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THE STACK QUOTIENT OF A GROUPOID
by Anders KOCK

CAHIERS DE TOPOLOGIE ET
GEOMETRIE DIFFERENTIELLE CATEGORIQUES

Volume XLIV-2 (2003)

Resum6. On decrit un sens 2-dimensionnel pr6cis dans lequel le
champ des G-fibrés principaux est un quotient du groupoide G.
L’outil cle a cette fin est une reformulation de la descente (ou
donn6es de coégalisation), en termes de rel6vements simpliciaux
de diagrammes simpliciaux.

It is a well known conception, see [1], Ex. 4.8, that the stack B(G.)
of principal G, bundles is in some sense a quotient of G.. I intend

here to make this into a more precise statement, and to prove it in a
quite general context - essentially that of a category with pull-backs
and equipped with a class D of descent epis (as in [6] or [5]).

For an equivalence relation in a category B, it is unambiguous what
a quotient of it should be: If

is an equivalence relation in B, a quotient for it is a map q : G0--&#x3E; G-1
mediating, for every object X, a bijection

where Coeq(R, X) is the set of X-valued "coequalizing data" for R,
meaning maps p : G0 -&#x3E; X with p o do = p o d 1.

For G, a groupoid in B,

and X a stack (or just a fibered category) over B, we describe a cate-
gory (groupoid, in fact), Coeq(G.,X) of X-valued coequalizing data koi
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descent data). We describe in which sense the stack BG. of "principal
G.-bundles" is a 2-dimensional quotient (expanding the base category
B into the 2-category of stacks over B). So we look for an equivalence _

there will be such an equivalence, provided X has a stack property, in
the sense we shall recall in Section 5 below. The equivalence is not itself
explicit, but is expressed in terms of two explicit equivalence functors
(cf. (22) below),

whose quasi-inverses are not completely explicit, since they depend on
chosing cleavages or solutions of descent problems.

The first equivalence, Coeq(G., X)-&#x3E; Grpd(X)jG., is dealt with in
Sections 2 and 3. Thus, also, a reformulation of the notion of descent
data is provided. - The universal coequalizing data, i.e. the coequalizer
itself, can in terms of groupoids in BG, be given completely explicitly:
it is Illusie’s Dec. (G.).

Our formulations of fibration theory, and of descent, are free of cleav-
ages.

The question of quotients of groupoids may be relevant to the for-
mulations of intentional type theory of e.g. [3], [7], who approximate
the notion of types-with-an-intentional-equality in terms of groupoids.

I want to thank the Mittag-Leffler Institute, where the main part of
the present work was carried out in May 2001.

1 Basics on fibrations 

This section is mainly to fix notation and terminology. Consider a
fibration 7r : X -&#x3E; B (see e.g. [5]). For G an object in B, XG denotes
the fibre. We consider only fibrations where all fibres are groupoids;
this is well known to be equivalent to the assumptions that all arrows in
X are cartesian. (Nevertheless, we sometimes use the word "cartesian",
as a reminder of the universal property.) By 2-category, we understand
here a 2-category where all 2-cells are invertible; equivalently, a category
enriched in the category of groupoids. We consider the 2-category of
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fibrations over B, denoted FibB. Morphisms are functors over B (which
preserve the property of being a cartesian arrow; this is here automatic,
by our assumption) . And 2-cells are natural transformations all of whose
components are vertical (mapping to an identity arrow by r). For two
objects X and Y in FibB, hom(X, Y) denotes the hom-category (a
groupoid, in fact, by our assumptions).

For any G E B, the domain functor B/G - B is a fibration, de-
noted y(G); such fibrations one calls representable; they have discrete
categories as fibres: ( y(G) ) H is the set of arrows from H to G. An

arrow in B/G over the arrow f : X1 --&#x3E; Xo is a commutative triangle
h = g o f , where g and h have codomain G; such triangle, when viewed
as an arrow in B / G, is denoted (g; f ) .

We shall be interested in morphisms in FibB whose domain are rep-
resentable fibrations y(G), y(H), etc. We collect some basic formulas.
Note that since no "cleavage" or other arbitrary things are mentioned,
the principle "whatever is meaningful, is true" is likely to be applicable.
(We refer to these assertions as "Basic Item 1.-4.".)

1. Let D : y (G)-&#x3E; X, and let d : H -t G. The composite D o y(d),

is given on objects e E (y(H))K by ,

and on morphisms (e; f ) in y (H) by

it is an arrow in X over f .
2. Next, we consider a 2-cell

So for d E y(G)H, the component Cd : D(d) -&#x3E; D’(d) is an arrow in X,
vertical over H. For an arrow (d; e) : f-&#x3E; d in y(G) (where f = d o e),
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the naturality square is

3. We next consider the composition ( "whiskering" ) of the form

where d : H -&#x3E; G in B. For an object e EK y(H), the component of the
whiskering C o y(d) at e is given as follows:

it is a an arrow in X, vertical over K.
4. Let D and D’ be as in item 2. above. From the naturality square

exhibited in (4), it is easy to conclude that if the values of D’ are

(cartesian) arrows, and if two 2-cells C and 77 : D -&#x3E; D’ agree on the

object 1G (identity map of G), then they agree everywhere. For, from
the naturality squares (4) for C and n with respect to (l; d) : d -3 1, it
follows that D’(1 ; d) 0 Çd = D’(1; d) o nd, but two parallel vertical arrows
which postcompose with some cartesian arrow to give the same, are
equal.

Remark. ( "Yoneda Lemma" ) There is an explicit functor evl (=eval-
uation at the object 1G in y(G) = BIG),

and it is an equivalence, but a quasi-inverse is not explicit; a quasi-
inverse amounts to choosing for each X E XG and each h : H - G
a (cartesian) arrow h*(H) -&#x3E; X over h. So it amounts to a "partial
cleavage" of X - B.
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We have the full embedding y of the category B into the 2-category
FibB. It actually factors through the full subcategory of D-stacks SB,
to be described in Section 5 below. It is full and faithful on 1-cells

as well as on 2-cells (viewing B as a locally discrete 2-category, in the
sense that all 2-cells are identities). We sometimes omit the name of
the embedding y from the notation. We shall not discuss coequalizers
in S in general, but only coequalizers of groupoids G, in B C S . In
the first approximation, this means of course a diagram

which commutes, and is universal (in a suitable sense) in SB with this
property. But since there are 2-cells available between parallel arrows
to X, two-dimensional wisdom says that the notion "the two composites
are equal" should be replaced by "there is a specified 2-cell 0 comparing
the two composites" . But wisdom also says that specifications should
come together with equations to be satisfied, and here it is a cocycle
condition on ?P, which involves the three maps G2 -&#x3E; G1. To make

better room for the pasting geometry involved, we exhibit the fork (6)
in terms of a square 

Then the equations to be satisfied are a cocycle condition, and a unit
condition. The cocycle condition is expressed in terms of commutativity
of the 2-cells in a cube,
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The three faces adjacent to the vertex labelled X are equal, and
are all filled with the (invertible) 2-cell 1/J, and the three other faces,
adjacent to the vertex labelled G2, are strictly commutative, and express
the three simplicial identities that obtains between the composite face
operators G2 - Go. As a pasting diagram, it makes sense, (Y being
an oriented 2-cell; there are in fact orientations on the three simplicial
identities making this cube into a valid pasting scheme, namely doso -
d0 d1, d1 d0 -&#x3E; doS2, and d1 d1 --&#x3E; d1 d2).

The cocycle condition on Y says that the pasting diagram commutes.
There is also a unit condition: it says that pasting the 2-cell 0 with

s : Go - G¡ yields an identity 2-cell,

If X is equipped with a cleavage, so that one has functors d0* : XG0 --&#x3E;
XG, etc., the cubic cocycle condition can be rendered in the usual form
d2*(Y) o do* (Y) = d1*(Y) for descent data.

The collection of such data form a groupoid Coeq(G., X), whose
arrows are 2-cells P - P’ compatible with the Y’s. We may think of
it as an alternative way of describing the category of descent data for
descent along e, if do, d1 happen to be the kernel pair of some map e.)
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2 From coequalizing data to groupoids
We consider a fibration 7r : X-&#x3E; B; we assume that all arrows in X
are cartesian, so that the fibres XG (for G E B) are groupoids. We also
assume that B has pull-backs. Then it follows that X has pull-backs,
and that 7r preserves them. Even more, 7r reflects pull-backs, in the
sense that if a commutative square in X is mapped to a pull-back by 7r,
then it is itself a pull-back.

A groupoid object in B may be given in terms of its nerve G.; a
more economic way of giving the data of a groupoid object G is the
following standard one: it consists of truncated simplicial data,

of face maps satisfying the simplicial identities, cf. Appendix, from
where the notation is taken, plus a map s : G0 -&#x3E; Gi, splitting the
two face maps G1 --&#x3E; Go (s "picks out identity arrows" ).

For such truncated data to be a groupoid, the three commutative
squares that represent the three simplicial identities among face maps
(see Appendix) should be pull-backs; also, with the middle of the three
face maps G2 -&#x3E; GI as composition, this composition should be associa-
tive and have s as unit. If these conditions are satisfied, its "nerve" G.
may be formed. It is a full-fledged simplicial object, of which the given
data then is a "truncation" . The category of small groupoids becomes a
full subcategory of the category of simplicial objects. - With the stated
assumptions on 7r : X -&#x3E; B, we then have

Proposition 1 Let X be truncated simplicial data in X mapping to a
groupoid G in B . Then X is a groupoid.

Proof. The associativity condition for the composition map d1 :
X2 -&#x3E; Xl is expressed as an equality between two parallel maps a1, a2 :
X3 - Xl (where X3 = Xl x X0 Xl x X0 X1 ). Now since X. maps to
a groupoid G., where the associativity condition holds, and since 7r

preserves pull-backs, it follows that 7r(al) = 7r(a2). Since therefore al
and a2 are parallel maps over the same map, it suffices to see that they
become equal when post-composed with some (cartesian) map. But

clearly for instance do : X1-&#x3E; Xo will do this job.
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So to construct a groupoid in X out of coequalizing data P : Go -
X, Y, as in (7), it suffices to construct truncated data X2, Xl, Xo, with
the relevant six maps in between. This is completely explicitly done,
and exhibited in the diagram (10) below (as far as the five face maps are
concerned). Namely, we take Xo := P(1Go), Xl := P(do), X2 := P(eo);
they are the objects of the upper row in (10). The five face maps are
also present in the diagram. We use notation for face maps as in the
Appendix, and decorate the face maps in the X. under construction by
N N N

6i, dj, etc. We put do := P(lGo; do), and d1 := P(1G0 ; d1) oY1G1. We put
So := P(do; So), (note that by do o 80 = eo, (do; So) : eo - do in y(Go),
and similar for the other "semicolon" expressions). Similarly, we put
Jl : = P(do; d1) ; for J2, we need again to involve Y : S2 := P(do; b2) o 08,,;
Finally, the construction is completed by putting 9 : Xo - X1 equal to
P(do; s) (note that since do o s = 1, (do; s) is a morphism in y(Go) from
1 to do). The reader will find some of this data exhibited in the diagram

(the 1 on 0 refers to 1 G¡ ).
To prove the simplicial identities among the 8i, dj and 9 is easier

the fewer ’lj;’s are involved, i.e. the smaller the indices i and 3 are. The
method is in any case the same, so we are only going to present one of
them, the "worst" one, - the only one involving the cocycle condition,

as well as the identity involving the unit condition,
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So we calculate

(using naturality of 0 with respect to (1 ; d1) : 81 -&#x3E; 1G1)

using functorality of P on the composite (1; d1) o (d1 ; b1) (1; e2). On
the other hand,

by naturality of 0 w.r.to (1, d2) : S2 - lcl . By functorality of P,
this is P(l; e2) 0 Yd2 o Yd0, and by the cocycle condition, this equals
P(l; e2) o Yd1 as desired. - To prove the unit condition: do o g = 1 is

trivial by functorality of P; dl o 9 uses the unit condition for Y, namely
Ys=1.

3 From groupoids to coequalizing data

We consider a groupoid X, in X, mapping by 7r to the fixed groupoid
G, in B, and proceed to construct coequalizing data (P : G0 -&#x3E; X, 1/; )
out of this data. This is not a completely explicit construction; one
piece of information is not completely explicit, namely a functor (partial
cleavage) P : y(Go) --3 X with P(1) = Xo (1 denoting the identity map
of Go). We assume such a P chosen. (For instance, if X is equipped
with a cleavage, then we may for c : H --&#x3E; Go in B take P(E) to be the
cleavage-chosen cartesian arrow e*Xo - Xo over e.) Being a functor
over B, we have for each e : H -&#x3E; Go in B a given (cartesian) arrow
p(E) : P(e) - Xo over it.

We have to provide the natural transformation Y : P o y(do) -
P o y(dl) between the indicated functors y(G1) -&#x3E; X. (The simplicial
operators on G, consist of maps d;, Sj, and ek, as before; the simplicial
operators on X. are denoted similarly, but with a tilde: d;, etc.)

So consider an object d : H --&#x3E; Gl in y(Gi), then 1/;ó should be a
vertical arrow in X over H,
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denoting do o J by ta and d, o S by Eb, we then construct Os by the
following recipe: Consider p(ea) : P(ea) --&#x3E; Xo; then use that do is

cartesian, so that we may consider the comparison arrow a : P(Ea) -&#x3E; X,
over d, arising from the factorization Ea - do o 6; similarly, consider
P(Cb) : P(Eb) --&#x3E; Xo: then use that d1 is cartesian, so that we may
consider the comparison arrow B : P(C-b) -&#x3E; Xl over S arising from the
factorization Cb = di o J. Since both a and j$ live over J, and have
common codomain X1, we may use that 0 is cartesian, to get a unique
vertical comparison from a to B, and this is to be our 08, so

For the convenience of the reader, we record the recipe in a diagram:

The unit condition 0 o y(s) = 1 follows by contemplating this dia-
gram, with S = s, then the long sloping arrows will be 1xo ; so a = 9
and 0 = 9 by uniqueness of cartesian factorization, and so 0 o y(s) is

the identity 2-cell of 1X0.
To prove the cocycle condition (in the "cube" form, (8)), we need to

calculate the whiskerings Y o y(6;) for i = 0, 1, 2.
We claim that, for their components at the object 1G2 (for brief

denoted 1), we have, for certain canonical vertical arrows co, el and c2
to be given below, 
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Since natural transformations in this case are determined by their com-
ponent at the identity of the domain, these equations will establish the
cocycle condition for Y,

(where we used * rather than o to denote horizontal composition (whisker-
ing). The three calculations proceed in the same way, so we shall give
only the one for (14). We use the cartesian property of do to lift the
factorization do o S, = eo to a factorization of p(eo) through do, say

with r(a) = Si, and similarly, the factorization d1 o S, = e2 lifts to a

factorization of p(e2) over dl

with 7r(Q) = di. Also, by the definition of 081,

with 1/;81 vertical, for the a and B of (16) and (17). Let ci denote the

unique vertical comparison X2 - P(et) with

Then we claim

These are parallel arrows over the same arrow 81 in B, so it suffices to
prove that they become equal by post-composition with some (cartesian)
arrow; here, do will do the job, since, by (16) do o cx o co = p(eo) o co =
eo = d0 o d1. We can now prove

Since both sides of this equation are vertical, it suffices to prove that
post-composing them with some (cartesian) arrow give same result; we
shall utilize p(e2), so we intend to prove
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We calculate

This finishes line prooi of (14). For the convenience 01 tne reader, we

compile the data of the proof of (14) into a diagram. Note that the

corresponding diagrams for (13) and (15) will look similar, but that the
a and B will denote something different (whereas the cz’s remain the
same).

We now prove that the two processes (of Section 2 and the current
part of the present Section) are inverse of each other, up to canonical
isomorphism. If we start with coequalizing data (P, Y), P : y(Go) -+ X
in particular is a partial cleavage of X with codomain Xo (so P(1) = Xo,
1 denoting 1Go); the groupoid constructed gives rise to, possibly new,
coequalizing data (P’, Y’), whose construction starts out with choosing
a partial cleavage P with P(1) = Xo = P(1). Hence there is a unique
isomorphism between them, and the compatibility with 0 means an
assertion of equality of two natural transformations with domain y(Gi).
From Basic Item 4, it suffices to see agreement on 1G1, which is easy.

Conversely, if we have a groupoid X. in X over G, in B, and produce
coequalizing data, by some partial cleavage P, (with P(1) = Xo) then
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we have the vertical comparisons co : X1 -&#x3E; P(do) and c2 : X2 - P(e2);
and by the construction, these comparisons are immediately compatible
with the face maps, except possibly with the last ones dl and 32, whose
definition involved 1/;, cf. the display in (10). But contemplate the con-
struction of 0, in terms of the groupoid, cf. (12): in that diagram, the
comparison a is just the inverse of the comparison co, and 0 similarly
for cl, the unique comparison for dl, so Y1 o co = cl, and then the de-
sired compatibility is clear. For the compatibility of the S’s, one can
utilize that we are dealing with groupoids over the same groupoid G.,
and prove the desired equality by post-composition with some suitable
(cartesian) arrow X1 -&#x3E; Xo (take dl).

Summing up, we thus have our reformulation of coequalizing data
(and hence of descent data):

Theorem 1 For any groupoid G. in B and any fibration with groupoids
as fibres X - B, the explicit functor described in Section 2

is an equivalence.

If G. is a small groupoid (identified with its nerve, which is a simpli-
cial set), a principal G, bundle is a simplicial set over p : G., E. -&#x3E; G.
such that 1) all the squares, expressing that p commutes with the face-
operators, are pull-backs, and 2) E. is the (nerve of) an equivalence
relation, with coequalizer E0-&#x3E; E_1, say, called the augmentation. We
say that E. is a principal G.-bundle on E-1. The category of principal
G.-bundles, with augmentation E. --&#x3E; E-1 as part of the data, form a
fibered category over B, 7r : B(G.)-&#x3E; B, where 7r(E. - E_1) = E-1.
All arrows in B(G.) are cartesian (equivalently, the fibres are (large)
groupoids.) (It is actually even a stack in the sense of Section 5, pro-
vided that the structural maps (face operators) of G. are D -epis.)

A particular object in B(G.) is Illusie’s Dec1 (G.), or Decl, for short,
since G, will be fixed; it is a principal bundle over Go, and is given by
Decn = Gn+1. It is depicted in row number two from below in the
diagram
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The row above that is called Dee2, and above that (not depicted)
Dec3, etc. Although there are three maps from Dec3 to Dec2, and two
maps from Dec2 to Dec1, they all compose to give, for each n, exactly
one map from Decn to G.. In fact this map makes Decn into a principal
G.-bundle over Gn-1 for n &#x3E; 1. Altogether, the various Deen’s fit

together into a simplicial object of principal bundles, augmented over
the simplicial object G, in the right hand column. Since all squares
in sight are pull-backs, this means that the Decn’s form a groupoid
Dec.(G.) in B(G.), over the groupoid G. in B.

4 Stacks

The notion of stack that we shall use is relative to a class D of "descent

epis" in the base category B. If B is a topos, D could be taken to be
the class of all epimorphisms. In the category of smooth manifolds, it
could be taken to be the class of surjective submersions. An axiomatic
treatment of the properties of such D has been given most succinctly
in [6]; see also [5]. We shall not need to be specific here. Suffice it to

say that any pull-back of a D-epi is again a D-epi, and all representable
fibrations y(B) are D-stacks.

Let q : G0 --&#x3E; G-i be a map in B, with simplicial kernel G. =
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Let X - B be a fibration. We then have an explicit functor

For, let P E hom(G-1, X), i.e. P is a functor y(G-1) = B/G_1 -+ X
above B. Now G, is a simplicial object in B/G_1 above the groupoid
G., so it goes by the functor P : B/G-1-&#x3E; X to a simplicial object in
X, above G,; by Proposition 1, this simplicial object is a groupoid in
X.

Definition 1 The fibered category X -+ B is a stack if for all q E D,
the functor (21) is an equivalence.

Proposition 2 Let rr : X -&#x3E; B be a stack, and let

be arrows in X with common domain, and with 7r( 8) = 7r(S) a D-epz*
q : G0 --&#x3E; G-1. Then there is a unique vertical isomorphisms ç : X-1--&#x3E;
X’ 1. satisfying C 0 8 = S’.

Proof. Choose a cleavage (-)* of X - B. Then we get a functor
q* : XG-1 -&#x3E; GrPd(X)/G" namely the one which to an object X E
XG-1 associates the (cartesian) lift with codomain X of the simplicial
kernel G, of q : Go - G_1. This functor makes

commutative up to isomorphism. Since ev, is always an equivalence, and
C is an equivalence by the assumed stack property of X, we conclude
that q is an equivalence. In particular, it is full and faithful. Now there
is a unique vertical comparison, : q*(X-1) -&#x3E; Xo with d o y equal to the
cleavage chosen lift q*(X-1) -&#x3E; X-1 of q. Similarly, there is a comparison
y : q*(X’-1 ) -&#x3E; Xo. These two comparisons compose (inverting Y) to a
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comparison C0 : q* (X-1) - q*(X’-1) . We may continue similarly for the
lifts of Gi-&#x3E; G-1, and together, this provides an isomorphism

in Grpd(X)IG., and by fullness of q*, it comes from a vertical isomor-
phism C : X-1 -&#x3E; X’-1. The various arrows mentioned here sit in a

diagram

in which the arrows x and x’ are the cleavage-chosen lifts. It follows
from commutativity of the remaining triangles in this diagram that also
the triangle C 0d= d’ commutes. - The uniqueness of suchC follows
similarly from the faithfulness of q*.

For a groupoid X. over G., any augmentation X0 --&#x3E; X-1 over q
deserves the name of solution of the descent problem posed by X.. By
Proposition 2, such solution is essentially unique.

5 The coequalizer
We are now going to make precise in which sense and why B(G.) is a
coequalizer of the groupoid G.. This first of all means that one should
specify the 2-category in which things take place; this is the 2-category
SB, the full subcategory of stacks inside the 2-category FibB. Secondly,
one should specify the map q : G0-&#x3E; B(G.), which is to be the "co-
equalizing map" , together with a 2-cell § between q o do and q o dl . The
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map q is going to be Decl(G,), more precisely, some partial cleavage of
B(G.) with codomain Dec1(G.). And q, 0 is going to be "the" object
in Coeq(G., B(G.)) which corresponds to the groupoid Dec.(G.) over
G. in B(G,), under the correspondence of Sections 2 and 3.

(One reason for reformulating coequalizing data/descent data in
terms of groupoids is that Dec’(G,) is a completely explicit piece of
data, involving no choices, or quotation marks around definite articles.)

So consider, a fixed fibration-in-groupoids 7r : X -&#x3E; B, and also a
fixed ( "small" ) groupoid G, in B. We have the following categories and
functors

The categories are, respectively, the category of coequalizing data
(p : G0-&#x3E; X, 0), as explained in Section 2, the category of groupoid ob-
jects X. in X, over G,, and hom(B(G.), X) is the category of (cartesian)
functors between fibrations-in-groupoids, over B. All three categories
are in fact (large) groupoids.

The functors displayed are all equivalences; the full arrows are ex-
plicit, the dotted ones are quasi-inverses, and depend on choice (say, of
partial cleavages and solutions of descent problems); the functor

requires for its construction that X is a stack. The two functors on

the left in (22) are those that have been expounded in the previous
sections. The functorality of the explicit functors in (22) is: pasting
with F : X -3 Y on the left corresponds to applying F on groupoid
objects in X. The explicit functor on the right is just "evaluate at Dec*";
for, a functor over B, say Y - X, clearly takes groupoid objects over
G, in Y to groupoid objects over G, in X. This in particular applies to
the groupoid object Dec.(G.) in B(G.).

So the remaining task is to provide the functor (23), provided that
X is a stack, and prove it to be quasi inverse to the evaluation at Dec*.

When this has been carried out, we have the right to assert

Theorem 2 Let q : Go - B(G.), 0 be the coequalizing data, corre-

sponding under the left side equivalence of (22) to the groupoid object
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Dec.(G.) in B(G.). Then for any stack X over B, pasting with q pro-
vides an equivalence

This is exactly to say that such q, O is a coequalizer, in the 2-

dimensional sense, of G., recalling that universal properties 2-dimensi-
onally should be expected to classify "up to equivalence", not "up to
isomorphism" .

So let us construct a functor (23). Let X, be a groupoid over G.,
in X, assumed to be a stack. To construct its image under the functor
(23) means to construct a functor over B,

The construction is going to involve some choosing of (cartesian) lifts;
a partial cleavage B/Go - X will suffice. Also, it involves chosing
solutions for descent problems in X. So we assume given an object
E. -&#x3E; E-1 on the left hand side, i.e., a principal G.-bundle with quotient
E-1 ; so there is in particular a simplicial map a. : E. - G.. For each
n, we take a cartesian lift over an with codomain Xn, say an : X’n --&#x3E; Xn .
(Such lifts can be obtained canonically by comparison with the chosen
lift of d o an : En-&#x3E; Gn - Go, where d : Gn - Go is the composite of a
string of do’s say.) Now by using the cartesian property of the an’s, and
comparing with the simplicial map E. - G,, one obtains a series of
face operators between the X’n’s, making X’ into a simplicial object in
X above the groupoid E.. But such data is now precisely descent data
for descent along the augmentation E0 -&#x3E; E’ 1, so since X is a stack,
X; descends to an object X’-1 in XE-1. The process E. -&#x3E; X’ 1 thus
described is the requisite functor B (G.) -&#x3E; X.

We now prove that the two processes are inverse to each other, up to
isomorphism. Let us start with a groupoid X, over G, in the stack X;
we want to evaluate the resulting functor B(G.) - X on Dec.( G.). But
Dec.(X.) sits in X above Dec.(G.) in B, so it follows from Proposition
2 that Dec1(X.) --&#x3E; Xo is a solution of the descent problem posed by
Decl(X.), and similarly for DeC2 (X.) -&#x3E; Xl , etc., so up to isomorphism,
we recover the groupoid X.. ,
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Conversely, let us start with a functor P : B(G.) --&#x3E; X, and evaluate
it at Dec.(G.), so as to get a groupoid P(Dec.(G.)) in X; by the recipe
provided, this groupoid gives rise to a functor P : B(G.) -&#x3E; X, whose
value at a principal G.-bundle E. - El may be desribed as follows: it

amounts to use the stack property of X to descend a certain equivalence
relation in X along E0 --&#x3E; E-i in B, and this equivalence relation is

described in terms of its nerve, which is simply

but since P preserves pull-backs and solutions of descent problems (this
follows from Proposition 2), this solution is (isomorphic to) P(E.).

Appendix. The faces of a triangle
For a simplicial object X. in any category, we shall be interested in its
lowest dimensional parts,

The three face operators X2 -&#x3E; Xl we denote So, S, and S2, and the two
face operators X1 -&#x3E; Xo, we denote do and d 1. For the calculations, it
is also convenient to have names for the three composites X2 -&#x3E; Xo, we
call them eo, el and e2, they are defined by the following basic equations

For the case where X, is the nerve of a small category and we consider
a 2-simplex x, i.e., a composable pair

JO(X) = f, d1(x) = g o f, 12(z) = g, and for instance the middle equa-
tion can be rendered verbally: the domain of the second arrow g is the
codomain of the first arrow f - and eo(x) = A, el(x) = B, e2(x) = C.
The commutative square expressed by the middle equation is a pull-
back, by definition of "composable pair"; the commutative squares ex-
pressed by the two other equations are pull-backs precisely when X, is
a groupoid.
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