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Abstract
We show that for n points in d-dimensional Euclidean space,

a data oblivious random projection of the columns ontom ∈

O
(
logk+log logn

ε6 log
1

ε

)
dimensions is sufficient to approxi-

mate the cost of all k-means clusterings up to a multiplicative

(1±ε) factor. The previous-best upper bounds onm areO(
logn
ε2 )

given by a direct application of the Johnson-Lindenstrauss

Lemma, and O( kε2 ) given by [Cohen et al.-STOC’15].

CCS Concepts
• Theory of computation → Random projections and
metric embeddings; Sketching and sampling.

Keywords
k-means, random projections, dimension reduction

ACM Reference Format:
Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni,

and Chris Schwiegelshohn. 2019. Oblivious Dimension Reduction for

k-Means: Beyond Subspaces and the Johnson-Lindenstrauss Lemma.

In Proceedings of the 51st Annual ACM SIGACT Symposium on the
Theory of Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ, USA.
ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3313276.

3316318

1 Introduction
Random projections are a fundamental tool for dimensional-

ity reduction, with numerous applications in streaming, com-

pressed sensing, numerical linear algebra, graph sparsification,
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nearest neighbor search, privacy, and clustering. At a high

level, we are given an input consisting of n vectors of dimen-

siond , that induces a target setX ofn×d matrices.We consider

a proper distribution over random d ×m matrices S (sketching
matrix) such that, with good probability and for everyM ∈ X,
the squared Frobenius norm

1
ofM is approximately preserved

after projection with S , i.e.

(1 − ε)∥M ∥2F ≤ ∥MS ∥2F ≤ (1 + ε)∥M ∥
2

F . (1)

In this work, we consider the application of random projec-

tions to the problem of sketching the (Euclidean)k-means objec-
tive. Here, we are given n points A1, . . . ,An in d-dimensional

Euclidean space (also represented as an n × d matrix A whose

ith row is Ai ). Our goal is to identify k points c1, . . . , ck (cen-
ters) so as to minimize the sum of squared distances of any

point to the closest center, i.e.

∑n
i=1min

k
j=1 ∥Ai −c j ∥

2
. In other

words, the centers define a partition C1, . . . ,Ck of the points

(clustering), whereCi contains the points whose closest center
is ci , and we wish to minimize

∑k
j=1

∑
p∈Cj ∥p − c j ∥

2
. Every

possible clustering is associated to exactly oneM ∈ X, where
the rows of M correspond to the difference vector between

each point and its associated center. Our goal is to determine

the minimal target dimension m that achieves Eq. 1 for all

M ∈ X. Intuitively, this allows us to reduce the dimension of

the problem from d tom, while approximately preserving its

fundamental properties.

A particular interesting case is when the sketching matrix S
is chosen in a data-oblivious way. In other words, the distribu-

tion over random matrices can be fixed a priori, without any

knowledge of A. This makes random projections extremely

useful in a number of areas such as streaming, distributed com-

puting, and massively parallel frameworks like MapReduce.

There are two incomparable bounds for obliviously sketch-

ing the Euclideank-means problem. The first bound ofO(
logn
ε2 )

1
We recall that, for an a × b matrix M , the Frobenius norm of M is ∥M ∥F =√∑a

i=1
∑b
j=1 M

2

i, j . For b = 1, this is equivalent to the Euclidean norm of a

vector.
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is a direct consequence of the distributional Johnson Linden-

strauss Lemma [38]. It states that when choosingm ∈ O(
logn
ε2 ),

all pairwise distances inA are approximately preserved. Hence

the cost of every clustering is preserved via standard formulas,

with probability arbitrarily close to 1. The other state of the

art bound by Cohen et al. [24] yieldsm ∈ O( kε2 ) and follows

by sketching all orthogonal projections of rank k , of which k-
means is a special case (see the related work for an overview).

A natural question is whether one can get a better depen-

dence of m on k and logn. For example, this was posed as

an open question by Jelani Nelson during his plenary talk at

HALG 2018. Cohen et al. [24] had given strong evidence that

a better dependence might indeed be possible, showing that

a projection onto O
(
logk
ε2

)
dimensions provides (at most) a

(9 + ε) approximation. Our main result is as follows.

For the Euclidean k-means problem, an oblivious random

projection onto O
(
logk+log logn

ε6 log
1

ε

)
dimensions pre-

serves the cost of any k-clustering up to a multiplicative

(1 ± ε) factor.

Hence we improve the current state-of-the-art bounds for

the range of k ∈ ω(log logn)∩o(n). In the regime k ∈ Θ(logn),
where previous methods [24, 38] achieved the same bounds,

the above bound is an exponential improvement (for constant

ε).
While we consider the data-oblivious bound the more im-

portant result from both a theoretical and applied point of view,

we are also able to show that using our techniques, there ex-

ists a data-dependent random projection onto O
(
logk
ε4 log

1

ε

)
dimensions with a multiplicative (1 ± ε) distortion. This im-

proves on the ⌈kε ⌉ bound by Cohen et al. [24]. We also show

how to use recent work on terminal embeddings [49] allows

us to prove the existence of coresets for the k-means problem

of sizeO(k ·poly(logk, ε−1)). Previously, only coresets of order
k ·min(k,d) were known.

1.1 Related Work
There are three basic techniques used for linear dimension

reduction: random projections, principal component analysis

(PCA), or feature selection (sometimes called column selec-

tion).

Random Projections for Subspace Approximation andk-Means
Following a tremendous amount of activity over the past

decade, we now know that random projections achieve opti-

mal dimension reduction in a number of regimes [6, 7, 37, 44,

45, 53]. They are also the only known method for oblivious

dimension reduction. The fact that they do not depend on the

data often makes them substantially quicker to apply espe-

cially when using sparse constructions. A folklore application

of the Johnson-Lindenstrauss Lemma (see Lemma 2.6) states

that a random projection onto O(ε−2 logn) dimensions also

preserves the cost of any k-means clustering. Other than this

result, most of the work has focused on low-rank approxima-

tion. Here, we are interested in computing a matrix A′ of rank
at mostk such that ∥A−A′∥F is minimized. The solution to this

problem can be expressed analytically via the singular value

decomposition A := U ΣVT
, whereU ∈ Rn×d has orthogonal

columns
2
,V ∈ Rd×d has orthogonal rows, and Σ is a diagonal

matrix where by convention Σ1,1 ≥ Σ2,2 ≥ . . . , Σd,d ≥ 0

the entries are non-increasingly ordered. It is well known

that A′ = UkΣkV
T
k is the optimal rank k approximation of

A, whereUk is obtained by selecting only the first k columns

of U , Vk is obtained by selection the first k rows of V and

Σk is obtained by setting Σi,i = 0 for i > k . Using stan-

dard facts from linear algebra, we can alternatively express

A′ = UkU
T
k A. In other words, computing the optimal solution

min

rank kA′
∥A −A′∥2F is equivalent to computing the optimal so-

lution min

rank k projection X
∥A − XXTA∥2F . The problem is closely

related to k-means, as the centroids of any k-means clustering

are given via a specific rank k projection (see Section 2).

Sarlos [54] gave a data dependent random projection that

achieves a (1 ± ε) approximation to the optimal rank k projec-

tion inO(k logk+kε−1) dimensions and an oblvious projection

onto O(k logkε−2) dimensions
3
. Clarkson and Woodruff [21]

improved this to O(kε−2) with a matching lower bound for

oblivious methods later shown by Nelson and Nguyen [53].

The first paper to explicitly consider random projections for

the k-means problem was authored Boutsides et al. [14], who

showed that an oblivious random projection onto O(kε−2)
dimensions preserved the k-means cost up to a 2 + ε factor.
Cohen et al. [24] considerably improved this, showing that

all rank k projections (i.e. in particular also k-means) are pre-

served up to (1 ± ε) factors by an oblivious projection onto

O(k/ε2) dimensions. They also gave evidence that going below

k and logn dimensions is possible for k-means, achieving a

9 + ε approximation in O(ε−2 logk) dimensions.

We note that there exists a vast amount of literature opti-

mizing between running times, target dimension, and sparsity

of random projection matrices. Some of these constructions

could also be used for our result, at the cost of a slightly larger

target dimension (up to polylog(m) factors). The interested
reader is referred to [3–5, 11, 20, 22, 23, 25, 28, 40, 48, 51, 52].

PCA Principal component analysis is arguably the most

widely used form of dimension reduction. Not only does PCA

reduce the intrinsic dimension of the point set, it also removes

a substantial amount of noise. Indeed, this feature is the main

2
the inner product of any two columns ofU is 0 and the Euclidean norm of any

column ofU is 1.

3
We note that if we only want to preserve the a (1 + ε )-approximation to the

optimal rank k projection, but not the cost, a random projection onto O (k/ε )
dimensions is sufficient and necessary. See [21, 54] for details.
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reason why PCA is routinely used for learning, see [2, 8, 18,

27, 41, 42, 56]. Drineas et al. [29] were the first to apply PCA

to the k-means problem, showing that a projection onto the

first k components preserves the cost up to a factor of 2. This

was substantially improved by Feldman et al. [33] and Cohen

et al. [24], and we now know that a (1 + ε) approximation is

possible by projecting onto the first ⌈k/ε⌉ components. Cohen

et al. [24] also showed that this bound is tight, i.e. PCA cannot
achieve a target dimension below k for k-means. Recently,

Sohler and Woodruff [55] extended PCA-based methods for

arbitrary powers of Euclidean distances such as k-median.

Column Selection The last technique we wish to survey are

column selection methods. This form of dimension reduction

has the advantage of being faster to compute than PCA and

retaining the features and in particular the sparsity of the data

set, at the cost of a slightly worse target dimension, see [10, 12,

13, 15, 26], with the current state of the art ofO(k/ε2) columns

being due to Cohen et al. [24].

Organization. The rest of this paper is organized as follows.
In Section 2 we introduce some preliminary notions and tools.

In Section 3, we present our high level ideas and outline the

proof strategy. In Section 4 we describe the cluster decomposi-

tion at the heart of our analysis, and in Section 5 we show how

to use it to bound the target dimensionm. Our data-dependent

dimension reduction result is given in Section 6. We briefly

remark on k-means coresets in Section 7. Due to space con-

straints, we omitted proofs that appeared in similar form in

earlier work or are standard in this line of research.

2 Preliminaries
We use ∥M ∥2F = (1 ± ε)∥N ∥2F as an abbreviation for (1 −

ε)∥N ∥2F ≤ ∥M ∥
2

F ≤ (1 + ε)∥N ∥
2

F . We use the shorthand [i] =
{1, . . . i} to refer to the natural numbers up to a positive integer

i . For ann×d matrixA, view the ith rowAi for i ∈ [n] as a point
in d-dimensional Euclidean space. Sometimes we will refer to

a point set or the associated data matrix interchangeably by A.
We let |B | denote the number of rows of a matrix B. We say

the cost of a point set P is the value of the optimal 1-means

clustering of P . The cost of a clustering C = {C1, . . . ,Ck }
is the sum of the costs of the clusters in C . Throughout this
paper, we will use OPT to denote the cost of an optimal k-
means clustering. The optimal center of any cluster Ci is the
centroid µ(Ci ) =

1

|Ci |
∑
p∈Ci p. This can be easily seen due to

the following lemma.

Lemma 2.1. [folklore] For any set of points A and any point p,
the following equations hold:

•
∑ |A |
i=1 ∥Ai −p∥

2 =
∑ |A |
i=1 ∥Ai − µ(A)∥

2 + |A| · ∥p − µ(A)∥2

•
∑ |A |
i=1

∑ |A |
j=1 ∥Ai −Aj ∥

2 = 2|A| ·
∑ |A |
i=1 ∥Ai − µ(A)∥

2

This lemma enables us to express the k-means problem

algebraically. We define the n × k clustering matrix X (using

the shorthand rank k c.m. X ) with entries

Xi, j =


1√
|Cj |

if Ai ∈ Cj

0 otherwise.

Three properties are of interest. First, every column has unit

Euclidean norm. Second, the columns are pairwise orthogonal.

Third, XXTAmaps the ith row of A to the centroid of cluster

Cj . Thus, we can express the k-means objective as

min

rank k clustering matrix X
∥A − XXTA∥2F .

We note that if we lift the constraint that X is a clustering

matrix and instead require X only to be orthogonal, the prob-

lem is then known as the low rank subspace approximation

problem. The best rank 1-clustering matrix that maps the rows

of A to the centroid µ(A) is known as the center matrix. The

resulting matrix of centroids can interchangeably be expressed

as
1

|A | 11
TA and 1µ(A)T , where 1 is the all 1 vector of appropri-

ate dimension. We note that this operation is invariant when

sketching the rows of A, i.e. µ(A)T S = µ(AS)T .
We will aim at proving the following guarantee similar to

those proposed in earlier work by Feldman et al. [33] and

Cohen et al. [24].

Definition 2.2 ((ε,k)-Means Cost Preserving Sketches). Let
A be an n ×d matrix corresponding to n points in d dimensional
space. Let c ≥ 0 be some fixed constant possibly depending on
A. Then an n ×m matrix B is an (ε,k)-means cost preserving
sketch of A with offset κ if for any rank k clustering matrix X

(1−ε)·∥A−XXTA∥2F ≤ ∥B−XX
T B∥2F+κ ≤ (1+ε)∥A−XX

TA∥2F .

If B := AS for some d ×m matrix S sampled from a distribution
D that does not depend on A, we say B is an oblivious sketch.

If κ = 0 (which is the case in Theorem 5.3), we will simply

call B a (ε,k)-means cost preserving sketch. We next state a

few useful and standard properties of clustering matrices that

we will extensively use throughout this paper.

Lemma 2.3. Let A be a matrix, and let X and Y be clustering
matrices of A. Then:

(1) ∥A−XXTA∥2F = ∥A−1µ(A)
T ∥2F −∥XX

TA−1µ(A)T ∥2F ≤

∥A − 1µ(A)T ∥2F .
(2) IfY is a refinement ofX , i.e., every cluster induced byY is

a subcluster of a cluster induced by X , then XXTYYT =
XXT and

∥A − XXTA∥2F = ∥A − YY
TA∥2F + ∥YY

TA − XXTYYTA∥2F .

(3) ∥XXTA∥2F ≤ ∥A∥
2

F .

We will use the following approximate triangle inequality

for squared Euclidean spaces. Similar statements can be found

throughoutk-means and coreset literature (see e.g. [19, 27, 33]).

Essentially, it is a special case of Titu’s Lemma.
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Lemma 2.4 (Approximate Triangle Inequality). For any ε > 0,
and matrices A,B,C of equal dimension, we have |∥A −C ∥2F −

∥B −C∥2F | ≤
(
1 + 1

ε

)
∥A − B∥2F + ε ∥A −C ∥

2

F .

Random Projections. We require our sketching matrices to

have the following bounds.

Theorem 2.5 (Distributional Johnson-Lindenstrauss Lemma,

Theorem 2.4 [21]). Let A be an n × d matrix. Then there exists
a distribution D over linear mappings in Rd×m such that for

S ∼ D andm ∈ O
(
log 1/δ
ε2

)
, with probability 1 − δ ,

(1 − ε)∥A∥2F ≤ ∥AS ∥
2

F ≤ (1 + ε)∥A∥
2

F

Possible realizations of these matrices are random Gaussian

matrices, dense Rademachermatrices [1], or sparse Rademacher

matrices designed in [40]. Faster methods can sometimes also

be used, at the cost of a slightly larger target dimension. The

interested reader is referred to [3–5, 11, 23]. The super sparse

embedding matrices of [22, 48, 51] cannot be used.
We note that this theorem already allows us to preserve the

1-means cost with target dimensionm ∈ O(
log 1/δ
ε2 ) by apply-

ing it to the matrixA− 1µ(A)T . This theorem also gives rise to

the following two simple, but very useful statements. The first

is essentially the application of the Johnson-Lindenstrauss

Lemma to the k-means problem via Lemma 2.1.

Lemma 2.6. LetA be an n×d matrix with ℓ distinct rows. Then
there exists a distributionD over linear mappings in Rd×m such

that for S ∼ D andm ∈ O
(
log(ℓ/δ )

ε2

)
,AS is an (ε,k)-means cost

preserving sketch with probability 1 − δ .

Generally, we cannot expect A to have any less than n dis-

tinct rows, therefore a naive application of the aforementioned

lemma requires a target dimension of Ω(logn). We will apply

this lemma to YYTA, where Y is a clustering matrix of rank

k ′ ≪ n. By definition of clustering matrices, YYTA can have

at most k ′ distinct rows.
The second immediate implication of Theorem 2.5 shows

that even for an unbounded number of distinct rows most of

the distances will be approximately preserved. We will use this

lemma essentially to subsample the set of pairwise distances

whenever a uniform subsample is sufficient to preserve the

entire cost.

Lemma 2.7. LetA be ann×d matrix. There exists a distribution
D over linear mappings in Rd×m such that for S ∼ D and

m ∈ O

(
log

1

ζ δ
ε2

)
, with probability 1−δ at least a (1−ζ )-fraction

of the pairs Ai ,Aj , i , j are such that ∥AiS − AjS ∥
2 = (1 ±

ε)∥Ai −Aj ∥
2.

3 Our Techniques
Most upper bounds for random projections apply the following

basic proof scheme:

(1) The Euclidean (resp. Frobenius) norm of any fixed vec-

tor (resp. matrix) is preserved up to a factor (1± ε) with

probability 1 − δ if the target dimension is O
(
log 1/δ
ε2

)
.

(2) Identify a vector set P such that preserving the norm of

each vector in P preserves the cost of the entire problem.

Then apply a union bound by setting δ = 1

|P | .

The first step is tight [37, 39], so all improvements on the

target dimension are a result of sophisticated applications of

the union bound. For k-means there are two known ways to

proceed. First, it is well known that k-means is a (constrained)

subspace approximation problem (see Section 2). Asmentioned

above, this approach can never achieve a bound better than

Ω(k), meaning that specific properties of the k-means problem

have to be exploited.

For the logn target dimension, we proceed in such a man-

ner (Lemma 2.6). The famous general Johnson-Lindenstrauss

Lemma [38] states that the pairwise distances between any

set of n points are preserved by a random projection onto

O(ε−2 logn) dimensions, which is also optimal [45]. It is well

known that the centroid of a set of points is the optimal 1-

means solution. A consequence of this fact is that the cost

of clustering all points to the centroid is a non-negative lin-

ear combination of the pairwise distances of the points, see

Lemma 2.1. Hence, the Johnson-Lindenstrauss Lemma also

preserves the cost of k-means. A careful application of this

lemma is the basis of both the previous result by Cohen et

al. [24] and our work.

We first review the (9 + ε) approximation by Cohen et

al. [24]. Let A be the n × d matrix corresponding to n points

in d dimensions. They condition on the fact that distances

between centroids of the optimal k-means clustering are pre-

served, which, using Lemma 2.6, requires only O(
logk
ε2 ) di-

mensions. The matrix of centroids is obtained by a suitable

rank k clustering matrix X applied to A. For any given clus-

tering matrix Y , they then consider the cost ∥A − YYTA∥2F
in terms of the image ∥XXTA − YYTXXTA∥2F and the kernel

∥(I −XXT )A−YYT (I −XXT )A∥2F of XXTA, respectively. The
cost of clustering in the former space is preserved, i.e.

∥(I − YYT )XXTAS ∥2F = (1 ± ε) · ∥I − YY
T )XXTA∥2F .

The cost within the latter space can be upper bounded by

∥(I −YYT )(I −XXT )AS ∥2F ≤ ∥(I −XX
T )AS ∥2F ≤ (1+ε) ·OPT .

Unfortunately, the cost cannot be decomposed in terms of im-

age and kernel, i.e. ∥(A−YYTA)S ∥2F = ∥(I −YY
T )XXTAS ∥2F +

∥(I−YYT )(I−XXT )AS ∥ does not hold in general. Here, Cohen
et al. [24] apply a weaker form of the triangle inequality in

squared Euclidean spaces, which with some calculation leads

to a 9 + ε approximation. The analysis by Cohen et al. [24] is

tight for the choice of distance vectors P they preserve, so we

require a number of additional ideas.
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The loss in approximation is mainly due to the Frobenius

norm of the kernel (I − XXT )A. Therefore, one might be

tempted to decrease it by adding additional centers (see also

Feldman et al. [33] for a similar idea for Bregman divergences).

For every cluster Ci induced by X , we have two conditions.

a. Either the cost of Ci may be decreased. If this is the

case, we decrease the cost until the kernel has norm

less than ε2 · ∥(I − XXT )A∥2F , in which case the error

incurred by applying the triangle inequality is relative

to O(ε) · ∥(I − XXT )A∥2F .
b. The cost of Ci cannot be decreased, even when adding

a substantial amount of centers (say poly(k)).

One may hope that for a Ci of the second type, we could find

a different proof strategy to preserve the cost. Unfortunately,

this does not seem to be substantially easier than the general

case. However, if we additionally require the points in Ci to
have (roughly) equal distance from the center, we are able

to provide such proof. To illustrate the idea, let us consider

the n-simplex. For every clustering C = {C1, . . .Ck } of the
simplex, the cost of the clustering is dominated by the clusters

of largest cardinality. If we preserve the cost of any cluster of

size, say
ε
k ·n, then we preserve the cost of any clustering. Here

our argument deviates from previous applications of the union

bound. The bound on the target dimension above also implies

that a (1 − δ )-fraction of the pairwise distances between the

points is preserved (Lemma 2.7). By setting δ ≤
(
ε
k

)
2

, and

noting that the distances in the simplex are all identical, we

can ensure that most of the intra-cluster pairwise distances

are always preserved for the large clusters, which implies that

the cost of the large clusters is preserved. Our analysis simply

extends this illustration for the simplex to arbitrary clusters

obeying a equidistance condition. To ensure that the equidis-

tance condition within Ci holds, we use a cluster decompo-

sition that first grows logn balls of exponentially increasing

radii centered around the centroid ofCi . For each ring induced

by the difference of two subsequent balls, we apply steps a.

and b. above.

4 A Cluster Decomposition
We will first outline a recursive procedure to subdivide the

point set into clusters with carefully determined properties, see

also Algorithm 1. A similar construction without the equidis-

tance property was previously proposed by Feldman et al. [33]

in the context of producing coresets for clustering problems

on Bregman divergences, which include k-means as a special

case.

This procedure repeatedly computes optimal k-means clus-

terings but is only used for analyzing random projections in

Section 5.

We will compute a O(k logn)-ary tree T of constant (de-

pending only on ε−1) depth. The root of the tree represents
the entire point set A. The nodes of the tree correspond to

point subsets. The children of a node A′ ⊂ A are a clustering

of A′, i.e. in particular a partition of A′. The leaves of T will

also form a partition of A. For each leaf corresponding to the

point set L ⊂ A, we use |L| copies of the centroid µ(L) as a
representative of L.

In more detail, let α , β,γ be sufficiently small constants

depending on ε . We process each leaf A′ of the current tree
(starting with A) as follows. Let ri :=

γ
|A′ | ∥A

′ − 1µ(A′)T ∥2F · 2
i
.

Then the rings of A′ induced by the ri are R0(A′) := {p ∈
A′ | ∥p − µ(A′)∥2 ≤ r0} and Ri (A′) := {p ∈ A′ | ri−1 <
∥p − µ(A′)∥2 ≤ ri } for i ∈ [log

n
γ ]. We will only write Ri

instead ofRi (A′)when the parent nodeA′ is clear from context.

We compute an optimal k-clustering for every ring. If the cost

of such a clustering of Ri (A′) is smaller than a
1

1+α -factor

compared to the cost of clustering these to µ(A′), we append
the clustering and continue the recursion. The recursion stops

in the following three cases. For points in R0(A′), we always
stop. If the clustering inRi (A′), i > 0, does not become cheaper

by at least a 1+α factor, we also stop. Finally, we always stop if

the depth ofA′ in the tree is 1/β + 2, see also Algorithm 1. The

stopping criteria are summarized with the following property.

Algorithm 1 Sketching Tree

1: Initialize an O(k log n
γ )-ary tree T with root A.

2: Compute an optimal k-means clustering C = {C1, . . .Ck }

3: Append clustersCi ∈ C as children ofA inT and initialize

queue Q = C
4: while Q , ∅ do
5: A′ ← pop(Q)
6: if depth of A′ in T is less than 1/β + 2 then
7: Partition A′ into rings {R0, . . .R

log
n
γ }

8: Append R0 as a child of A′ in T
9: for each ring Ri , R0 do
10: Compute an optimal k-means clustering of Ri with

clusters K(Ri ) = {K1, . . .Kk } and clustering ma-

trix Z i
.

11: Append clusters in K(Ri ) as children of A′

12: if ∥Ri −Z i (Z i )T Ri ∥2F · (1+α) < ∥R
i − 1µ(A′)T ∥2F

then
13: Add clusters of K(Ri ) to Q

Definition 4.1. We define:
(1) Let Llow be the leaves at depth 1/β + 2.
(2) Let Linner be the points sets corresponding to rings R0.
(3) LetLexp be the point sets corresponding to ringsRi , i > 0,

for which we did not continue the recursion.

The parent of a node L in T is denoted by p(L).

Property 4.2. For each ring R0, we have ∥R0 − 1µ(R0)T ∥2F ≤
γ ∥p(R0) − 1µ(p(R0))T ∥2F . Furthermore, For each such Ri , i >
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0, in Lexp , we have ∥Ri − Z i (Z i )T Ri ∥2F · (1 + α) ≥ ∥Ri −

1µ(p(Ri ))T ∥2F .

The following bound on the size of the tree T is an imme-

diate consequence of the stopping criterion of the algorithm,

see also line 6 of Algorithm 1.

Observation 4.3. T has at most O
(
(k log n

γ )
O (1/β )

)
many

nodes.

We first show that the point sets obeying the first two

properties have small cost (see also Lemma 11.1 of [33]).

Lemma 4.4.∑
L∈Llow∪Linner

∥L−1µ(L)T ∥2F ≤

(
γ ·

1 + α

α
+

(
1

1 + α

)
1/β

)
·OPT.

We define Y to be the clustering matrix induced by the

leaves of T , note that the rank k ′ of Y is larger than k (of or-

der (k logn/γ )O (1/β )). Let X be an arbitrary rank k clustering

matrix. The next lemma will be used to show that under the

conditions of Property 4.2 and using Lemma 4.4, the Frobenius

norm of XXT (A − YYTA) is bounded. The proof is essentially
a consequence of Lemma 2.3 and is omitted.

Lemma 4.5. Let A be an n × d matrix and let α > 0 be a
constant. Let Y be a rank k ′ clustering matrix of A with clusters
C = {C1, . . .Ck ′}. Moreover:

(1) Let Cexp be the subset of C containing all clusters satis-
fying ∥Ci − 1µ(Ci )T ∥2F ≤ (1 + α) · ∥Ci − ZZ

TCi ∥
2

F for
any rank k clustering matrix Z . Further, define ∆exp :=

α ·
∑
Ci ∈Cexp ∥Ci − 1µ(Ci )

T ∥2F .
(2) LetCcheap = C\Cexp . Define∆cheap :=

∑
Ci ∈Ccheap ∥Ci−

1µ(Ci )
T ∥2F .

Then for any rank k clustering matrix X of A, we have

∥XXT (I − YYT )A∥2F ≤ ∆exp + ∆cheap .

Finally, we use the following bound on ∥YYTA−XXTYYTA∥2F .
The proof and statement is very related to the 9 + ε approx-
imation used by Cohen et al. [24]. While we will later have

tighter estimates, this will nevertheless be useful. Note that

the assumption ∥A − YYTA∥2F ≤ OPT is always satisfied, as

our tree is initialized with the optimal k-means clustering.

Lemma 4.6. Suppose ∥A−YYTA∥2F ≤ OPT ≤ ∥A−XXTA∥2F .
Then ∥YYTA − XXTYYTA∥2F ≤ 9 · ∥A − XXTA∥2F .

5 Analysis of Oblivious Random
Projections

Our main technical lemma now applies Lemma 2.7 to points

sets with the properties satisfied by any leaf in Lexp , see Prop-

erty 4.2. In these cases, we do not require the full power of a

union bound to show that the k-means cost is well approxi-

mated.

Lemma 5.1. Let A be an n × d matrix, let p be a point and let
α , ε be sufficiently small constants. Suppose that the following
two conditions hold:

(1) ∥Ai − p∥2 ≤ 2 · 1

|A | ∥A − 1p
T ∥2F for all i ∈ [n].

(2) ∥A−XXTA∥2F (1+α) ≥ ∥A−1p
T ∥2F for all rank k cluster

matrices X .
Then there exists a distributionD over linear mappings inRd×m

withm ∈ O
(
logk/(εδ )

ε2

)
such that for S ∼ D and for all rank k

clustering matrices X of A, with probability at least 1 − δ ,

∥AS−XXTAS ∥2F ·(1+α+ε) ≥ ∥AS−1p
T S ∥2F ≥ ∥AS−1µ(A)

T S ∥2F .

The high level argument is as follows. Suppose that the rank

k clustering matrix Z is the minimizer of ∥AS−ZZTAS ∥2F , and
let C = {C1, . . .Ck } be the set of clusters induced by Z . We

consider Ci to be cheap if its cost for the original points in A

was at most anO
(
ε
k

)
-fraction of ∥A−1pT ∥2F .Ci is considered

to be expensive otherwise. The total contribution of the cheap

clusters can be at most an O(ε)-fraction of ∥A − ZZTA∥2F , so
what remains to be shown is that the cost of the remaining

clusters is lower bounded.

This is shown in the following lemma, where we prove

that the cost of expensive clusters are always preserved. The

crucial observation is that these clusters always contain many

points.

Lemma 5.2. Assume the conditions of Lemma 5.1 hold and
suppose the target dimensionm of a random projection S is in

O
(
log 1/(εηδ )

ε2

)
, where η, ε,δ > 0. Then with probability 1 − δ ,

for all set of points P ⊂ A, i.e. a subset of rows of A, satisfying

∥P − 1µ(P)T ∥2F ≥ η · ∥A − 1pT ∥2F , (2)

we have

∥PS − 1µ(P)T S ∥2F ≥ (1 − ε) · ∥P − 1µ(P)
T ∥2F .

Proof. We first upper bound the cost of P . Observe that,
for x ,y ∈ P , we deterministically have:

∥x −y∥2 ≤ 2∥x −p∥2 + 2∥y −p∥2
Ass . 1

of Lemma 5.1

≤
8

|A|
∥A− 1pT ∥2F ,

(3)

hence

∥P − 1µ(P)T ∥2F
Lem . 2.1
=

1

2|P |

∑
x ∈P

∑
y∈P
∥x − y∥2

(3)
≤ |P |

4

|A|
∥A − 1pT ∥2F

(2)

⇒ |P | ≥
1

4

η · |A|. (4)

Next, we set ζ <
ε ·η3
8

and apply Lemma 2.7. It follows that

all but a ζ -fraction of the pairwise distances in A are approxi-

mately preserved up to (1 ± ε) factors with probability 1 − δ ,
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ifm ∈ O

(
log

1

ζ δ
ε2

)
= O

(
log

1

εηδ

ε2

)
. For our choice of ζ , we then

deterministically have

ζ ·

(
|A|

2

)
≤ ζ ·

|A|2

2

(4)
≤ ζ
|P |22

η2
≤

εη

4

|P |2 (5)

which implies that all but an εη/8-fraction of the pairwise

distances in P are preserved. Let Dдood (PS) and Dbad (PS) be
the set of pairs of points of P whose distances are preserved and

are not preserved, resp., up to a (1 ± ε) factor after projection.
We lower bound the distances of Dbad (PS) by 0. We have

∥PS − 1µ(P)T S ∥2F
Lem . 2.1
=

1

2|P |

∑
x ∈P

∑
y∈P
∥xS − yS ∥2

≥
1

2|P |

∑
(x,y)∈Dдood (PS )

∥xS − yS ∥2

Lem . 2.7
≥

1 − ε

2|P |

∑
(x,y)∈Dдood (PS )

∥x − y∥2 (6)

≥
1 − ε

2|P |

©­«
∑
x ∈P

∑
y∈P
∥x − y∥2 −

∑
(x,y)∈Dbad (PS )

∥x − y∥2
ª®¬

(5)

≥
1 − ε

2|P |

©­«
∑
x ∈P

∑
y∈P
∥x − y∥2 −

εη

4

|P |2max

x,y
∥x − y∥2

ª®¬
(3)
≥

1 − ε

2|P |

©­«
∑
x ∈P

∑
y∈P
∥x − y∥2 −

εη

4

· |P |2 ·
8

|A|
∥A − 1pT ∥2F

ª®¬
Lem . 2.1
=

1 − ε

2|P |

(
2|P |∥P − 1µ(P)T ∥2F

−2εη · |P |2 ·
1

|A|
∥A − 1pT ∥2F

)
(2)

≥ (1 − ε) ·
(
∥P − 1µ(P)T ∥2F − ε ∥P − 1µ(P)

T ∥2F

)
≥ (1 − 2ε) · ∥P − 1µ(P)T ∥2F

Rescaling ε completes the proof. �

Proof of Lemma 5.1. Let us condition on the fact that the

1-means clustering and the cost of clustering to the center p is

approximately preserved, i.e. ∥AS−1pT S ∥2F = (1±ε)∥A−1p
T ∥2F .

Clearly, since this is a fixed matrix, this will happen with

probability 1 − δ due to Theorem 2.5.

We can now turn our attention to ∥AS − ZZTAS ∥2F , where
Z is the optimal rank k clustering matrix of AS . We partition

the clusters induced by Z into cheap clustersCcheap with cost

at most
ε

k (1+α ) · ∥A − 1pT ∥2F and the remaining expensive

clusters Cexp . We will apply Lemma 5.2 with η ≥ ε
k (1+α ) , i.e.

for a target dimension m ∈ O

(
log

1

εηδ

ε2

)
= O

(
log

k
εδ

ε2

)
, the

projection decreases the cost of any expensive cluster by no

more than an (1 − ε) factor with probability 1 − δ . The total

contribution of the cheap clusters is∑
Ci ∈Ccheap

∥Ci − 1µ(Ci )
T ∥2F ≤

ε

1 + α
· ∥A − 1pT ∥2F

Ass . 2
≤ ε · ∥A − ZZTA∥2F , (7)

hence the expensive clusters incur all but an ε-fraction of the

cost of ∥A − ZZTA∥2F . Putting everything together, we have

∥AS − ZZTAS ∥2F

=
∑

Ci ∈Cexp

∥CiS − 1µ(Ci )
T S ∥2F

+
∑

Ci ∈Ccheap

∥CiS − 1µ(Ci )
T S ∥2F

≥
∑

Ci ∈Cexp

∥CiS − 1µ(Ci )
T S ∥2F

Lem . 5.2
≥ (1 − ε)

∑
Ci ∈Cexp

∥Ci − 1µ(Ci )
T ∥2F

(7)

≥ (1 − ε)2∥A − ZZTA∥2F
Ass . 2
≥ (1 − ε)2 ·

1

1 + α
∥A − 1pT ∥2F

Thm 2.5
≥ (1 − ε)3 ·

1

1 + α
∥AS − 1pT S ∥2F

ε ≤1/7,α ≤1
⇒ ∥AS − 1pT S ∥2F ≤ (1 + α + 9ε)∥AS − ZZ

TAS ∥2F .

By the union bound, we have a success probability of at least

1 − 2δ . Rescaling ε and δ concludes the proof. �

Theorem 5.3. Let A be an n × d matrix corresponding to n
points in d-dimensional Euclidean space. Then there exists an
oblivious (ε,k)-means cost preserving sketch AS ∈ Rn×m with

m ∈ O
(
(logk + log logn)

log ε−1

ε6

)
.

Proof. Let α , β , γ , and ε ′ be constants depending on ε to
be determined later. Let L = {L1, . . . Lk ′} be the clustering
induced by the leaves when running Algorithm 1 on A with

parameters α , β , and γ . We further use Y to denote the cluster-

ing matrix induced by L. Finally, define c :=
∑
L∈Lexp ∥L −

1µ(L)T ∥2F . We will condition on the following events. The

number of events depends on α , β,γ .

(1) Let E1 be the event that the 1-means cost of all the

leaves L of T is preserved, i.e.:

∀L ∈ L, ∥LS − 1µ(L)T S ∥2F = (1 ± ε ′)∥L − 1µ(L)T ∥2F
(2) Let E2 be the event that the pairwise distances between

all rows of YYTA are preserved and for any clustering

matrix X , we have

∥(YYTA−XXTYYTA)S ∥2F = (1± ε
′)∥YYTA−XXTYYTA∥2F .
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(3) Let E3 be the event that for all leaves L ∈ Lexp , for all
rank k clustering matrices Z of appropriate dimension,

we have

∥LS − ZZT LS ∥2F · (1 + α + ε
′) ≥ ∥LS − 1µ(L)T S ∥2F .

For any rank k clustering matrixX , we bound the distortion

incurred by S as follows:

|∥A − XXTA∥2F − ∥AS − XX
TAS ∥2F |

≤ |∥A − XXTA∥2F − (∥YY
TA − XXTYYTA∥2F + c)| (8)

+

���∥YYTA − XXTYYTA∥2F + c (9)

−(∥YYTAS − XXTYYTAS ∥2F + c)
���

+

���∥AS − XXTAS ∥2F (10)

−(∥YYTAS − XXTYYTAS ∥2F + c)
��� .

We bound the terms (8), (9) and (10) separately. To apply

Lemma 4.5, let us first consider ∆cheap and ∆exp as given by

the trees. For the former, we define∆cheap =
∑

L∈Llow∪Linner

∥L−

1µ(L)T ∥2F . For the latter, we define ∆exp =
∑

L∈Lexp

max

rank k
c.m. Z

∥L −

1µ(L)T ∥2F − ∥L − ZZ
T L∥2F . Using Property 4.2 and Lemma 2.3,

we then have ∆exp ≤ α ·
∑
L∈Lexp ∥L − 1µ(L)

T ∥2F = α · c .

After projecting, we derive upper bounds for these values

denoted by ∆Sexp and ∆Scheap . Conditioned on event E1, we

have ∥LS − 1µ(L)T S ∥2F ≤ (1+ ε
′) · ∥LS − 1µ(L)T S ∥2F and hence

∆Scheap := (1+ε ′) ·∆cheap . For ∆exp , we observe, conditioned

on events E1 and E3 that
∑
L∈Lexp max

rank k
c.m. Z

∥LS − 1µ(L)T S ∥2F −

∥LS − ZZT LS ∥2F ≤ (α + ε ′) ·
∑
L∈Lexp ∥LS − 1µ(L)T S ∥2F ≤

(α + ε ′) · (1+ ε ′)
∑
L∈Lexp ∥L − 1µ(L)

T ∥2F = (α + ε
′)(1+ ε ′) · c

and hence we set ∆Sexp := (α + ε ′)(1 + ε ′) · c .

Further, for every cluster Li induced by Y , let Zi be the

rank k clustering matrix induced by X in Li . Define the rank
k ·k ′ clustering matrix Z as the concatenation of all Zi and let
A′ = ZZTA. Due to the second statement of Lemma 2.3, we

then have XXTZZT = XXT
and YYTZZT = YYT .

We will use the following lemma.

Lemma 5.4. Let B be either the realization of a random sketch-
ing matrix S or the d × d identity matrix. Then for matrices A′,
X ,Y , and Z and the constant c defined as above, and conditioned
on events E1, E2, E3 happening for S , we have:

(1) ∥AB−XXTAB∥2F = ∥AB−ZZ
TAB∥2F+∥A

′B−XXTA′B∥2F
(2) ∥A′B − YYTA′B∥2F ≤ ∆Scheap + ∆

S
exp

(3)
��∥AB − ZZTAB∥2F − c �� ≤ 3∆Sexp + ∆

S
cheap .

Proof. For (1), by applying the second statement of Lemma 2.3

and the Pythagorean theorem, we obtain:

∥AB − XXTAB∥2F

= ∥AB∥2F − ∥XX
TAB∥2F

= ∥AB∥2F − ∥ZZ
TAB∥2F + ∥ZZ

TAB∥2F − ∥XX
TAB∥2F

= ∥AB − ZZTAB∥2F + ∥ZZ
TAB∥2F − ∥XX

TZZTAB∥2F

= ∥AB − ZZTAB∥2F + ∥ZZ
TAB − XXTZZTAB∥2F

= ∥AB − ZZTAB∥2F + ∥A
′B − XXTA′B∥2F .

For (2), we condition on ∥LiS − ZiZ
T
i LS ∥

2

F · (1 + α + ε
′) ≥

∥LiS − µ(Li )S ∥
2

F (Condition 3) for all Li ∈ Lexp .

∥A′B − YYTA′B∥2F

=
∑

Li ∈Llow∪Linner

∥ZiZ
T
i LiB − 1µ(Li )

T B∥2F

+
∑

Li ∈Lexp

∥ZiZ
T
i LiB − 1µ(Li )

T B∥2F

Lem . 2.3
≤

∑
Li ∈Llow∪Linner

∥LiB − 1µ(Li )
T B∥2F

+
∑

L∈Lexp

∥LiB − 1µ(Li )
T B∥2F − ∥LB − ZiZ

T
i LiB∥

2

F

Event E3
≤

∑
Li ∈Llow∪Linner

∥LiB − 1µ(Li )
T B∥2F

+(α + ε ′)
∑

Li ∈Lexp

∥LiB − ZiZ
T
i LiB∥

2

F

≤ ∆Sexp + ∆
S
cheap .

For (3) and again assuming Condition 3, we have

|∥AB − ZZTAB∥2F − c |

=

������ ∑
Li ∈Llow∪Linner

∥LiB − ZiZ
T
i LiB∥

2

F

+
∑

Li ∈Lexp

∥LiB − ZiZ
T
i LiB∥

2

F − c

������
Event E1
≤

������ ∑
Li ∈Lexp

∥LiB − ZiZ
T
i LiB∥

2

F − ∥LiB − 1µ(Li )
T B∥2F

������
+∆Scheap .

Wewill bound |
∑
Li ∈Lexp ∥LiB−ZiZ

T
i LiB∥

2

F−∥LiB−1µ(Li )
T B∥2F |

assuming that the arguments are always positive or always

negative. The entire sum may then be bounded by the sum of

both derived values. If ∥LB − ZiZ
T
i LB∥

2

F − ∥LN − 1µ(L)
T B∥2F

is positive, then conditioning on event E1 the difference is at
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most ε ′ · c ≤ ∆Sexp . If the sign is negative, we have

|∥AB − ZZTAB∥2F − c |

Events E1,E3
≤

∑
L∈Lexp

����( 1 − ε ′

1 + α + ε ′
− 1

)���� ∥L − 1µ(L)T ∥2F
+∆Scheap

≤ (α + 2ε ′)
∑

L∈Lexp

∥L − 1µ(L)T ∥2F + ∆
S
cheap

≤ 2∆Sexp + ∆
S
cheap .

�

For Term (10), we have

|∥AS − XXTAS ∥2F

−(∥YYTAS − XXTYYTAS ∥2F + c)|

Lem . 5.4
= |∥A′S − XXTA′S ∥2F + ∥AS − ZZ

TAS ∥2F

−(∥YYTA′S − XXTYYTA′S ∥2F + c)|

Lem . 5.4
≤ |∥A′S − XXTA′S ∥2F

−∥YYTA′S − XXTYYTA′S ∥2F | + 2∆
S
exp + ∆

S
cheap

Lem . 2.1
= |∥A′S − XXTYYTA′S ∥2F

−∥XXTYYTA′S − XXTA′S ∥2F

−∥YYTA′S − XXTYYTA′S ∥2F | + 3∆
S
exp + ∆

S
cheap

Lem . 4.5
≤ |∥A′S − XXTYYTA′S ∥2F

−∥YYTA′S − XXTYYTA′S ∥2F | + 4∆
S
exp + 2∆

S
cheap

Lem . 2.4
≤

(
1 +

1

ε

)
∥A′S − YYTA′S ∥2F

+ε ∥YYTA′S − XXTYYTA′S ∥2F + 4∆
S
exp + 2∆

S
cheap

Lem . 5.4
≤

(
1 +

1

ε

)
(∆Scheap + ∆

S
exp )

+ε ∥YYTAS − XXTYYTAS ∥2F + 4∆
S
exp + 2∆

S
cheap

Event E2
≤

(
5 +

1

ε

)
(∆Scheap + ∆

S
exp )

+ε(1 + ε ′)∥YYTA − XXTYYTA∥2F
Lem . 4.6
≤

(
5 +

1

ε

)
(∆Scheap + ∆

S
exp ) (11)

+9(1 + ε ′) · ε ∥A − XXTA∥2F

The same bound for Term (8) can be derived in a com-

pletely analogous way (a slight modification in the chain of

the inequalities can get rid of the leading factor 9 in front of

∥A − XXTA∥2F , which we omit for conciseness). We therefore

have

|∥A − XXTA∥2F − (∥YY
TA − XXTYYTA∥2F + c)|

≤

(
5 +

1

ε

)
(∆Scheap + ∆

S
exp ) + 9ε ∥A − XX

TA∥2F . (12)

For Term (9), we use Lemma 2.6 and condition on Event E2,

i.e. the pairwise distances between all the rows of YYTA are

preserved. This yields

|∥YYTA − XXTYYTA∥2F + c

− (∥YYTAS − XXTYYTAS ∥2F + c)|

Event E2
≤ ε ′ · ∥YYTA − XXTYYTA∥2F

Lem . 4.6
≤ 9ε ′ · ∥A − XXTA∥2F . (13)

Recall that ∆Scheap ≤ 2 ·

(
γ · 1+αα +

(
1

1+α

)
1/β

)
OPT due to

Lemma 4.4. Furthermore due to Property 4.2, ∆Sexp ≤ (α +

ε ′)(1+ ε ′) · c ≤ (α + ε ′)(1+ ε ′)(1+ α) ·OPT ≤ 4(α + ε ′) ·OPT.
Combining this with (12), (11), and (13), we obtain

|∥A − XXTA∥2F − ∥AS − XX
TAS ∥2F |

≤

(
10 +

2

ε

)
· (∆Scheap + ∆

S
exp ) + 18(ε

′ + ε) · ∥A − XXTA∥2F

≤
12

ε
·

(
2 ·

(
γ ·

1 + α

α
+

(
1

1 + α

)
1/β

)
+ 4(α + ε ′)

)
OPT

+18(ε ′ + ε) · ∥A − XXTA∥2F

We set α = ε ′ = ε2, β = ε2
2 log 1/ε2 , and γ = ε4. Using the fact

that ln(1+α) ≥ α/2, we have
(

1

1+α

)
1/β
≤ ε2. Then the factor

in front of OPT is bounded from above by 96ε . Rescaling ε , (and
consequently α , ε ′, β , and γ ) proves the desired approximation

guarantee.

To conclude the proof, we show that our success probability

is 1 − δ . We take a union bound over the probability of events

E1, E2, E3 not happening. Note that the target dimension is at

least c ′ ·

(
log

(
1

εδ (k log
n
ε4
)O (ε

−2
log ε−2)

)
ε4

)
for some large enough

constant c ′, and so at least c∗ ·

(
log

k ·|T |
εδ

ε4

)
for a large enough

constant c∗.
To obtain a bound on the probability of event E1 happen-

ing, we apply Theorem 2.5. By observation 4.3, the tree has

size |T | = (k log n
γ )
(O (1/β )) = (k log n

ε )
O (ε−2 log ε−1)

. Therefore,

since the target dimension is at least c∗ ·

(
log

k ·|T |
εδ

ε4

)
, we have

that event E1 happens with probability at least 1 − δ/3. We

claim that the success probability of event E2 is at least 1−δ/3
as well. Indeed, the number of rows in YYTA is bounded by

the size of the tree and so applying Lemma 2.6 for YYTA with



STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Becchetti, Bury, Cohen-Addad, Grandoni, Schwiegelshohn

target dimension at least c∗ ·

(
log

|T |
δ

ε4

)
yields the claim. Finally,

event E3 also happens with probability at least 1−δ/3. Indeed,
following Property 4.2, we invoke Lemma 5.1 with target di-

mension c∗ ·
(
logk + log logn + log 1

δ

)
log

1

ε
ε6 . This is enough to

get success probability at least 1−δ/3 since by Observation 4.3

we have c∗ ·

(
log

k ·|T |
εδ

ε4

)
≥ c ′ ·

(
log

k ·|Lexp |
εδ

ε4

)
. �

6 Data Dependent Dimension Reduction
In this section we show that an explicit construction of the

sketching tree from Section 4 combined with a random pro-

jection achieves allows to reduce the target dimension to

Oε (logk) dimensions. The main difference is that we do not

require to preserve the cost of the expensive leaves in an obliv-

ious manner. This allows us to store the cost of these points in

the offset c , and we apply the random projection onto YYTA,
instead of A.

In the following we use OPTk (A
′) to denote the cost of an

optimal k means clustering on a point set A′ and write (a,b)-
approximation if a clustering has cost less than a · OPTk and

uses at most b ·k centers. Since we aim at making Algorithm 1

constructive, we use the following result by Makarychev et

al. [47].

Theorem 6.1 ([47]). There exists a polynomial time algorithm
for k-means that computes a (1 + ε,O(1/ε))-approximation.

The algorithm now proceeds very similar to the one pro-

posed in Section 4. For every node A′ of the tree, we use the
bi-criteria approximation to obtain a clustering with cost at

most (1 + α/3) · OPTk (A
′). If the cost decreases, we continue

to do so. If the cost does not decrease, the procedure stops, i.e.

we skip the partitioning into rings. We note that Feldman et

al. [33] previously proposed such a partitioning (albiet non-

constructively) and showed that it produces a coreset (see the

following section for a definition).

Using a very similar line of reasoning as in Theorem 5.3, we

then obtain the following theorem. The main difference in the

proof is that we explicitly remove the cost ∆exp fromA before

sketching. In other words, the random projection is applied to

YYTA, instead of A, and we add the κ := ∥YYTA −A∥2F onto

the cost.

Theorem 6.2. Let A be an n by d matrix corresponding to n
points in d-dimensional Euclidean space. There exists a cost pre-
serving sketch with offset κ given by a matrix B ∈ Rn×m where

m ∈ O
(
logk+log 1/δ

ε4 log
1

ε

)
such that for all rank k clustering

matrices X ,

(1−ε)∥A−XXTA∥2F ≤ ∥B−XX
T B∥2F +κ ≤ (1+ε)∥A−XX

TA∥2F

with probability 1 − δ . For every fixed constant ε , the dimension
reduction can be computed in polynomial time.

7 A Brief Remark on Coresets for k-Means
Coresets are a loosely defined concept for aggregating and

compressing data that has found applications for numerous

problems beyond clustering. Generally speaking coresets aim

to summarize the data set such that we can answer any given

query up to a small (typically (1 ± ε) factor) distortion. Most

(but not all) coreset definitions satisfy composability. In other

words, coresets are closed under union, i.e. given coresets P1 of
A1 and P2 ofA2, then P1∪P2 is a coreset ofA1∪A2. This feature

makes coresets extremely flexible and applicable in a variety

of settings such as distributed computing and streaming. The

most general and powerful definition of coresets for k-means

is due to Feldman et al. [33]:

Definition 7.1. Let A be a set of n points in d dimensional
Euclidean space, let k be a non-negative integer, let κA be a
constant possibly depending on A, and let ε > 0. Then a set P is
an (ε,k)-coreset if there exists a weight function w : P → R+

such that for any candidate set of centers C������∑p∈Amin

µ ∈C
∥p − µ∥2 −

©­«
∑
q∈P

min

µ ∈C
w(q) · ∥q − µ∥2 + κA

ª®¬
������

≤ ε ·
∑
p∈A

min

µ ∈C
∥p − µ∥2

Intuitively, we consider a set of points P to be a k-means

coreset of A, if for any set of candidate centers C of size at

most k the (possibly weighted) cost of clustering P to C is

approximately equal to the cost of clustering A to to C . The
definition is similar to Definition 2.2, but there is a crucial

difference. The coreset guarantee applies to all locally optimal

assignments to k centers in d-dimensions. The cost-preserving

sketch guarantee applies to the means of all possible clustering.

The two notions are incomparable; neither definition is known

to be stronger in general.

Work on coresets for k-means includes [9, 16, 17, 19, 32–

36, 43], with the current state of the art being the sensitivity

framework due to Feldman and Langberg [31]. The sensitiv-

ity framework yields coresets of size O(kdε−4) points. Using
dimension reduction techniques by Feldman et al. [33] and Co-

hen et al. [24], the dependency on d may be replaced by k/ε2.
We note that Theorem 6.2 cannot be applied as a black box, as

the original space is not preserved after a random projection

onto Oε (logk) dimensions, whereas the dimension-reduction

techniques by [24, 33] reduce the rank of A in the original

space. We will instead demonstrate how to use terminal em-

beddings.

Definition 7.2 (Terminal Embeddings). Let ε ∈ (0, 1) and let
A ⊂ Rd be arbitrary with |A| having sizen > 1. Then a mapping
f : Rd → Rm is a terminal embedding if

∀x ∈ P∀y ∈ Rd , ∥x − y∥ ≤ ∥ f (x) − f (y)∥ ≤ (1 + ε)∥x − y∥2.
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Terminal embeddings for Euclidean spaces were studied

in the work of [30, 46, 50]. In particular, Mahabadi et al. [46]

showed that a target dimension ofm ∈ O(ε−4 logn) was suffi-

cient. This was very recently by Narayanan and Nelson [50]

tom ∈ O(ε−2 logn), which is optimal.

Terminal embeddings preserve coresets up to small distor-

tion; given a point set A and a coreset P ⊂ A of A, then f (P)
remains a coreset of f (A) if f is a terminal embedding of A.
Vice versa, given a coreset P ′ ⊂ f (A) of f (A), we also know

that f −1(P ′) 4 is a coreset of A. Combining YYTA as defined

in Section 6 with terminal embeddings yields the following

theorem.

Theorem 7.3. Let A be a set of n points in d dimensional Eu-
clidean space and let k be a non-negative integer. Then there
exists an (ε,k)-coreset for the k-means problem consisting of at
most O(k log(k/ε) · ε−8 log ε−1) points.

Proof. We apply a terminal embedding onto the leaves of

the sketching tree from Section 6. Using arguments from Feld-

man et al. [33], one can show that YYTA is coreset with offset

κA = ∥A−YY
TA∥2F . SinceYY

TA has at mostO(kO (ε
−2

log ε−1))

rows, this results in a target dimension of orderm ∈ O(logk ·
ε−4 log ε−1), due to Theorem 1.1. of Narayanan andNelson [50].

We then compute a coreset P in the embedded space. Applying

the algorithm by Feldman and Langberg [31] results in a core-

set of sizeO(k logk ·ε−8 log ε−1). For any set of centersC ∈ Rd ,
we therefore have minµ ∈C ∥x − µ∥

2 = (1± ε)minµ ∈C ∥ f (x) −

f (µ)∥2 for all x ∈ P . Hence f −1(P) is a 3ε coreset ofYYTA, and
therefore a 7ε coreset of A with offset. Rescaling ε completes

the proof. �

Remark 7.4. It is likely that one could apply terminal embed-
dings to a weighted coreset of size poly(k, ε−1). Doing this would
decrease the dependency on ε in Theorem 7.3 to ε−6. However, it
is not completely clear how weights (instead of multiplicities) can
be handled. We omitted further details due to space constraints.
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