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Abstract We study the problem of estimating the size of a matching when the graph
is revealed in a streaming fashion. Our results are multifold:

1. We give a tight structural result relating the size of a maximum matching to the
arboricity α of a graph, which has been one of the most studied graph parameters
for matching algorithms in data streams. One of the implications is an algorithm
that estimates the matching size up to a factor of (α + 2)(1 + ε) using Õ(αn2/3)
space in insertion-only graph streams and Õ(αn4/5) space in dynamic streams,
where n is the number of nodes in the graph. We also show that in the vertex
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arrival insertion-only model, an (α+2) approximation can be achieved using only
O(log n) space.

2. We further show that the weight of a maximum weighted matching can be
efficiently estimated by augmenting any routine for estimating the size of
an unweighted matching. Namely, given an algorithm for computing a λ-
approximation in the unweighted case, we obtain a 2(1 + ε) · λ approximation
for the weighted case, while only incurring a multiplicative logarithmic factor
in the space bounds. The algorithm is implementable in any streaming model,
including dynamic streams.

3. We also investigate algebraic aspects of computing matchings in data streams,
by proposing new algorithms and lower bounds based on analyzing the rank of
the Tutte-matrix of the graph. In particular, we present an algorithm determining
whether there exists a matching of size k using O(k2 log n) space.

4. We also show a lower bound of �(n1−ε) space for small approximation factors
to the maximum matching size in insertion-only streams. This lower bound also
holds for approximating the rank of a matrix.

Keywords Graph streaming · Matching · Estimation

1 Introduction

In the graph streaming model, introduced by Henzinger et al. [27], we are given a
sequence of updates to the adjacency matrix of a graph, and we aim to solve a graph
problem, using as little space as possible.Muchof the recentwork has typically focused
on the semi-streaming model [21], where we are allowed to use O(n · polylog n)

space for a graph with n nodes, and ideally, we would use a single pass over the
data.

In particular, computing matchings is arguably the most studied problem in graph
streamingmodels.While a lot is alreadywell-understood about the space requirements
for this problem, many intriguing questions remain still open.

To bypass the �(n) lower bound required to store a matching, recent research
has begun to focus on only approximating the size of matchings, resulting in several
algorithms with sublinear-space bounds, even with respect to the number of nodes.
We continue this line of work, and present several results for estimating matchings in
weighted and unweighted graphs, using only o(n) space.
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1.1 Our Contribution

Structural ResultsMost previous papers on estimatingmatching sizes in streams focus
on classes of sparse graphs, either by limiting the degree of each node [30],1 or more
generally by assuming bounded arboricity [20]. The arboricity of a graph G(V, E) is

defined as α := max
U⊆V

⌈ |E(U )|
|U |−1

⌉
, where E(U ) is the set of edges between vertices of

U . Equivalently, the arboricity can be defined as the minimum number of forests into
which the edges of the graph can be decomposed. For the rest of the paper, we assume
that the arboricity of the graph (or an upper bound on it) is known in advance. Our
main result is a structural theorem relating the matching size to the arboricity:

Theorem 1 Let match(G) be the size of the maximum cardinality matching in

G(V, E). For an edge e = {u, v} ∈ E define xe = min
(

1
deg(u)

, 1
deg(v)

, 1
α+1

)
. Then,

match(G) ≤ (α + 1)
∑
e∈E

xe ≤ (α + 2)match(G)

Therefore, estimating
∑

e∈E xe allows us to estimate the matching size while losing an
(α+2) factor.We also showhow to estimate this sum, provided it is large enough. If the
sum is too small to be efficiently estimated, we simultaneously use a further algorithm
to estimate the size. The algorithm in question depends on the streaming model. In
insertion-only streams,where edges arrive one after the other,we can greedilymaintain
a maximal matching, which was also done by Esfandiari et al. [20], resulting in a
(α + 2)(1+ ε) approximation using Õ(ε−2αn2/3) bits of space. In dynamic streams,
we use an algebraic approach discussed further below.

As a further consequence, we relate the degree distribution of the nodes to the
arboricity. This type of estimation achieves an approximation factor of (α + 2) of the
matching size. In the vertex-arrival model, where all edges adjacent to a node arrive
simultaneously, the degree distribution can be maintained in a straightforward manner
using only O(log n) space.

Reduction of Weighted to Unweighted Matching Estimation. Building on similar
approaches for parallel algorithms [48], and on approximate matching computation in
streams [14], we give a reduction from unweighted to weighted matching estimation
as follows:

Theorem 2 Given ε > 0 and a λ-approximate estimation using S space with failure
probability δ, there exists an 2(1 + ε)λ-approximate estimation algorithm for the
weighted matching problem with weight range [1,W ] using O(S · logW · ε−1) space
with failure probability δ · log1+ε W.

This reduction applies to any streaming model including the dynamic stream model,
where edges may be inserted and deleted.

1 Themain result of [30] holds for general graphs, but assumes a random order input stream. For adversarial
inputs, the authors give a multi-pass streaming algorithm using polylog space, assuming that the graph has
bounded degree.
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Algebraic Techniques for Computing Matchings in Streams. Finally, we introduce
algebraic techniques for analyzing matching problems in data streams. Like most
algebraic matching algorithms, we focus on properties of the Tutte-matrix of a graph.
Tutte [47] famously showed that a graph has a perfect matching if and only if the
maximum rank of the Tutte-matrix is n. This was later generalized by Lovász [36],
who showed that the maximum possible rank of the Tutte-matrix is exactly twice
the maximum matching size. The Tutte-matrix is obtained from the adjacency matrix
by replacing every edge e in the upper right half with an indeterminate xe and the
corresponding entry in the lower left half with −xe. It is not obvious how to make use
of the aforementioned results, without an assignment resulting in a maximum rank.
Lovász addressed this by showing that a suitable random assignment results in the
maximum rank with high probability.

This has two consequences for streaming algorithms, namely that (1) any approx-
imation algorithm for the rank of a matrix can be used to approximate the matching
size of a graph, and that (2) lower bounds for estimation tasks of the matching size
can be used to derive lower bounds for the rank of a matrix.

Using rank-preserving sketches (see e.g., [11]) applied to the Tutte matrix, we then
obtain the following upper bound:

Theorem 3 LetG(V, E)be anarbitrary graph. Then there exists a dynamic streaming
algorithm that either (1) outputs k ifmatch(G) ≥ k or (2) outputsmatch(G) otherwise.
The algorithm uses O(k2 log n) bits of space and succeeds with constant probability.

Theorem 3 was also reproved by Chitnis et al. [10] using sampling-based
approaches. Combining this result with our estimation techniques for bounded arboric-
ity matchings, we obtain a (α + 2)(1 + ε) factor estimation of the matching using
Õ(ε−2αn4/5) space, which is one of the few non-trivial results for dynamic graph
streams using sublinear space.

Lower Bounds on Size Estimation For lower bounds, we show that by approximating
the matching to a sufficiently good factor, we can solve hard instances of the Boolean
HiddenHypermatching (BHH) problem. The BooleanHiddenMatching (BHM) prob-
lem was initially proposed by Bar-Yossef et al. [5] for the purpose of separating the
one-way communication complexity of quantum and classical messaging models.
Roughly speaking, Alice is given a binary bit string x ∈ {0, 1}n and Bob a perfect
matching M on the indexes of x as well as a binary vectorw ∈ {0, 1}n/2. It is promised
that the parities of the indexes of x with respect to the matching M are either equal
to w or to w and the players’ task is to determine which is the case. A tight bound
of �(

√
n) on the communication complexity of BHM has been given by Gavinsky et

al. [22]. BHH is a generalization introduced by Verbin and Yu [50]. With a slightly
modified version of BHH we obtain,

Theorem 4 (informal version) Any 1-pass streaming algorithm approximating the
size of the maximum matching up to an (1 + O(ε)) factor requires �(n1−ε) bits of
space.

Using the aforementioned connection between matching size and rank of a matrix
established by the Tutte matrix, we also obtain an �(n1−ε) space bound for 1 +
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Table 1 Results for estimating the size of a maximum matching in data streams. α is the arboricity of a
graph, e.g., 3 for planar graphs. Õ( f (n)) hides factors polylogarithmic in f (n). We also suppressed (1+ε)

multiplicative factors in some approximation ratios and polynomial dependencies on ε−1 in the space
bounds. All upper bounds can be extended to weighted matching at an additional loss of a multiplicative
factor of 2 in the approximation ratio

Reference Graph class Streaming model Approx. factor Space

[30] General Random polylog(n) polylog(n)

[20] Trees Insert 2 + ε Õ(
√
n)

[20] Constant arboricity Insert 5α + 9 Õ(αn2/3)

here Constant arboricity Insert α + 2 Õ(αn2/3)

[12] Constant arboricity Insert 22.5α + 6 Õ(α · polylog n)

[40] Constant arboricity Insert α + 2 Õ(polylog n)

here Constant arboricity Vertex-arrival α + 2 O(log n)

here Trees Dynamic 2 + ε O(log n)

[10] Constant arboricity Dynamic 22.5α + 6 Õ(αn4/5)

here Constant arboricity Dynamic α + 2 Õ(αn4/5)

[20] Forests Insert 3
2 − ε �(

√
n)

here General Insert 1 + 2ε
3−2ε �

(
n1−ε

)

[3] Constant Arboricity Insert α − ε �(
√
n/α2.5)

[3] General Insert 1 + ε �

(
n
1+ 1

log log n

)

O(ε) approximating the rank of a matrix in data streams. It also gives an exponential
separation between estimating the rank of a diagonal matrix which admits a O(log n)

space algorithm by estimating the �0 norm of a vector, see for instance Kane et al. [28]
Table 1 contains a succinct overview of our specific results and the most relevant

previous work.

1.2 Related Work

Matching Computation Maintaining a 2-approximation to the maximum matching
in an insertion-only stream can be straightforwardly done by greedily maintaining a
maximal matching [21]. This remains the best algorithm discovered thus far and no
single pass semi-streaming algorithm using O(n · polylog n) space can do better than
e/(e−1), seeGoel et al. [25] andKapralov [29]. If the edges of an insertion only stream
are assumed to arrive in random order as opposed to an adversarial order, Konrad et
al. [32]were able to obtain a semi-streaming algorithmwith an approximation factor of
1.989. In sliding window streams, Crouch et al. [13] gave a (3+ε)-approximation. For
dynamic streams, Assadi et al. [4] showed that any sketching algorithm computing
a nε approximate matching requires �(n2−3ε) space, see also the earlier work by
Konrad [31]. Since linear sketches canbeused toobtain lower boundsof dynamicgraph
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streams [1], this result gives a lower bound for maintaining approximate matchings in
dynamic graph streams.

For weighted matching, a trickle of results sequentially improving on the approx-
imation ratio have been recently published for insertion streams [14,18,19,21,38,
49,51]. Paz and Schwartzman [44] gave a 2 + ε approximate semi-streaming algo-
rithm, which Ghaffari [23] re-analyzed to obtain slightly improved space bounds. This
result essentially implies that any further improvement to weighted matching will also
improve unweighted matching.

Matching Estimation To bypass the natural �(n) bound required by any algorithm
maintaining an approximate matching, recent research has begun to focus on only
estimating the size of the maximum matching. In one of the few non-trivial graph
streaming results using polylog n space, Kapralov et al. [30] obtained a polylogarith-
mic approximate estimate for randomly ordered streams.Monemizadeh et al. [41] also
showed that property testers in bounded degree graphs may be simulated in random
order streams. Using a result by Nguyen and Onak [42], this implies that an ε · n
additive approximation to some maximal matching is possible storing only a constant
number of edges in randomly order streams.

The remaining algorithms in this line of research focus on approximating match-
ing sizes in graphs of bounded arboricity. Estimators relating the matching size to
arboricity were first considered in the field of distributed computing by Czygrinow et
al. [16]. In a streaming setting this taskwas first addressed byEsfandiari et al. [20], who
obtained a (5α+9)(1+ε) approximation using Õ(ε−2αn2/3) bits of space in insertion
only streams and Õ(ε−2αn1/2) bits of space in random-order streams. This was subse-
quently extended to a Õ(ε−2αn4/5) space algorithm in dynamic streams indepedently
by Chitnis et al. [10], and the initial publication of Bury and Schwiegelshohn [8].
Recently, Cormode et al. [12] gave an insertion-only algorithm with an approxima-
tion factor of (22.5α + 6)(1 + ε) and using only Õ(ε−3α log2 n) space. This was
recently further improved by McGregor and Vorotnikova [40] to an (α + 2)(1 + ε)

approximation using O(ε−2 log n) space.
Lower bounds were first obtained by Esfandiari et al. [20]. The authors showed

that �(
√
n) space is necessary for any approximation better than 3

2 . Assadi et al. [3]
achieved significant improvement over our work. Among other results, they showed
that for small approximation factors, a super-linear lower of�(n1+1/ log log n) is neces-
sary. They also showed that for graphswith arboricity bounded by O(α), any algorithm
achieving an α-approximation must use �(

√
n/α2.5) space. Chakrabarti and Kale [9]

further studied multi-pass streaming. They showed that any deterministic streaming
algorithm using s space and p passes achieving an α-approximation must satisfy
p · s ≥ ( n

eα log e − log n)/2.

Schatten Norm Estimation The p Schatten norm of a matrix A is the �p norm of
the vector containing the singular values of A. Taking the limit of p → 0, the 0
Schatten norm corresponds to the rank. Most previous work focused on lower bounds
for dynamic streams. Clarkson and Woodruff [11] obtained a �(k2) lower bound
for determining whether a matrix has rank at least k. Li et al. [33] showed a lower
bound of �(

√
n) for the target dimension of any linear sketch-based constant factor
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approximation of the rank and an �(n2) target dimension for bi-linear sketching, see
also later extensions and improvements for other Schatten norms in [35]. The related
question of finding the largest eigenvalues of a matrix was investigated by Andoni and
Nguyen [2], whose algorithm can also be used to solve the rank decision problem.

The only other result pertaining to insertion-only streamswe are aware of is due toLi
andWoodruff [34]. Their result extends upon our construction initially published in [8]
by showing that any algorithm estimating certain classes of functions of singular values
well enough can be used to solve a hard instance of Boolean Hidden Hypermatching.

1.3 Preliminaries

We use Õ( f (n)) to hide factors polylogarithmic in f (n). Graphs are denoted by
G(V, E, w) where V is the set of n nodes, E is the set of edges and w : E → [1,W ]
is a weight function with maximum weight W . The subgraph induced by a set of
nodes U ⊆ V , is G[U ] := (U, E ∩ (U × U )). A matching M ⊂ E is a set of node
disjoint edges. A matching is maximal if it cannot be extended by any further edge
in E and maximum if it is of largest possible cardinality. We refer to the size of a
maximum matching of G by match(G). Our estimated value M̂ is a λ-approximation
to the size of the maximum matching match(G) if M̂ ≤ match(G) ≤ λM̂ . Most of
our estimation algorithms are randomized and have some probability of failure. We
use the shorthand constant probability to indicate that the estimation is correct with
probability greater than 1

2 . Hence, we require that any randomized algorithm succeeds
with constant probability. We note that we may amplify the probability of success
in the standard way by running multiple estimations in parallel and outputting the
median.

2 Structural Results on Matching in Bounded Arboricity Graphs

2.1 Arboricity-Based Estimation

We first restate Theorem 1:

Theorem 1 For an edge e = {u, v} ∈ E define xe = min
(

1
deg(u)

, 1
deg(v)

, 1
α+1

)
. Then,

match(G) ≤ (α + 1)
∑
e∈E

xe ≤ (α + 2)match(G)

Define the fractional matching polytope for a graph G as:

FM(G) = {x ∈ R
E : xe ≥ 0 for all e ∈ E,

∑
e∈E :u∈e

xe ≤ 1 for all u ∈ V } .

When the underlying graph is clear from context, we also write FM for FM(G). We
say any x ∈ FM(G) is a fractional matching. The size of this fractional matching is∑

e∈E xe and for a graph where edge e has weight we, the weight of the matching
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is
∑

e∈E wexe. A standard result on fractional matching is that the maximum size of
a fractional matching is at most a factor 3/2 larger than the maximum size of an
(integral) matching. We will also make use of the following lemma, which is a simple
corollary of Edmonds’ Matching Polytope theorem [17].

Lemma 1 Let x ∈ FM(G) and suppose there exist λ3, λ5, λ7 . . . such that

∀U ⊆ V where |U | ∈ {3, 5, 7, . . .} ,
∑

e∈G[U ]
xe ≤ λ|U |

( |U | − 1

2

)
.

Then, for any edge weights {we}e∈E ,
∑
e∈E

wexe ≤ max(1, λ3, λ5, . . .)match(G)

where match(G) is the weight of the maximum weighted (integral) matching.

Proof By Edmonds’ theorem, match(G) = maxz∈IM(G)

∑
e weze where

IM(G) =
⎧⎨
⎩x ∈ R

E : xe ≥ 0 for all e ∈ E,
∑

e∈E :u∈e
xe ≤ 1 for all u ∈ V ,

∑
e∈G[U ]

xe ≤
( |U | − 1

2

)
for all U ⊂ V of odd size

⎫⎬
⎭ .

But x
max(1,λ3,λ5,...)

∈ IM(G) and so
∑

e∈E wexe ≤ max(1, λ3, λ5, . . .)match(G) as
required. ��

For the streaming applications we will be interested in fractional matchings that
can be computed locally.

Definition 1 For a given graph G, we say a fractional matching x ∈ FM(G) is local
if every xe is only a function of the edges (and their weights in the case of a weighted
graph) that share an end point with e.

Now define x ∈ R
E where for e = {u, v} ∈ E , we set

xe = min

(
1

deg(u)
,

1

deg(v)
,

1

α + 1

)
.

The next two theorems show that x is a local fractional matching and

1

α + 1
· match(G) ≤ score(x) ≤ α + 2

α + 1
· match(G)

where score(x) = ∑
e xe. This proves Theorem 1 and we note that the upper bound

can be improved slightly if α is even. In Sect. 3, we show that it is possible to efficiently
estimate score(x) in the data stream model.
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Theorem 5 x ∈ FM(G) and

score(x)
match(G)

≤
{

α+2
α+1 if α odd
α+3
α+2 if α even

.

Furthermore, if G is bipartite then score(x) ≤ match(G).

Proof First, note that xe ≥ 0 for each e ∈ E and for any u ∈ V ,

∑
e∈E :u∈e

xe ≤
∑

e∈E :u∈e
1/ deg(u) = 1 .

and hence x ∈ FM. The bound for bipartite graphs follows because the maximum size
of a fractional matching in a bipartite graph equals the maximum size of an integral
matching. For the rest of the result, we appeal to Lemma 1. Since x ∈ FM, it is simple
to show that x satisfies the conditions of the lemma with λt ≤ t/(t − 1); this follows
because

∑
e∈G[U ] xe ≤ |U |/2 for any x ∈ FM. Furthermore, since there are at most(|U |

2

)
edges in G[U ] and xe ≤ 1/(α + 1) for all e,

∑
e∈G[U ]

xe ≤
(|U |

2

)
1

α + 1
= |U | − 1

2
· |U |
α + 1

.

Therefore, λt ≤ min (t/(t − 1), t/(α + 1)). Consequently,

max
t odd

λt =
{

α+2
α+1 if α odd
α+3
α+2 if α even

.

��
Note that Theorem 5 is tight. For example, a 5-clique has arboricity 3, maximum

matching of size 2, and score(x) = 5/2.
We next bound score(x) in terms of the number of edges whose endpoints both have

“large” degree and the number of edges whose endpoints both have “small” degree.

Theorem 6 Define a node to be heavy if it has degree at least α + 2. Let h be the
number of heavy nodes, let E2 be the set of edges where both endpoints are heavy,
and let E0 be the set of edges where neither endpoints are heavy. Then,

score(x) ≥ h − |E2|
α + 2

+ |E0|
α + 1

≥ match(G)

α + 1
.

Proof Let di be the degree of node i and assume d1 ≥ d2 ≥ d3 ≥ . . .. Let bi = |{ j <

i : {i, j} ∈ E}| and ci = |{i < j : {i, j} ∈ E}|, i.e., the number of neighbors of node i
that have higher or lower degree respectively than node i where ties are broken by the
ordering supposed in the above line. Consider labeling an edge ewith weight xe where
we first label edges incident to node 1, then the (remaining unlabeled) edges incident
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to node 2, etc. Then c1 = d1 edges get labeled with min(1/d1, 1/(α+1)), c2 edges get
labeled with min(1/d2, 1/(α + 1)), c3 edges get labeled with min(1/d3, 1/(α + 1))
etc. Then

score(x) =
∑
i

ci min(1/di , 1/(α + 1))

=
∑

i :di≥α+2

ci/di +
∑

i :di≤α+1

ci/(α + 1)

= h −
∑

i :di≥α+2

bi/di +
∑

i :di≤α+1

ci/(α + 1)

≥ h − (
∑

i :di≥α+2

bi )/(α + 2) + (
∑

i :di≤α+1

ci )/(α + 1).

Note that
∑

i :di≥α+2 bi is the number of edges in the induced subgraph on heavy
nodes, i.e., |E2|. Similarly,

∑
i :di≤α+1 ci = |E0|. Therefore,

score(x) ≥ h − |E2|
α + 2

+ |E0|
α + 1

.

Note that |E2| < αh, because these edges in this induced subgraph can be partitioned
into at most α forests. Therefore,

score(x) ≥ h(1 − α/(α + 2)) + |E0|/(α + 1) = 2h/(α + 2) + |E0|/(α + 1),

as required. Note that h+|E0| ≥ match(G) because every edge in a matching is either
in E0 or has at least one heavy node as an endpoint. Therefore,

score(x) ≥ (h + |E0|)/(α + 1) ≥ match(G)/(α + 1).

��
See Fig. 1 for an example that shows that Theorem 6 is tight.

2.2 Structural Result for Weighted Graphs

In this section we show how to find a good local fractional matching for weighted
graphs. It does not improve upon the bounds given by the unweighted to weighted
reduction of Sect. 4. However, we think the structural result is interesting and could
be useful in other computational models.

Define y ∈ R
E where for e = {u, v} ∈ E , we set

ye = min

(
1

dege(u) · H(deg(u))
,

1

dege(v) · H(deg(v))
,

1

α + 1

)
,
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L1

L2

L3

Fig. 1 A tight example for Theorem 6. Let L1 consist of α nodes whereas L2 and L3 consist of n  α

nodes. The edges are a complete bipartite graph of L1 and L2 and a matching between L2 and L3. Then
score(x) = αn · 1/n + n · 1/(α + 1) and match(G) = n. Hence match(G)/ score(x) tends to α + 1 as n
tends to infinity

where dege(u) and dege(v) are the number of edges at least as heavy as e that are
incident to u and v respectively and H(r) = 1/1 + 1/2 + · · · + 1/r is the harmonic
function.

The next two theorems show that y is a local fractional matching and

1

H(D) · (α + 1)
match(G) ≤ score(y) ≤ α + 2

α + 1
match(G),

where score(y) = ∑
e we ye and D is the maximum degree of the graph. Note that

bounded arboritcity does not imply a bounded maximum degree and thus Theorem 8
only applies to the latter type of graphs.

Theorem 7 y ∈ FM(G) and

score(y)
match(G)

≤
{

α+2
α+1 if α odd
α+3
α+2 if α even

.

Furthermore, if G is bipartite then score(y) ≤ match(G).

Proof For all u ∈ V ,

∑
e∈E :u∈e

ye ≤ 1

H(deg(u))

∑
e∈E :u∈e

1

dege(u)
≤ 1

H(deg(u))
(1/1 + 1/2 + · · ·

+1/ deg(u)) = 1 ,

and hence y ∈ FM. The result of the proof follows as in the proof of Theorem 5 since
ye ≤ 1/(α + 1) for all e. ��
Theorem 8 match(G) ≤ H(D)(α + 1) score(y) where D is the maximum degree.

Proof Let ze be the optimum weighted integral matching. Let 0 < w1 < w2 < w3 <

· · · be the distinct weights in the graph and let w0 = 0. Let Gk be the unweighted
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L1

L2

L4

L3

Fig. 2 A tight example for Theorem 8. There are four levels where, |L1| = α, |L2| = |L4| = √
n, and

L3 consists of
√
n groups of (

√
nα − 1) vertices. There is a complete bipartite graph between L1 and L2,

matching between L2 and L4, and each groupof vertices in L3 is connected to one of the vertices in L2.Black
edges have weight

√
n, red ones have weight 1. A maximum weighted matching has weight n. score(y) =

α
√
n

√
n√

nH(
√
n)

+ √
n

√
n

(α+1)H(
√
n)

+ √
n(

√
n − α − 1) 1√

nH(
√
n)

= α(α+1)
√
n+n+(α+1)(

√
nα−1)

(α+1)H(
√
n)

. Then

match(G)/ score(y) = (α+1)H(
√
n)n

α(α+1)
√
n+n+(α+1)(

√
nα−1)

which goes to (α + 1)H(
√
n) as n goes to infinity.

Note that
√
n is maximum degree in G and H(

√
n) = 	(log n)

graph formed from the original weighted graph where all edges whose weight is< wk

are deleted and the other edges are given weight 1. Let zke be the optimum unweighted
integral matching for Gk and let degk(u) be the degree of node u in Gk .

Then,

score(z) =
∑
e

zewe ≤
∑
k

(wk − wk−1)
∑
e∈Gk

zke

≤ (α + 1)
∑
k

(wk − wk−1)
∑
e∈Gk

min

(
1

degk(u)
,

1

degk(v)
,

1

α + 1

)

where the last inequality follows by our result for the unweighted case.
But for any e ∈ E ,

∑
k:e∈Gk

(wk − wk−1)min

(
1

degk(u)
,

1

degk(v)
,

1

α + 1

)

≤
∑

k:e∈Gk

(wk − wk−1)min

(
1

dege(u)
,

1

dege(v)
,

1

α + 1

)

≤ we min

(
1

dege(u)
,

1

dege(v)
,

1

α + 1

)

≤ H(D)we ye

where the first inequality follows because degk(u) ≥ dege(u) for all k such that
e ∈ Gk . Therefore match(G) ≤ H(D)(α + 1) score(y) as claimed. ��

See Fig. 2 for an example that shows that Theorem 8 is tight.
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2.3 Exact Degree Distribution

Using ideas from the previous sections, we now show that the size of the maximum
matching can be approximated up to a (α +2) factor given just the degree distribution
of G. Specifically, consider the following estimate:

M̃ =
∑
u∈V

min(α + 1 − deg(u)/2, deg(u)/2) .

The next theorem shows that M̃ is an (α + 2) approximation for match(G).

Theorem 9 match(G) ≤ M̃ ≤ (α + 2) · match(G).

Proof As before, let h be the number of “heavy” nodes with degree at least α + 2.
Partition the edges E into E0, E1, and E2 depending on whether the edge has zero,
one, or two heavy endpoints. Then,

∑
u∈V

min(α + 1 − deg(u)/2, deg(u)/2)

=
∑
u∈V

deg(u)/2 − max(deg(u) − α − 1, 0)

= |E0| + |E1| + |E2| −
⎛
⎝ ∑

u:deg(u)≥α+2

deg(u) − α − 1

⎞
⎠

= |E0| + |E1| + |E2| −
⎛
⎝ ∑

u:deg(u)≥α+2

deg(u)

⎞
⎠+ h(α + 1)

= |E0| + |E1| + |E2| − |E1| − 2|E2| + h(α + 1)

= |E0| − |E2| + h(α + 1) .

Note that |E2| < αh because the number of edges in any induced subgraph is at most
α times the number of nodes in that subgraph. Hence,

|E0| − |E2| + h(α + 1) ≥ |E0| + h ≥ match(G) .

From Theorem 6 and Theorem 5, we know that

h − |E2|
α + 2

+ |E0|
α + 1

≤ α + 2

α + 1
· match(G)

and hence,

|E0| − |E2| + h(α + 1) ≤ |E0| − |E2| · α + 1

α + 2
+ h(α + 1) ≤ (α + 2)match(G) .

��
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Both inequalities in Theorem 9 are tight. For the lower bound, consider a collection
of n disjoint edges, which has match(G) = M̃ = n. For the upper bound, consider a
5-clique, that has arboricity 3, match(G) = 2, and M̃ = 10.

3 Algorithmic Applications in Streaming Models

3.1 Adversarial Insertion-Only Streams

In this section we briefly describe a streaming estimation based on the results from
Sect. 2.

From Theorem 1, we know we can estimate the size of the maximum cardinality
via the following quantity,

A :=
∑

{u,v}∈E
min

(
1

deg(u)
,

1

deg(v)
,

1

α + 1

)
.

To do this we first show that A can be estimated via the quantity,

AS :=
∑

{u,v}∈E :u,v∈S
min

(
1

deg(u)
,

1

deg(v)
,

1

α + 1

)
.

where S is a subset of V formed by sampling each node independently with probability
p. The next lemma shows that AS is within a 1 + ε factor of Ap2 with probability
at least 3/4 assuming p is sufficiently large. Note that a similar approach is taken in
Esfandiari et al. [20] and Chitnis et al. [10] in the context of their algorithm to estimate
the number of high degree nodes and edges that are not incident to high degree nodes.

Lemma 2 If p ≥ √
12ε−2A−1, then P

[|AS − Ap2| ≤ ε · Ap2] ≥ 3/4.

Proof For each edge e = {u, v} ∈ E , let xe = min (1/deg(u), 1/deg(v), 1/(α + 1))
and define a random variable Xe where Xe = xe if u, v ∈ S and Xe = 0 otherwise.
Note that AS = ∑

e∈E Xe. Then, the expectation and variance of AS areE [AS] = Ap2

and

V [AS] =
∑
e∈E

∑
e′∈E

E [XeXe′ ] − E [Xe]E [Xe′ ] .

Note that for every e, e′ ∈ E

E
[
XeXe′

]− E [Xe]E
[
Xe′

] =

⎧
⎪⎨
⎪⎩

x2e (p2 − p4) if e = e′
xexe′(p3 − p4) if e and e′ share exactly one endpoint

0 if e and e′ share no endpoints
.
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Since the sum of all xe′ that share an endpoint with e is at most 2 because x ∈ FM,

V [AS] ≤
(∑
e∈E

x2e (p
2 − p4)

)
+ 2A(p3 − p4) ≤ 3Ap2 .

We then use Chebyshev’s inequality to obtain

P

[
|AS − Ap2| ≤ εAp2

]
≤ 3Ap2

ε2A2 p4
= 3

ε2Ap2
≤ 3/4 .

��
Given this key lemma, the algorithm and analysis proceed similarly to that of

Esfandiari et al. [20]. Specifically, two algorithms are run in parallel: a greedy
matching algorithm and a sampling-based algorithm. The greedy matching algo-
rithm uses O(n2/3 log n) space to find a maximal matching of size at least
min(n2/3,match(G)/2). Since every induced subgraph also has arboricity α, the
sampling-based algorithm uses O(αn2/3 log n) space to sample each node with prob-
ability p = cε−1/n2/3 (for some sufficiently large constant c) and then find all edges
whose endpoints are both sampled along with the degrees of the sampled edges. If
the greedy matching has size less than n2/3 then it is necessarily a 2 approximation of
match(G). If not, we can use the estimate of A based on the nodes sampled since in
this case A = �(n2/3).

Theorem 10 Given ε > 0, there exists a single pass data stream algorithm using
O(αε−1n2/3 log δ−1) space that returns a (α + 2)(1+ ε) approximation of the maxi-
mum matching with constant probability.

3.2 Adjacency List Graph Streams

In the adjacency list model2 the edges incident to each node v appear consecutively in
the stream [6,7,37]. Thus, every edge {u, v}will appear twice: once when we view the
adjacency list of u and once for v. Aside from that constraint, the stream is ordered arbi-
trarily. For example, for the graph consisting of a cycle on three nodesV = {v1, v2, v3},
a possible ordering of the stream could be 〈v3v1, v3v2, v2v3, v2v1, v1v2, v1v3〉. Note
that in this model it is trivial to compute

M̃ =
∑
u∈V

min(α + 1 − deg(u)/2, deg(u)/2) .

in O(log n) space since the degree of a node can be calculated exactly when the adja-
cency list of that node appears. The next theorem immediately follows from Theorem
9.

2 The adjacency list order model is closely related to the vertex arrival model [25,29] and row-order arrival
model considered in the context of linear algebra problems [11,24].
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Theorem 11 An (α + 2)-approximation of the size of maximum matching can be
computed using O(log n) space in the adjacency list model. In particular, this yields
a 5-approximation for planar graphs.

3.3 Dynamic Streams

Estimation in Trees Let T = (V, E) be a tree with at least three nodes and let hT be
the number of internal nodes, i.e., nodes with degree greater than one. Esfandiari et.
al. [20] proved the following structural result.

Lemma 3 [20] Let T = (V, E) be a tree with at least three nodes. Then

1/2 ≤ match(T )/(hT + 1) ≤ 1 .

One application is a combination of Lemma 3 with sketching algorithms for the Ham-
ming norm. The Hamming norm of a vector x is defined as �0(x) = |{i : xi �= 0}|,
i.e. the number of non-zero coordinates of a vector. In order to estimate the matching
size of a tree T , we maintain an �0-estimator for the degree vector d ∈ R

n such that
di = deg(vi )−1 holds at the end of the stream and with it �0(d) = hT . In other words,
we initialize the vector by adding −1 to each entry and update the two corresponding
entries when we get an edge deletion or insertion. Using Theorem 10 from [28] we
can maintain the �0-Estimator for d in O(ε−2 log n) space.

Theorem 12 Let T = (V, E) be a tree with at least 3 nodes and let ε ∈ (0, 1). Then
there is an algorithm that estimates the size of a maximum matching in T within a
(2+ ε)-factor in the dynamic streaming model with constant probability using 1-pass
over the data and O(ε−2 log n) space.

Estimation in Low-ArboricityGraphs Algebraic techniques have foundmany applica-
tions for matching problems. Given that all known dynamic streaming algorithms are
based on sketching, it may be somewhat surprising that, to the best of our knowledge,
no previous work has attempted to apply these techniques. We will first introduce the
necessary definitions and background before giving an application to matching size
estimation.

The singular value decomposition (SVD) of an n × n matrix is denoted by A =
U
V T whereU, V ∈ R

n×n are orthogonal and 
 is diagonal. The rank of a matrix is
the number of non-zero entries of 
, or alternatively the Hamming norm of the vector
containing the singular values of A. The spectral norm ||A||2 is the largest entry of 
.
For matrices of rank r , we use the truncated SVD A = U
V T , where U, V ∈ R

n×r

have orthogonal columns, and 
 is an r by r diagonal matrix.
Algebraic matching algorithms are usually based around the Tutte-matrix T of a

graph G(V, E) defined as

Ti, j =

⎧⎪⎨
⎪⎩

xi, j if i > j and (i, j) ∈ E

−xi, j if j > i and (i, j) ∈ E

0 if (i, j) /∈ E,

123



Algorithmica (2019) 81:367–392 383

where xi, j are indeterminates. In his seminal paper, Tutte [47] showed that a graph
contains a perfectmatching, i.e., amatching of size n/2 if and only if for some choice of
indeterminates the determinant of T is nonzero. This was later generalized by Lovász
[36] to arbitrary matching size as follows (see also Rabin and Vazirani [45] for an
alternative proof).

Theorem 13 [Lovász [36]] Let G = (V, E) be a graph with a maximum matching
M and Tutte matrix TG. For an assignment w ∈ R

|E | to the indeterminates of TG we
denote the matrix by TG(w)where the indeterminates are replaced by the correspond-
ing assignment in w. Then we have

max
w

{rank(TG(w))} = 2 · |M |.

In order to calculate themaximumof the rank, Lovász [36] also showed that the rank
of the matrix where the indeterminates are replaced by random numbers uniformly
drawn from {1, . . . , R} is equal to maxw{rank(TG(w))} with probability at least 1 −
|E |/R.
Theorem 14 (Lovász [36]) Let G = (V, E) be a graph and r ∈ R

|E | be a random
vector where each coordinate is uniformly chosen from {1, . . . , R}with R ≥ |E |. Then
we have

rank(TG(r)) = max
w

{rank(TG(w))}

with probability at least 1 − |E |/R.
We now detail an algorithm determining the exact matching size up to a parameter

k using roughly k2 space based on the Tutte matrix3. Our aim is to randomly choose
entries of a Tutte matrix and update this matrix with the corresponding value whenever
an edge is inserted or deleted. One crucial ingredient is the following result due to
Clarkson and Woodruff [11], see Sarlos [46] for similar, slightly weaker statements.

Lemma 4 (Lemma 3.4 of [11]) Given integer k and ε, δ > 0, there is m =
O(k log(1/δ)/ε) and an absolute constant η such that if S is an n×m sign matrix with
η(k+log(1/δ))- wise independent entries, then for an n×k matrixU with orthonormal
columns, with probability at least 1−δ, the spectral norm ||UT SSTU −UTU ||2 ≤ ε.

SinceU is orthogonal, all singular values are 1. If we choose ε to be some constant,
the singular values of STU andU differ only bymultiplicative constant factors close to
1, which also implies that STU andU have the same rank. For our purposes, ε = 1/3
will be sufficient.

Corollary 1 Given integer k and δ > 0, there is m = O(k log(1/δ)) and an absolute
constant η such that if S is an n×m signmatrix with η(k+log(1/δ))- wise independent

3 We note that a sampling strategy from [10] could replace the Tutte matrix based estimation. In fact their
result is somewhat stronger, as they show that using only slightly more space, they can recover anymatching
up to size k. Nevertheless, we believe that our technique may be of independent interest.
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Algorithm 1 Tutte Matrix Streaming Estimation
Require: Graph G(V, E), Stream S of insertions E × 1 and deletions E × −1, integer k > 0
Ensure: min(k,Matching Size of G)

Let h : [n2] → [O(k2)] be a k2-wise independent hash function.
Let S1 and S2 be independent n × m sign matrices with m = O(k) and O(k) independent entries.
M ∈ R

m×m initially with entries 0.
H ∈ R

n×n initially with entries 0.
for all ((u, v), t) ∈ S do

H(u, v) ← (−1)1+t h(n · u + v)

H(v, u) ← (−1)t h(n · u + v)

M ← M + ST1 HS2
H ← 0

return rank(M)

entries, then for an n × k matrix U with orthonormal columns, with probability at
least 1 − δ, the rank of STU is identical to rank of U.

We will also use the following result due to Pagh and Pagh [43].

Theorem 15 [Theorem 1.1 of [43]] Let S ⊂ U = {0, . . . , u − 1} be a set of k > 1
elements. For any constants c > 0 and ε > 0, and for 1 < v < u, there is an algorithm
that, using time lg n(lg v)O(1) and O(lg n + lg lg u) bits of space, selects a family H
of functions from U to V = {0, . . . , v − 1} (independent of S) such that:

• H is k-wise independent when restricted to S, with probability 1 − O( 1
nc ).• A function inH can be represented by a data structure using space (1+ ε)k lg v +

O(k) bits such that function values can be computed in constant time. The data
structure of a random function in H can be constructed in time O(n).

Our algorithm now proceeds as follows, see also Algorithm 1. We initialize the
Tutte matrix T of the input graph G with randomly chosen entries drawn from a
k2-independent hash function h assigning each edge a random value in [O(k2)]. We
then independently sample two sign matrices S1 and S2 where S1, S2 satisfying the
conditions of Corollary 1. We maintain S1T S2 now as follows. Whenever we process
an operation on the edge (u, v), the appropriate random value of the corresponding
entry in T is queried via h. This value is inserted into an n × n matrix H containing
only 0 except for H(u, v) = h(u, v) and H(v, u) = −h(u, v) if (u, v) is inserted
and H(u, v) = −h(u, v) and H(v, u) = h(u, v) if (u, v) is deleted. S1T S2 can then
be updated by adding S1T S2 + S1HS2. Note that we do not have to construct the
entire matrix H . The correctness of this algorithm is an almost direct application of
Corollary 1:

Theorem 3 LetG(V, E)be anarbitrary graph. Then there exists a dynamic streaming
algorithm that either (1) outputs k if if the maximum matching is greater than k or (2)
outputs maximum matching size. The algorithm uses O(k2 log n) space and succeeds
with constant probability.

Before we prove this theorem, we first remark that Theorem 13 still holds when we
have limited independence.
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Corollary 2 Let G = (V, E) be a graph and r ∈ R
|E | be a random vector with k2-

wise independent entrieswhere each coordinate is uniformly chosen from {1, . . . , ck2}.
Then we have

rank(TG(r)) = min
(
k,max

w
{rank(TG(w))}

)

with probability at least 1 − 1/c.

Proof Consider a k by k sub-matrix T ′ of T with maximum possible rank. If
maxw{rank(TG(w))} ≤ k, then maxw{rank(TG(w))} = maxw{rank(T ′

G(w))}, oth-
erwisemaxw{rank(TG(w))} = k. The corollary now follows by applying Theorem 14
on T ′. ��
Proof of Theorem 3 We first argue correctness, then space complexity. We randomly
chose the weights of the Tutte matrix T from 1 to 4k2 such that the weights are k2-
wise independent (line 1 of Algorithm 1). By Corollary 2, Theorem 13 holds when
we query the size of the matching with constant probability. It is straightforward to
maintain ST1 T S2 whenever we receive and edge insertion or deletion (lines 6–11 of
Algorithm 1).

What remains is to analyze the rank of ST1 T S2. First, let r ≤ k be the rank of T . Let
U1
UT

2 be the truncated singular value decomposition of T such thatU1,U2 ∈ R
n×r

are orthogonal and
 ∈ R
r×r is diagonal with non-zero entries. Corollary 1 guarantees

us that any rank up to k of ST1 U1 andUT
2 S2 is preservedwith constant probability. Since


 is a diagonal matrix with non-zero entries andU1 is orthogonal, rank(U1
UT
2 S2) =

rank(UT
1 U1
UT

2 S2) = rank(
UT
2 S2) = rank(UT

2 S2) = rank(U2) = r . By the same
argument and independence of S1 and S2, rank(ST1 T S2) = r .

If r > k, we can decomposeU1 (and analogouslyU2) into the sumof twoorthogonal
matrices Uk and UR , where Uk consists of the first k columns of U1 and UR consists
of the remaining columns of U1. We apply the same line of reasoning as above onto
Uk and note that the rank cannot decrease by adding STUR .

The space bound of each ST1 T S2 is in O(k2 log n) due to the dimension of the sign
matrices via Corollary 1 and by observing that the magnitude of entries of ST1 T S2 is
polynomial in n. Using Theorem 15, we can store h using O(k2 log k) bits and S1 and
S2 using O(k) bits. Thus, the total space is dominated by O(k2 log n). ��

We use Theorem 3 to determine the matching size up to n2/5. For larger matchings,
we apply Lemma 2 with p = 	(ε−1/n4/5).

Theorem 16 There exists a single pass dynamic streaming algorithm using
Õ(αε−1n4/5) space that returns a (α + 2)(1 + ε) approximation of the maximum
matching with constant probability.

4 Weighted Matching

Let G = (V, E) be a weighted graph where edge e has weight we ∈ [1,W ]. In this
section, we show that it is possible to reduce the problem of finding a large weighted
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matching in G to finding large cardinality matchings. Specifically, we show that
given a λ-approximation algorithm for the unweighted problem, there is a 2(1+ ε)λ-
approximation for the maximum weighted problem where the latter algorithm using a
factor O(ε−1 logW ) more space. This reduction uses ideas from work by Uehara and
Chen [48] and Crouch and Stubbs [15]. Theorem 2 then follows immediately from
Theorem 17.

This immediately implies 2(α + 2)(1+ ε)-approximation algorithms for weighted
graphs in the arbitrary order and adjacency list models.

Reduction to Unweighted Matchings For k = 0, 1, . . . , �log1+ε W�, define the
unweighted graph Gk = (V, Ek) where e ∈ Ek iff we ≥ (1 + ε)k where we is
the weight of e in the original weighted graph. Note that E0 ⊆ E1 ⊆ E2 ⊆ . . . and,
in particular, E0, E1, . . . is not a partition of E .

Theorem 17 Let G be a graph and let m̃k be a λ-approximation of the size of the
maximum cardinality matching in Gk. Then,

match(G)/λ ≤
∑
k≥0

f (k) · m̃k ≤ 2 · (1 + ε) · match(G)

where

f (k) =
{

(1 + ε)k+1 − (1 + ε)k if k > 0

(1 + ε) if k = 0
.

Proof Let mk be the size of the maximum cardinality matching in Gk and let M be
the set of edges in the maximum weighted matching in G. We first observe that

(1 + ε)we ≥
∑

k:we≥(1+ε)k

f (k) ≥ we. (1)

holds for all edges e ∈ E . To prove the left inequality, observe that

∑
k≥0

f (k) · m̃k ≥
∑
k≥0

f (k) · mk/λ ≥
∑
k≥0

f (k) · |M ∩ Ek |/λ ≥ match(G)/λ,

where the last inequality follows from Eq.1.
We now prove the right inequality. Consider the matching R formed by taking a

maximalmatching in Er where r = �log1+ε W�; extending this to amaximalmatching
in Er−1; extending this to amaximal matching in Er−2 as so on. Note that since R∩Ek

is a maximal matching in Ek , we have m̃k ≤ mk ≤ 2|R ∩ Ek |. Therefore,
∑
k≥0

f (k) · m̃k ≤ 2
∑
k≥0

f (k) · |R ∩ Ek | ≤ 2(1 + ε)
∑
e∈R

we ≤ 2(1 + ε)match(G),

where the second last inequality follows from Eq. 1. ��
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5 Lower Bounds for Insertion-Only Streams

Esfandiari et al. [20] showed a space lower bound of �(
√
n) for any estimation better

than 3/2. Their reduction uses the Boolean Hidden Matching Problem introduced by
Bar-Yossef et al. [5], and further studied by Gavinsky et al. [22]. We will use the
following generalization due to Verbin and Yu [50]. We first require a bit of notation.
A t-hypergraph G(V, E) is a set of nodes V and a set of hyperedges E , where each
hyperedge e is a subset of exactly t nodes of V .

Definition 2 [Boolean Hidden Hypermatching Problem [50]] In the Boolean Hidden
Hypermatching Problem BHHt,n Alice gets a vector x ∈ {0, 1}n with n = 2kt and
k ∈ N. Bob gets a hypergraph with n nodes with some arbitrary but fixed ordering and
a perfect t-hypermatching M , i.e., each hyperedge has exactly t coordinates and each
node is contained in exactly one hyperedge, and a string w ∈ {0, 1}n/t . We denote
the vector of length n/t given by (

⊕
1≤i≤t xM1,i , . . . ,

⊕
1≤i≤t xMn/t,i ) by Mx where

(M1,1, . . . , M1,t ), . . . , (Mn/t,1, . . . , Mn/t,t ) are the edges of M . The problem is to
return 1 if Mx ⊕ w = 1n/t and 0 if Mx ⊕ w = 0n/t , otherwise the algorithm may
answer arbitrarily.

Verbin and Yu [50] showed a lower bound of �(n1−1/t ) for the randomized one-
way communication complexity for BHHt,n . For our reduction we require w = 0n/t

and x ∈ {0, 1}n has exactly n/2 bits set to 1. We denote this problem by BHH0
t,n . We

can show that this does not reduce the communication complexity.

Lemma 5 Let n be a multiple of 4t . The communication complexity of BHH0
t,4n is

lower bounded by the communication complexity of BHHt,n.

Proof Alice is given a boolean vector x ∈ {0, 1}n with n = 4kt for some k ∈ N

and Bob a t-hypermatching on n nodes with some arbitrary but fixed ordering and
a boolean vector w ∈ {0, 1}n/t . From their respective inputs, Alice will construct a
boolean vector x ′ ∈ {0, 1}4n and Bob will construct a t-hypermatching M ′ on 4n
nodes such that M ′x ′ ⊕ 0 = 0 if Mx ⊕ w = 0 and M ′x ′ ⊕ 0 = 1 if Mx ⊕ w = 1
described as follows.

First, let us assume that t is odd. Alice constructs x ′ = [xT xT xT xT ]T as the
concatenation of two identical copies of x and two identical copies of the vector
resulting from the bitwise negation of x . Without loss of generality, let {y1, . . . , yt } ∈
M be the l-th hyperedge of M , where yi denotes the i th node of the hypergraph in the
arbitrary but fixed ordering. Bob adds the following four hyperedges to M ′:

• {x1, x2, . . . , xt }, {x1, x2, x3, . . . , xt }, {x1, x2, x3, . . . , xt }, and {x1, . . . , xt } ifwl =
0,

• {x1, x2, . . . , xt }, {x1, x2, . . . , xt }, {x1, x2, x3, . . . , xt }, and {x1, . . . , xt } if wl = 1.

The important observation here is that, since t is odd, we flip even number of bits in
the case wl = 0 and an odd number of bits if wl = 1. Since every bit flip results
in a change of the parity of the set of bits, the parity does not change iff we flip an
even number of bits. Therefore, wl ⊕ x1 ⊕ · · · ⊕ xt = 0 iff the parity of each of the
corresponding new hyperedges is 0. Applying the same reasoning to all hyperedges,

123



388 Algorithmica (2019) 81:367–392

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6 v1,7 v1,8 v1,9 v1,10 v1,11 v1,12

v2,1 v2,2 v2,3 v2,4 v2,5 v2,6 v2,7 v2,8 v2,9 v2,10 v2,11 v2,12

Fig. 3 Worst case instance for t = 3. Bob’s hypermatching corresponds to disjoint 3-cliques among the
lower nodes and Alice’ input vector corresponds to the edges between upper and lower nodes

we deduce that M ′x ′ = 04n/t if Mx ⊕w = 0n/t and M ′x ′ = 14n/t if Mx ⊕w = 1n/t .
The number of ones in x ′ ∈ {0, 1}4n is exactly 2n. If t is even, we can just change
the cases for the added edges such that we flip an even number of bits in the case
wl = 0 and an odd number of bits if wl = 1. Overall, this shows that a lower bound
for BHHt,n implies a lower bound for BHH0

t,4n . ��

Theorem 4 Any randomized streaming algorithm that approximates the maximum
matching size within a 1+ 1

3t/2−1 −ε factor for t ≥ 2 and any ε > 0 needs�(n1−1/t )

space.

Proof Let n = 4kt for some integer k. Alice is given boolean vector x ∈ {0, 1}n
with exactly n/2 indexes set to 0 and Bob is given a perfect t-hypermatching on a
graph with n nodes. It is promised that either Mx = 0n/t or Mx = 1n/t . Both players
add edges to a graph G containing 2n nodes based on their respective inputs. For
each index xi we have two nodes v1,i , v2,i and Alice adds the edge {v1,i , v2,i } iff
xi = 1. For each edge {yi1 , . . . , yit } ∈ M . Bob adds a t-clique consisting of the nodes
v2,i1 , . . . , v2,it . Alice now runs a streaming algorithm approximating the size of the
maximum matching and sends the memory of the streaming algorithm to Bob. Bob
then computes a 1 + 1

3t/2−1 − ε estimation of the maximum matching size of G. In
the following we show that this approximation is sufficient to distinguish between the
cases Mx = 0n/t or Mx = 1n/t . This in turn shows that the memory of the message
sent by Alice, i.e. the space requirement of the streaming algorithm is lower bounded
by BHH0

t,n .
We first consider the casewhere t is odd.We know that themaximummatching ofG

is at least n/2 because x has exactly n/2 ones. Since Bob adds a clique v2,i1 , . . . , v2,it
for every hyperedge {yi1 , . . . , yit } ∈ M it is always possible to match all (or all but
one) nodes v2,i of the clique whose corresponding bit is 0. In the case of Mx = 0n/t

the parity of every edge is 0, i.e., the number of nodes whose corresponding bit is 1
is even. Let M2i ⊆ M be the hyperedges containing exactly 2i one bits and define
l2i := |M2i |. Then we know n/2 = ∑�t/2�

i=0 2i · l2i and |M | = n/t = ∑�t/2�
i=0 l2i . For

every hyperedge in M2i the size of the maximum matching within the corresponding
subgraph ofG is exactly 2i+�(t−2i)/2� = 2i+�t/2�− i for every i = 0, . . . , �t/2�
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(see Fig. 3). Thus, we have a matching of size

�t/2�∑
i=0

(2i + (�t/2� − i))l2i = n

2
+ t − 1

2
· n
t

− n

4
= 3n

4
− n

2t
.

If we haveMx = 1n/t then letM2i+1 ⊆ M be the hyperedges containing exactly 2i+1
one bits and define l2i+1 := |M2i+1|. Again, we know n/2 = ∑�t/2�

i=0 (2i+1)·l2i+1 and

|M | = n/t = ∑�t/2�
i=0 l2i+1. For every edge inM2i+1 the size of themaximummatching

within the corresponding subgraph is exactly 2i+1+(t−2i−1)/2 = 2i+1+�t/2�−i
for every i = 0, . . . , �t/2�. Thus, the maximum matching has a size

�t/2�∑
i=0

(2i + 1 + (�t/2� − i))l2i+1 = n

2
+ t − 1

2
· n
t

− 1

2

�t/2�∑
i=0

(2i + 1) · l2i+1 + n

2t
= 3n

4
.

For t even, the size of the matching is

t/2∑
i=0

(2i + (t − 2i)/2)l2i = n

2
+ t

2
· n
t

− n

4
= 3n

4

if Mx = 0n/t . Otherwise, we have

t/2∑
i=0

(
2i + 1 +

⌊
t − 2i − 1

2

⌋)
l2i+1 = n

2
+

t/2∑
i=0

(t/2 − i − 1)l2i+1

= n

2
− (t/2 − 1) · n

t
− n

4
+ n

2t
= 3n

4
− n

2t
.

As a consequence, every streaming algorithm that computes an α-approximation
on the size of a maximum matching with

α <
(3/4)n

((3/4) − 1/(2t))n
= 1/(1 − 4/6t) = 1 + 1

3t/2 − 1

can distinguish between Mx = 0n/t and Mx = 1n/t and, thus, needs �(n1−1/t )

space. ��
Using the relationship between rank and Tutte-matrix established by Theorem 13

and 14, we can now prove the following corollary.

Corollary 3 Any randomized streaming algorithm that approximates rank(A) of A ∈
R
n×n within a 1 + 1

3t/2−1 − ε factor for t ≥ 2 and any ε > 0 requires �(n1−1/t )

space.
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Proof Given an instance of BHH0
t,n , Alice and Bob construct the adjacency matrix as

described in Theorem 4. They further choose each entry of the Tutte-matrix uniformly
at random from [n2] from public randomness. Then approximating the rank of the
Tutte-matrix within a factor 1 + 1

3t/2−1 − ε approximates the matching within the

same factor and solves BHH0
t,n . ��
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