the final output set contains all pairs which appear at least
once in an output set of the m repetitions. The probability
that a pair with similarity s is in the output set is
1� ð1� p‘Þm with p 	 ð1� dÞð1� "Þs if s > r1 and p

6s=ðdð1� "=5

ffiffiffiffiffi
r2

p Þ if otherwise.

6 EXPERIMENTAL EVALUATION

In this section we evaluate the practical performance of the
algorithm given in Section 5. Our aim is two-fold: First, we
want to show that the running time of our algorithm is com-
petitive with more conventional min-hashing algorithms.
For our use-case, i. e., dynamic streams, we are not aware
of any competitors in literature. Nevertheless, it is impor-
tant to demonstrate the algorithm’s viability, as in many
cases a system might not even support a dynamic stream-
ing environment: we show a performance comparison in
Section 6.1. To cover all ranges of user profiles, we use a
synthetic benchmark described below.

Our second goal is to be able to measure the quality of the
algorithm’s output. We deem our filtering mechanism to be
successful if it finds most of the user pairs with high similar-
ity, while performing a good level of filtering, returning as
candidates few user pairs with low similarity. Furthermore,
Theorem 6 guarantees us a reasonable approximation to the
similarity of each pair, though it is unclear whether this still
holds for all pairs simultaneously, especially for small bucket

sizes. We are satisfied if our approximate computation based
on sketches does not lead to high deviation with respect to
exact similarities. As a typical candidate from practice, we
consider profiles of users containing recently preferred artists
fromLast.FM.

ImplementationDetails.We implementedAlgorithms 1, 2, as
well as other hash routines in C++ and compiled the code
with GCC version 4.8.4 and optimization level 3. Compared
to the description of Algorithm 2, which has 5 parameters
(error ", failure probability d, lower bound for desirable simi-
larities r1, upper bound for undesirable similarities r2, and
granularity of the sampling given byM), our implementation
has only two parameters: (1) the inverse sampling rate a and
(2) the number of buckets c2. Recall that a higher inverse sam-
pling rate ameans selecting higher values of k in Algorithm 2,
line 5, where an increasing k is associated to a decreasing sam-
pling probability 2�k of a bucket Tk;hkðiÞ.

The choice of c2 influences the possible combinations of ",
d, and r1, see Equation 1 for an upper bound on c2. The car-
dinality based filtering of Algorithm 2 is influenced by the
choice of a.

As a rule of thumb, r2 is roughly of the order r
1:5
1 . For exam-

ple, if we aim to retain all pairs of similarity at least 1
4, we can

filter out pairs with similarity less than 1
8. Pairs with an inter-

mediate similarity, i.e., a similarity within the interval ½18 ; 14�,
may or may not be detected. We view this as a minor restric-
tion as it is rarely important for these thresholds to be sharp.

Lastly, we implemented Dietzfelbinger’s multiply-add-
shift method to generate 2-wise independent hash functions,
where a is a random non-negative odd integer, b a random
non-negative integer, and for a given M the shift is set to
w� log 2ðMÞ, where w is the word size (32 bits in our imple-
mentation). All hash functions used in the implementation of
bothAlgorithm1, that is the functions h, h1 and the hash func-
tions used for implementing the MinHash scheme, with
amplification parameters ‘ (functions in one band) and m
(number of bands) at line 6 of Algorithm 2), are 2-wise inde-
pendent hash functions, and were generated independently,
i. e., we did not reuse them for subsequent experiments. Oth-
erwise the implementation follows that of Algorithms 1 and 2
with various choices of parameters.

All computations were performed on a 2.7 GHz Intel Core
i7machinewith 8MB shared L3 Cache and 16 GBmainmem-
ory. Each runwas repeated 10 times.

Synthetic Dataset To accurately measure the distortion on
large datasets, for varying feature spaces, we used the syn-
thetic benchmark byCohen et al. [4]. Herewe are given a large
binary data-matrix consisting of 10,000 rows and either
10,000, 100,000 or 1,000,000 columns. The rows corresponded
to item sets and the columns to items, i. e., we compared the
similarities of rows. Since large binary data sets encountered
in practical applications are sparse, the number of non-zero
entries of each row was between 1 to 5 percent chosen uni-
formly at random. Further, for every 100th row, we added an
additional row with higher Jaccard similarity in the range of
fð0:35; 0:45Þ; ð0:45; 0:55Þ; ð0:55; 0:65Þ; ð0:65; 0:75Þ; ð0:75; 0:85Þ;
ð0:85; 0:95Þg.

To obtain such a pair, we copied the preceding row (which
was again uniformly chosen at random) and uniformly at
random flipped an appropriate number of bits, e. g., for
10,000 items, row sparsity of 5 percent, and similarity range

BURY ET AL.: SIMILARITY SEARCH FOR DYNAMIC DATA STREAMS 2247

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

(0.45, 0.55) we deleted an item contained in row iwith proba-
bility 1=3 and added a new itemwith probability 1

19 � 13 ¼ 1
57. In

the insertion-only case, the stream consists of the sequence of
1-entries of each row. We introduced deletions by randomly
removing any non-zero entry immediately after insertion
with probability 1

10.
Last.FMDataset. For an evaluation of our algorithm on real

data we considered a dataset from [40] containing temporal
data from the popular online (social) music recommendation
system Last.fm. Users update their profiles in multiple ways:
listening to their personal music collection with a music
player supporting the Last.fmAudioscrobbler plugin, or by lis-
tening to the Last.fm Radio service, either with Last.fm offi-
cial client application, or with the web player. Radio stations
consist of uninterrupted audio streams of individual tracks
based on the user’s profile, its “musical neighbors” (i. e., simi-
lar users identified by the platform), or the user’s “friends”.
All songs played are added to a log from which personalized
top charts and musical recommendations are calculated,
using a collaborative filtering algorithm. This automated
track logging process is called scrobbling. Our dataset contains
the full “scrobbled” listening history of a set of 44,154 users,
covering a period of 5-years (May 2009-May 2014), containing
721M listening events and around 4.6M unique tracks, where
each track is labeledwith a score for a set of 700music genres.
To obtain a more granular feature space, we decided to map
each track to the corresponding artist. To this end we queried
the MusicBrainz DB2 to obtain artist information for each of
the unique tracks (total of 1:2M artists). We then processed
the listening histories of each user i in chronological order to
produce our event stream, emitting a triple (i,j,+1) after a
user has listened to at least 5 songs by an artist j, and emitting
a triple (i,j,-1)when no track from artist j is listened by i
for a period of 6 months (expiration time). The threshold of 5
tracks is mainly intended to mitigate the “recommendation
effect”: being Last.fm a recommendation system, some por-
tions of the listening histories might in fact be driven by rec-
ommendation sessions, where diverse artists are suggested
by the system based on the user’s interests (i. e., not explicitly
chosen by him), and are likely to lead to cascades of deletions
in the stream after the expiration time. Like most real world
datasets that link users to bought/adopted items, this dataset
is very sparse. For rows with only sparse support, a fast,
space efficient nearest neighbor data structure typically does
not improve over a naive approach that simply stores every-
thing.We therefore only considered only users having at least
0.5 percent-dense profiles on average, obtaining a final set of

n ¼ 15K users (sets), jU j ¼ 380K (items) and a stream length
of 6:2M entries. Table 1 shows the distribution of exact simi-
larity values for all pairs the Last.fm dataset.

6.1 Performance Evaluation

We evaluated the running time of our algorithm using the
synthetic dataset, to understand its performance with respect
to various dataset sizes, in two different scenarios, an inser-
tion-only stream, and a fully dynamic stream, both obtained
from our synthetic dataset. As a comparative benchmark, we
compare our approach with an online implementation of a
“vanilla” LSH scheme (later Vanilla-MH), where profile
sketches are computed online using 2-wise independent hash
functions (that is also our signature scheme).

We tested two versions of our algorithm. The first version
henceforth calledDynSymSearch (DSS)maintains the sketches
of Algorithm 1 and computes fingerprints only at query time.
The second, called DynSymSearch Proactive (or simply DSS
Proactive), instead maintains a set of fingerprints online, with
every update (that is, after line 5 of Algorithm 1, reflecting the
most recent change from the stream).

The choice of the first or the second implementation
depends on the use case, with a trade-off between query
responsiveness and additional space required for comput-
ing and storing the signatures of sets.

Let us now focus on the algorithms that update signatures
online. When inserting item j added to set i, both DSS Proac-
tive and Vanilla-MH behave in the same way. When an ele-
ment is added, all hash-functions are evaluated on the new
element, and updated in case such value is the new mini-
mum. Let k ¼ lsbðhðjÞÞ. In case of deletions, both will have to
recompute signatures, yet while Vanilla-MH has to do so for
the full user profile, DSS Proactive has to recompute signa-
tures only for the two compressed bucket sets T i

k;� and T i
0;�. A

further optimization that we implemented in DSS Proactive,
is the selective recomputation of signatures in case of deletions.
In case of deletions of an item j, we recompute a set of signa-
tures for T

ðiÞ
k only if the bucket is sensitive, i. e., its correspond-

ing set cardinality and similarity threshold are such that k is
the range specified by line 5 of Algorithm 2. This allows to
ignoremany costly recomputations.

Now we can move on to comparing the three on the vari-
ous settings. We set ‘ ¼ 5, m ¼ 40 as amplifying parameters
for signatures of all algorithms, and further set r1 ¼ 0:5 for
our two algorithms. The choice of ‘;m is not extremely impor-
tant: indeed for the sake of runtime comparison all algorithms
should only share the same “hashing-related” overhead.
Average running times of 10 independent realizations of
each algorithm are plotted in Fig. 1 where we study the
impact of the parameters.

The running time of our algorithms is influenced by their
parameters to different extents. In particular, the number of
buckets c2 has impact on both our algorithms (especially for
DSS Proactive) as it directly implies more hash function eval-
uation for fingerprints.

For the insertion-only stream (Fig. 1a), we see that the per-
formances of the three algorithms are somewhat comparable,
which is expected, considering that Vanilla-MH is to some
extent naturally contained in both versions of our algorithm.
InDSS they are computed only at query time on the sensitive
sketches, rendering it the fastest option for this scenario.

TABLE 1
Distribution of Exact Similarity Values for

Pairs in Last.fm Dataset

Similarity 0.0 0.05 0.1 0.15
No. of pairs 60432710 37947485 12031795 1938117

Similarity 0.2 0.25 0.3 0.35
No. of pairs 164246 7855 266 13

Similarity 0.4 0.45 0.5 	 0.55
No. of pairs 10 1 3 0

2. https://musicbrainz.org/doc/MusicBrainz_Database

2248 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

https://musicbrainz.org/doc/MusicBrainz_Database

When considering deletions, things change dramatically.
As can be seen in Fig. 1b, deletions represent a problem for
bothVanilla-MH andDSSProactive: as the fingerprint compu-
tation is not reversible, after a deletion theymust all be consis-
tently recomputed. However, our algorithm is less affected:
thanks to its compression and cardinality-based bucketing
system, the updates are, to some extent, more local, as they
impact only the sensitive buckets. We note thatDSS Proactive
has some values of awhere the running time increases: these
values allow for a wider range of buckets to become sensitive
as long as the set cardinalities vary with the stream, implying
more signature recomputations when each k becomes query-
able. Overall, DSS is consistently faster then the other two
options, while the performance of Vanilla-MH is very poor,
taking from 12 to 100 times more time thanDSS Proactive, for
d ¼ 1M. We also remark that in the implementation of
Vanilla-MH, we are forced to store the entire data set in order
to deal with deletions, to be able to recompute the finger-
prints. This requirement is indeed not feasible in many set-
tings. Furthermore, even for these comparatively sparse data
sets, our algorithmhas significant space savings.

Quality of Approximation. We now move to examine the
quality of approximation of our algorithm (which is the
same for both online and offline implementations), on the
synthetic dataset, as a function of our two main parameters,
a and c2. Concerning a, there are two opposite cases. If the
inverse sampling rate is too low, we might have chosen set
representative buckets with many samples: this means high
chance of collisions which decreases the approximation

ratio. On the other hand if it is too high, the selected set of
items might not be sensitive. A higher bucket size instead,
always means less collisions, for an increased space occupa-
tion of the sketches.

Fig. 2 shows the values of the average squared deviation
of the sketched similarities obtained with our algorithm,
and their exact Jaccard similarity, on the synthetic dataset,
for different value of d, and various values of the parame-
ters a and c2.

The goodness of a given a depends on the similarity of a
pair in question. We show separate plots for high and low
similarity pairs, that is pairs with Jaccard similarity respec-
tively below and above 0.2. Their behavior is affected in a
different way. First, low pairs tend to have higher average
squared deviation than high pairs, this is expected as out
sketches can better approximate high similarity pairs. Also,
for both kind of pairs the distortion decreases with increas-
ing c2, independently of a as the number of collisions
decrease monotonically. All deviations reach almost zero
already at a ¼ 0:05 for all bucket sizes. For a above 0.1 we
see that the deviation of high similarity pairs depart from
the others, and especially for higher dimensional datasets
tend to be slightly more distorted. Except for the lowest
number of buckets, the average total deviation for these
parameters was always below 0.1 and further decreased
reaching to zero for larger bucket sizes. We note that these
values of c2 are below the theoretical bounds of Theorem 6,
while having little to acceptable deviation for appropriately
chosen values of a.

Fig. 2. [Synthetic] Average squared deviation for high similarity (J 	 0:2)
and low similarity (J < 0:2) pairs in the synthetic dataset, for various
parameter choices. At inverse sampling rate a ¼ 0:1, the error for both
high similarity and low similarity pairs was below 0.05, even for a very
small number of buckets (c2 ¼ 128).

Fig. 1. [Synthetic] Running time of our algorithms compared to a
2-wise MinHashing based LSH implementation, in insertion-only or fully
dynamic setting for different values of jUj. y-axes are in log-scale. The
summary running times are the mean values of 10 repetitions. In the
insertion only setting (a), all algorithms have comparable performance,
while in the dynamic setting (b), Vanilla MH takes from 12 to 100 times
more time than the two variants of our algorithm, due to extensive
recomputation of signatures in case of deletions.

BURY ET AL.: SIMILARITY SEARCH FOR DYNAMIC DATA STREAMS 2249

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

6.2 Analysis of the Last.fm Dataset

A realistic context like the one of Last.FM dataset, offers a
valid playground to explore the performance of our similarity
search. We use our algorithms to find high similarity pairs, to
provide recommendations. We also compute a visualization
of the most related user pairs, which illustrates an application
of the sketching techniques from Section 4 to implicitly store
an approximate distance matrix in small space. We note that
the data is very sparse. Since the Jaccard index is highly sensi-
tive to the support of the vectors, using it for this type of rec-
ommendation is more appropriate compared to other
similaritymeasures such asHamming, or cosine similarity.

In Algorithm 2, we fixed r1 ¼ 0:25, therefore for each setA
associated to each user profile, we added a min-hash value to
Hk with k 2 ½s� 2; s� \ I, with I ¼ f0; log 2

1
r1
; . . .g ¼ f0; 2;

4; . . . ; log 2jUjg (lines 3-4), where s is the actual cardinality
of A at the time of the query (which we perform at the end
of the stream). At the output of the filtering phase, we evalu-
ate the similarity between users of a candidate pair using
k ¼ log 2ða � r1 �maxðjAj; jBjÞ and output SðAk;BkÞ. Note that
this choice of k satisfies the first condition from Lemma 1. We
remark that this dataset, as witnessed by the huge presence of
very low similarity pairs (see Table 1), and very few pairs
with higher similarity, is a challenge for any LSH scheme, as
providing a good filtering behavior with low similarity
thresholds requiresmany hash functions.

We performed multiple experiments in order to choose
good parameters of ‘ and m to achieve a good filtering. We
set a threshold on the maximum number of hash functions
to use to 1600 hash functions. Then we also set a threshold
on the maximum fraction of pairs that we accept to be
reported as candidate pairs, to 10 percent. Then we tested a
number of combinations of ‘ and m that are compatible
with the similarity threshold r and meet our constraints,
and report them in Table 2. The combination of ‘ ¼ 5 and
m ¼ 300 shows the lowest number of false negatives,
and achieves a very good filtering, reporting only as low as
3.6 percent of pairs. We choose these values as amplification
parameters for the filtering phase, and are fixed for all the
experiments on this dataset.

Fig. 3a shows average squared deviation values of the
sketched similiarities obtained with our algorithm and their
exact Jaccard similarity, as function of a and c2. Like in Fig. 2,
we show separate curves for pairs with Jaccard similarity
below 0.2 (green curve) and high pairs (red curve). The same
considerations made for the synthetic dataset hold, while we
note that, for this dataset, the approximations of high similar
pairs for very low bucket sizes appear slightlyworse, possibly

because indeed the majority of them have a similarity value is
closer to the threshold, with respect to the synthetic dataset.
However, for appropriate values of the parameters, all devia-
tions tend to zero. Fig. 3b shows other information regarding
the detection performance of our filtering scheme. Recall that
the sensitivity of our scheme is defined using Indyk andMot-
wani [11] kind of sensitivity, that is characterized by two dif-
ferent thresholds r2 < r1 (and corresponding regimes, with
different approximation bounds as per Theorem 6). As a rule
of thumb, r2 is roughly of the order r1:51 , so we tolerate to
report pairs with similarity above r2 ¼ 0:125 , and consider
this range as true positives (TP), true negatives (TN) pairs below
r2 that are correctly not reported. Conversely, pairs below r2
that are reported as candidates by our algorithm are false posi-
tives (FP), and we consider false negatives (FN) pairs that are
above the real threshold r1 ¼ 0:25 but were not reported.
Fig. 3b shows values of Accuracy ¼ ðTPþTNÞ

ðTPþTNþFPþFNÞ, Recall ¼
ðTPÞ

ðTPþFNÞ and fraction of candidate pairs reported. We can
notice that the recall is approximately 1 for all values of the
parameters. Accuracy instead, increases for increasing c2, as
expected, and also for increasing a, until it deteriorates for
very high values, like it was for the high similarity pairs in
Fig. 3a. We notice that we get filtering above 90 percent

TABLE 2
Fraction of Pairs Reported as Candidates versus Best Number

of False Negatives Given by our Algorithm for Various
Choices of a and b

‘ m % candidate pairs False negatives

4 400 0.099 1393
5 50 0.016 5171

150 0.028 2406
300 0.036 781
320 0.029 1587

6 200 0.0187 5415

Fig. 3. [Last.fm] Approximation quality, Accuracy, Recall, Fraction of pairs
found, and running time, for various combinations of the parameters.

2250 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

starting from a ¼ 0:075, for 512 buckets. Lastly, in Fig. 3c we
see that we achieve very small running times from a ¼ 0:075,
as a consequence of the filtering. We remark that these plots
show the performances of the filtering algorithm alone with-
out any further pruning step. Yet, as reported by our very low
deviation from actual similarities, we note that when
completely avoiding false negatives is of primary concern,
one can decide to choose a lower r1 (and/or a different l;m
combination) to retain more pairs in the candidate selection
phase, and then perform another linear filtering using the
accurate estimation given by our sketches.

6.2.1 Visualizing top Similar Users

We conclude showing a visualization of themost similar Last.
fm users found by DynSymSearch. For a predefined order of
the elements in U , that is, our collection of music artists, we
can view user profiles as their characteristic binary vectors,
where an entry is 1 at a given time if a given user has recently
listened to the corresponding artist. Given the high dim-
ensionality of U , it is very hard to find a way to make sense of
such similarities.We have taken various steps to reach the fol-
lowing two objectives: i) find a lower dimensional representa-
tion (ideally 2D points) of the user profiles that can mostly
retain their Jaccard similarities, and ii) enrich such points
with lower resolution information that helps to visually dis-
tinguish similar pairs without recurring to artist annotation.

Our input is a set of characteristic vectors, representing
profiles of a set S of 34 users, 24 ofwhich form the top 14 simi-
lar pairs i. e., pairs with similarity above 0.4 (see Table 1) and
other 10 users selected at random. We refer to the former
users as the top k users, and call the latter users random.

For implementing step i) we resort to Multidimensional
Scaling (MDS) [41], a technique that takes in input a
matrix of pairwise distances (notably euclidean and Jaccard,
among others) of an input set of objects, and finds an
N-dimensional projection of points, such that the between-
object distances are preserved as well as possible. Each

object is then assigned coordinates in each of the N dimen-
sions. We used a Python implementation of MDS from the
Orange Data Mining library [42], where we set N ¼ 2 and
input a Jaccard distance matrix computed on all pairs of our
34 user characteristic vectors.

As per step ii) we used genre information from the original
dataset in the form of a vector of scores for the music genres
Rock, Pop, Electronic,Metal,Hip-Hop/RnB, Jazz/Blues and Coun-
try/World, where each entry is normalized so that their sum
adds to 1. For each artist a appearing in some user profile, we
derived a score vector computing the normalized sum of all
score vectors of tracks authored by him, present in our data-
set, and then in turn used the same mechanism for deriving a
score for a user listening to a set of artists, determining a
7-dimensional vector, or genre-based profile for each user.

Fig. 4 depicts a result of the combinations of both steps: a
2-dimensional MDS visualization of S computed using artist-
based Jaccard similarity, annotated with colors reflecting the
first 3 entries by score as per the corresponding users genres-
based profiles. Also, edges show pairs for which the Jaccard
similarity is above the threshold 0.1 (note that more than
14 edges are reported, as some users are involved in mildly-
similar pairs with other users from top k, yet with similarity
lower than 0.4). We notice that themajority of users haveRock
or Electronic among their main genres, this is a characteristic
of the dataset [40].

Overall, a clustered structure becomes apparent when
considering both distance and genre-based colors, (also, we
see that random users — marked with a cross symbol — are
mostly spread out and are not involved in any pairs). Some
pairs of top users have different colors: this possibly means
that their intersection involves a subset of such genres,
which is quite natural.

To complement Fig. 4, in Fig. 5, we show heatmaps of two
similarity matrices, Jaccard similarities of artist-based pro-
files (Fig. 5a) and Cosine similarities of genre-based profiles
(which span the range between 0 and 1, being vectors with
only positive components), in Fig. 5b, arranged using the
output of a hierarchical clustering algorithm with ordered
leaves representation [43], i. e., maximizing the sum of simi-
larities among adjacent elements. We see that the clustering
structure is apparent, and preserved, in both matrices (see
the colored boxes on the user ids), although way clearer in
the Jaccard matrix. This is expected as artists-based profiles
have a far more granular resolution, and are therefore
sparser with respect to genre-based profiles, especially con-
sidering that the main genres are almost the same for all
users. This is also a witness of the fact that artist information
is more suitable to achieve real personalized recommenda-
tions than genres, which motivates our choice of artists as
user profile features.

7 CONCLUSION

In this paper, we presented scalable approximation algo-
rithms for Jaccard-based similarity search in dynamic data
streams. Specifically, we showed how to sketch the Jaccard
similarity via a black box reduction to ‘0 norm estimation,
and we gave a locality-sensitive hashing scheme that quickly
filters out low-similarity pairs. To the best of our knowledge,
these are the first algorithms that can handle item deletions.

Fig. 4. 2D embedding of the profiles of 30 users (top and random),
obtained running a MDS algorithm on the characteristic vectors. Circles
are used to represent users belonging to top similar pairs (sim 	 0:4),
and other 10 users were selected at random, and are marked with a
cross symbol. Colors represent combinations of the top three user gen-
res scores (see Section 6.2.1 for further details).

BURY ET AL.: SIMILARITY SEARCH FOR DYNAMIC DATA STREAMS 2251

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

In addition to theoretical guarantees, we showed that the
algorithm has competitive running times to the established
min-hashing approaches. We also have reason to believe that
the algorithm can be successfully applied in real-world appli-
cations, as evidenced by its performance for finding Last.fm
users with similarmusical tastes.

It would be interesting to extend these ideas for other sim-
ilarity measures. Though we focused mainly on the Jaccard
index, our approach works for any set-based similarity mea-
sure supporting an LSH, compare the characterization of
Chierichetti andKumar [37]. It is unclearwhether our techni-
ques may be reused for other similarities applied in collabo-
rative filtering, such as the Kendall-taumetric.

Future work might also focus on collecting data sets with
insertions and deletions. Even streaming benchmarks typi-
cally consist only of a final data set and are therefore inher-
ently insertion-only. We feel that a formal model for
capturing dynamic data will be of considerable value both
for the designing and evaluating algorithms.

ACKNOWLEDGMENTS

C.S. is supported by ERC Advanced Grant 788893
AMDROMA. A preliminary version of this paper appeared
in WSDM 2018 [1].

REFERENCES

[1] M. Bury, C. Schwiegelshohn, and M. Sorella, “Sketch ’em all: Fast
approximate similarity search for dynamic data streams,” in Proc.
11th ACM Int. Conf. Web Search Data Mining, 2018, pp. 72–80.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig,
“Syntactic clustering of the web,” Comput. Netw., vol. 29, no. 8–13,
pp. 1157–1166, 1997.

[3] S. Guha, R. Rastogi, and K. Shim, “ROCK: A robust clustering
algorithm for categorical attributes,” Inf. Syst., vol. 25, no. 5,
pp. 345–366, 2000.

[4] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani,
J. D. Ullman, and C. Yang, “Finding interesting associations with-
out support pruning,” IEEE Trans. Knowl. Data Eng., vol. 13, no. 1,
pp. 64–78, Jan./Feb. 2001.

[5] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond
the user-item matrix: A survey of the state of the art and future
challenges,” ACM Comput. Surv., vol. 47, no. 1, Art. no. 3.

[6] A. Das, M. Datar, A. Garg, and S. Rajaram, “Google news person-
alization: Scalable online collaborative filtering,” in Proc. 16th Int.
Conf. World Wide Web, 2007, pp. 271–280.

[7] P. Indyk and T. Wagner, “Near-optimal (euclidean) metric
compression,” in Proc. 28th Annual ACM-SIAM Symp. Discrete
Algorithms, 2017, pp. 710–723.

[8] R. Pagh, M. St€ockel, and D. P. Woodruff, “Is min-wise hashing
optimal for summarizing set intersection?” in Proc. Proc. 33rd
ACM SIGMOD-SIGACT-SIGART Symp. Principles Database Syst.,
2014, pp. 109–120.

[9] S. Janssens, “Bell inequalities in cardinality-based similarity meas-
urement,” PhD dissertation, Ghent Univ., Gent, Belgium, 2006.

[10] M. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proc. 34th Annu. ACM Symp. Theory Comput., 2002,
pp. 380–388.

[11] P. Indyk and R. Motwani, “Approximate nearest neighbors:
Towards removing the curse of dimensionality,” in Proc. 30th
Annu. ACM Symp. Theory Comput., 1998, pp. 604–613.

[12] A. Z. Broder, “On the resemblance and containment of doc-
uments,” in Proc. Compression Complexity Sequences 1997, 1997,
Art. no. 21.

[13] A. Z. Broder, “Identifying and filtering near-duplicate doc-
uments,” in Proc. 11th Annu. Symp. Combinatorial Pattern Matching,
2000, pp. 1–10.

[14] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” J. Comput. Syst. Sci.,
vol. 60, no. 3, pp. 630–659, 2000.

[15] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive
Datasets, 2nd Ed. Cambridge, U.K.: Cambridge Univ. Press, 2014.

[16] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun.
ACM, vol. 51, no. 1, pp. 117–122, 2008.

[17] E. Cohen and H. Kaplan, “Summarizing data using bottom-k
sketches,” in Proc. 26th Annu. ACM Symp. Principles Distrib. Com-
put., 2007, pp. 225–234.

[18] E. Cohen and H. Kaplan, “Bottom-k sketches: Better and more
efficient estimation of aggregates,” in Proc. ACM SIGMETRICS
Int. Conf. Meas. Model. Comput. Syst., 2007, pp. 353–354.

[19] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 1997, pp. 171–182.

[20] P. Indyk, “A small approximately min-wise independent family
of hash functions,” J. Algorithms, vol. 38, no. 1, pp. 84–90, 2001.

[21] G. Feigenblat, E. Porat, and A. Shiftan, “Exponential time
improvement for min-wise based algorithms,” in Proc. 22nd Annu.
ACM-SIAM Symp. Discrete Algorithms, 2011, pp. 57–66.

[22] M. Dietzfelbinger, “Universal hashing and k-wise independent
random variables via integer arithmetic without primes,” in
Proc. 13th Annu. Symp. Theoretical Aspects Comput. Sci., 1996,
pp. 569–580.

[23] K. Chung, M. Mitzenmacher, and S. P. Vadhan, “Why simple hash
functions work: Exploiting the entropy in a data stream,” Theory
Comput., vol. 9, pp. 897–945, 2013.

Fig. 5. Clustered similarity matrices for top and random users of Fig. 4.
Plots show heatmap output of a hierarchical clustering algorithm using
(a) Jaccard distance between users profiles (listened Last.fm artists). (b)
Cosine distance genres-based profile. In both figures the colored boxes
highlight the clusters present in Fig. 4.

2252 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 32, NO. 11, NOVEMBER 2020

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

[24] M. Thorup, “Bottom-k and priority sampling, set similarity and
subset sums with minimal independence,” in Proc. 45th Annu.
ACM Symp. Theory Comput., 2013, pp. 371–380.

[25] M. Patrascu and M. Thorup, “Twisted tabulation hashing,” in Proc
24th Annu. ACM-SIAMSymp. Discrete Algorithms, 2013, pp. 209–228.

[26] M. Thorup, “Simple tabulation, fast expanders, double tabulation,
and high independence,” in Proc. IEEE 54th Annu. Symp. Found.
Comput. Sci., 2013, pp. 90–99.

[27] A. Pagh, R. Pagh, and M. Ruzic, “Linear probing with 5-wise
independence,” SIAM Rev., vol. 53, no. 3, pp. 547–558, 2011.

[28] M. Patrascu and M. Thorup, “On the k-independence required by
linear probing and minwise independence,” ACM Trans. Algo-
rithms, vol. 12, no. 1, pp. 8:1–8:27, 2016.

[29] S. Dahlgaard, M. B. T. Knudsen, and M. Thorup, “Fast similarity
sketching,” in Proc. IEEE 58th Annu. Symp. Found. Comput. Sci.,
2017, pp. 663–671.

[30] P. Li, A. B. Owen, and C. Zhang, “One permutation hashing,” in
Proc. 25th Int. Conf. Neural Inf. Process. Syst. - Vol. 2, 2012,
pp. 3122–3130.

[31] A. Shrivastava and P. Li, “Densifying one permutation hashing
via rotation for fast near neighbor search,” in Proc. Proc. 31st Int.
Conf. Int. Conf. Mach. Learn. - Vol. 32, 2014, pp. 557–565.

[32] S. Dahlgaard, M. B. T. Knudsen, and M. Thorup, “Practical hash
functions for similarity estimation and dimensionality reduction,”
in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6618–6628.

[33] K. Q. Weinberger, A. Dasgupta, J. Langford, A. J. Smola, and
J. Attenberg, “Feature hashing for large scale multitask learning,”
in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 1113–1120.

[34] Y. Bachrach and E. Porat, “Fingerprints for highly similar
streams,” Inf. Comput., vol. 244, pp. 113–121, 2015.

[35] Y. Bachrach and E. Porat, “Sketching for big data recommender
systems using fast pseudo-random fingerprints,” in Proc. Int. Col-
loquium Automata Lang. Program., 2013, pp. 459–471.

[36] P. Li and A. C. K€onig, “Theory and applications of b-bit minwise
hashing,” Commun. ACM, vol. 54, no. 8, pp. 101–109, 2011.

[37] F. Chierichetti and R. Kumar, “LSH-preserving functions and
their applications,” J. ACM, vol. 62, no. 5, 2015, Art. no. 33.

[38] D. M. Kane, J. Nelson, and D. P. Woodruff, “An optimal algorithm
for the distinct elements problem,” in Proc. 29th ACM SIGMOD-
SIGACT-SIGART Symp. Principles Database Syst., 2010, pp. 41–52.

[39] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 3, 2011, Art. no. 11.

[40] A. Anagnostopoulos and M. Sorella, “Learning a macroscopic
model of cultural dynamics,” in Proc. Int. Conf. Data Mining, 2015,
pp. 685–690.

[41] F. Wickelmaier, “An introduction to mds,” Sound Quality Res.
Unit, Aalborg University, Aalborg, Denmark, vol. 46, no. 5, pp. 1–
26, 2003.

[42] J. Dem�sar, T. Curk, A. Erjavec, �Crt Gorup, T. Ho�cevar,
M. Milutinovi�c, M. Mo�zina, M. Polajnar, M. Toplak, A. Stari�c,
M. �Stajdohar, L. Umek, L. �Zagar, J. �Zbontar, M. �Zitnik, and
B. Zupan, “Orange: Data mining toolbox in python,” J. Mach.
Learn. Res., vol. 14, pp. 2349–2353, 2013.

[43] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola, “Fast optimal leaf
ordering for hierarchical clustering,” Bioinf., vol. 17, no. suppl_1,
pp. S22–S29, 2001.

Marc Bury received the PhD degree in com-
puter science from the Technical University of
Dortmund, in 2016. He now works with Google
Z€urich. His past work revolved mostly on com-
plexity theory, in particular BDDs, and streaming
algorithms. His current research focuses on scal-
able algorithms for web-based applications.

Chris Schwiegelshohn received the PhD
degree in computer science from the Technical
University of Dortmund, in 2017. He is currently
an assistant professor with Sapienza, University
of Rome. His main research interests cover
streaming, dynamic algorithms, and learning
problems such as clustering.

Mara Sorella received the PhD degree in com-
puter science and engineering from Sapienza,
University of Rome, in 2018. She continues to
work there as a postdoc. Her current interests
include distributed computing, security, and data
mining.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

BURY ET AL.: SIMILARITY SEARCH FOR DYNAMIC DATA STREAMS 2253

Authorized licensed use limited to: Aarhus University. Downloaded on October 26,2020 at 17:15:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

