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Abstract 

We elaborate a suggestion of Grothendieck, and study the invariant sheaves for a local equiva- 
lence relation on a space (e.g., a foliation). One of our purposes is to compare this to the standard 
model for the leaf-(quotient-)space of a foliation, given by the holonomy groupoid. To this end, 
we prove that, under suitable connectedness assumptions, Grothendieck’s invariant sheaves can be 
described in terms of a closely related, but different, “monodromy” groupoid. 

Our second purpose is to prove that every Ctale groupoid arises this way. 
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Introduction 

The idea of an equivalence relation given locally on a topological space was intro- 

duced by Ehresmann [7], and by Grothendieck and Verdier in SGA4 [l], as a possible 

way to study foliations. In the framework of SGA4, these so-called local equivalence 

relations naturally come together with particular kinds of sheaves on the space, namely 

those sheaves which locally admit transport along the equivalence classes of the local 

equivalence relation. In particular, it was conjectured in SGA4 that under suitable (rather 

abstract) conditions, these sheaves collectively have particularly nice properties; more 

precisely, they form a topos, in fact of a special kind: a so-called &endue. 

The purpose of this paper is to review and develop these suggestions made in SGA4. 

Our first main result (after recalling the notion of local equivalence relation r on a space 
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M, and the notion of r-sheaf on M) is a simple geometric description of these r-sheaves: 

under certain connectedness assumptions on r (namely that locally the equivalence classes 

are simply connected, see the end of Section l), they are precisely the sheaves on M 

which are covering projections for the leaf topology on M induced by r (see Theorem 2.8 

below). 

Next, we associate (in Section 3) a topological groupoid to a local equivalence relation 

r, satisfying the connectedness assumptions, the so-called monodromy groupoid of r, 

denoted 17(M,r). This construction generalizes that of the monodromy groupoid of a 

foliation, considered in [22], and, e.g., in [21,4]. The simple geometric description of 

r-sheaves just mentioned enables us to show that the r-sheaves are precisely the sheaves 

admitting a continuous action by this monodromy groupoid, Theorem 3.6. 

In Section 4, we construct a topological groupoid G, smaller than the monodromy 

groupoid 17(M, r), but determining the same category of equivariant sheaves. In partic- 

ular, the category of all r-sheaves on M is also equivalent to the category of sheaves 

equipped with a continuous action by this smaller groupoid G. This groupoid G has the 

special property that its source and target maps are local homeomorphisms (so G is an 

“&ale groupoid”). 

From the equivalence already mentioned between the category of r-sheaves on M and 

the category of sheaves with a G-action, 

sh( M, r) N (G-sheaves), 

it is clear that sh(M, r) is an Ctendue topos, as conjectured by Grothendieck and Verdier. 

(These topos theoretic aspects will be deferred to the Appendix of this paper.) 

We observe that the equivalence of categories (1) provides us with a topological 

description of the weak homotopy type of the topos sh(M, r). Indeed, by a result of [ 193, 

the topos of G-sheaves has the same weak homotopy type as the classifying space BG 

of the groupoid G. It follows, by the essential equivalence between the groupoids G 

and n(m, r), that sh(M, r) has the same weak homotopy type as the classifying space 

BIT(M, r) of the monodromy groupoid. 

After this analysis, we can achieve the two goals stated in the Abstract. 

As to the comparison with the holonomy, the standard constructions [7,32,21] of the 

holonomy groupoid of a foliation apply also to a local equivalence relation r on a space 

M, so as to define a groupoid Hol(M, r), which serves as a model for the quotient space 

of M by r. 

Using our equivalence between Grothendieck’s category of r-sheaves and that of 

monodromy-equivariant sheaves, the comparison of r-sheaves with the standard “holon- 

omy” quotient space can therefore be achieved, by utilizing a more or less well known 

surjection from monodromy to holonomy; in fact, we will give an indirect construction 

of the holonomy groupoid as a quotient of the monodromy groupoid, as constructed 

here. It will be clear that these two groupoids are in general quite different, as are their 

categories of sheaves (and also the weak homotopy types of their classifying spaces). 

As to the second purpose stated in the Abstract, we prove that for any Ctale topological 

groupoid H (i.e., source and target maps are local homeomorphisms), one can construct 



A. Kock, I. Moerdijk / Topology und its Applications 72 (1996) 47-78 49 

a suitable space It4 equipped with a local equivalence relation r, so that H is essentially 

equivalent to the monodromy groupoid of r (and hence sh(M, r) N (H-sheaves)). This 

shows that every &ale groupoid occurs as the monodromy groupoid of a local equivalence 

relation on a topological space. A topos theoretic formulation of this result is given in 

the Appendix. 

Topos theoretic aspects of local equivalence relations are also discussed in [ 141. Here 

an analogue of Theorem A.4 is proved for locales, by a construction quite different from 

the one in Section 5, and no study is made of the associated groupoids. 

1. Local equivalence relations 

The motivating example is that of a foliation on a manifold, cf., e.g., [ 151. Recall 

that the leaves of the foliation may be given locally as the level sets of submersions, 

thus (still locally) as the equivalence classes of suitable equivalence relations. The set 

of leaves, topologized by the quotient topology, is generally too coarse an object for 

studying the transversal structure, and several finer types of mathematical structures 

have been proposed, cf., e.g., [3,8,11,20,23]. The theory proposed by Grothendieck and 

Verdier [ 11 for this study is based on their notion of local equivalence relation: Consider 

for a given topological space A4 and any open subset U c M the set E(U) of all 

equivalence relations R C U x U on U. For V C U, there is an evident restriction map 

E(U) + E(V), sending a relation R C U x U to its restriction RIV := R n (V x V), 

and this gives E the structure of a presheaf on M; it is not a sheaf, in general. 

Definition 1.1. A local equivalence relation on the space M is a global section r of the 

sheaf E associated to the presheaf E. 

We recall how the global sections of a sheaf f, associated to a presheaf P on a space 

M are constructed. In the literature, this is usually done by constructing the sheaf space 

(local homeomorphism to M), consisting of germs of “elements” of P, at the various 

points. For the present purpose, a description in terms of atlases is more appropriate: 

Given any presheaf P on a space M, an atlas in P, or more precisely, an atlas for a 

global section of P, consists of a family 

U = {(~z,Pi) I i E I}, (2) 

where the Ui’s form an open covering of M, while pi E P(Ui) for each i, and which 

satisfy the local compatibility condition that, for all i, j, there exists a cover of Vi n Uj 

by open sets W for which pi ) W = pj 1 W. 

If U is an atlas, as in (2), the individual (Ui, pi)‘s are called its charts. An atlas 

v = {(l/j,%) I j E J) 1s said to refine U if for each index j E J, there exists an index 

i E I such that Vj C Vi and pi/V, = qj, i.e., (Vj,qj) is a subchart of (Ui,pi). Every 

global section r of the sheaf p associated to P is given by some atlas in P; conversely, 

every atlas in P determines a global section, while two atlases define the same r iff they 

have a common refinement. Given a global section r, a pair (U,p), where p E P(U), 
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may be called a chart for T if either of the two equivalent conditions hold: (1) there 

exists some atlas U for r with (U,p) as a member, (2) for every z E U, the germ of p 

at 2 equals r(z). 

Returning to the special case of the presheaf E and its associated sheaf r, a local 

equivalence relation r on A4 may thus be given by an open cover A4 = U Vi, and 

for each i an equivalence relation Ri on Ui, such that each point x E Ui n Uj has a 

neighbourhood W on which Ri and Rj agree. Clearly any foliation on a manifold M 

determines a local equivalence relation T on M; other examples will be discussed in the 

course of the paper. 

One of Ehresmann’s approaches to the foundations of foliation theory [7] goes via 

the consideration of a topological space equipped with a further, “fine”, topology. Such 

fine topologies appear also in the context of local equivalence relations and have been 

considered in [ 1, p. 4871 and in [28]. We shall need the following elaboration of this idea. 

Let R be an equivalence on a topological space M. Then we can introduce a new finer 

topology Mn_hne on M by taking as basic open sets any set of the form U n Q, where Q 

is an equivalence class for R and U is open for the original topology. Thus this topology 

is the coarsest for which the original open sets as well as the equivalence classes for R 

are open; and Mn-hne is topologically the disjoint union of the equivalence classes for 

R, each of them with its subspace topology from M. If T is a local equivalence relation 

on M, we define a new finer topology MT-fine on M by letting the basic open subsets 

be sets of the form V n Q where V is open in M, and Q an equivalence class for R, 

where (V, R) is some chart for r. Such equivalence classes are called plaques. Since 

(UnV,RI(UnV)). 1 is a so a chart for r if (U, R) is, these basic open sets may also be 

described just as the plaques. 

Proposition 1.2. Let r be a local equivalence relation on a space M, and let (U, R) be 

some chart for r. Then the inclusion Un-ene ‘-f MT-fine is continuous, and makes Un_hne 

an open subspace of MT-fine. In particulal; if r is given by a global equivalence relation 

R on M, then Mn-hne = MT-fine. 

Proof. Consider a basic open set in MT-fine, given by an equivalence class Q for S, 

where (V, S) is a chart for T. To prove continuity of the inclusion, we must prove Q n U 

open in Un_cne. Let II: E Q n U. Since R and S have the same germ at zr (namely r(z)), 

we may find an open W 5 M with z E W C U n V, and such that RIW = SIW. Let 

xR denote the equivalence class of .z for R, and similarly xS. Then xR n W is open in 

UR+“~ and xR n W = xS n W C_ xS n U, so xR n W witnesses that x is an interior 

point, for the R-fine topology, of xS n U = Q n U, and this proves continuity. Since the 

inclusion U&fine L) MT-fine by construction of MT-fine takes basic open sets to open sets, 

it is clear that this inclusion is open. 0 

Recall that an equivalence relation R on a space M is called open if the saturation of 

any open set under the equivalence relation is again open; equivalently, if the quotienting 

map M + M/R is an open map; or again equivalently, if the projection map R + M 
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given by (x, y) + x is open (where R 2 M x M is given the subspace topology). We 

shall only consider open equivalence relations. An equivalence relation R on a space M 

is called connected if its equivalence classes are connected subsets of M, and locally 

connected if M has a basis of open sets U such that the restriction of R to U is connected; 

similarly for simply connected and locally simply connected, and for path connected and 

locally path connected. 

Now some properties of local equivalence relations on a space M are defined in terms 

of properties of atlases U and their individual charts (U, R). A chart (U, R) is open if 

R is an open equivalence relation. Any subchart of an open chart is clearly open. An 

atlas is open if all its charts are. All refinements of open atlases are automatically open. 

A local equivalence relation is open if it has an open atlas. An atlas is locally (simply) 

connected if all its charts are, or equivalently, if every refinement of it may be refined by 

a (simply) connected atlas, i.e., one where all charts are (simply) connected. Similarly 

for locally path connected. A local equivalence relation is locally (simply) connected if 

it has some locally (simply) connected atlas, or, equivalently, if every atlas for it can be 

refined by a (simply) connected one. Similarly for locally path connected. 

The local equivalence relation associated with a foliation on a manifold is locally 

connected, locally simply connected (and open). On the other hand, the singular foliation 

on the plane given by concentric circles around the origin, comes from a local (even 

global) equivalence relation which is locally connected, but not locally simply connected. 

2. Sheaves with transport 

Fundamental to the Grothendieck-Verdier approach is the notion of a sheaf equipped 

with transport along, or action by, a local equivalence relation; and this in turn derives 

from the notion of transport along a “global” equivalence relation, so we recall this 

concept (it is actually just a special case of the notion of action by a topological groupoid): 

Let R be an equivalence relation on a space M, and let p: E + M be a space over M. 

A transport along R in E is given by a continuous map 

V:RXME+E 

satisfying 

p(V((y, 4(e)>> = Y 

(for (y, x) E R and p(e) = x), as well as the “unit” and “cocycle” conditions (writing 

V,,&4 for V((YJ)(~))) 

V,,,(e) = e, 

Remark 1. Observe that if a sheaf E carries such transport by R, then the restriction of 

E to each equivalence class Ry is a constant sheaf. 



52 A. Kock, I. Moerdijk / Topology und its Appliccltions 72 (1996) 47-78 

We proceed to discuss action or transport on sheaves by local equivalence relations, 

which is our main concern. Suppose we are given a topological space M and a sheaf E 

on it. We shall consider sheaves on M in terms of the sheaf spaces E + M, a space 

E + M being a sheaf iff the map E + M is a local homeomorphism, also called an 

&tale map. Suppose we are given such a sheaf p : E --F M. For any open subset U C_ M, 

we consider the set 37~ (U) consisting of pairs (R, V), where R is an equivalence relation 

on U and V is a transport along RI U on EIU = p-’ (U). For V C U, there is an evident 

restriction map TE(U) + TE(V), and this gives TE the structure of a presheaf on M, 

Furthermore, there is a_“forgetful” map p : TE + E, given by (R, q) ++ R E E(U) for 

(R, q) E TE_(U). L_et TE and E be the associated sheaves, so that p induces a map of 

sheaves p: TE -+ E. Consider a fixed local equivalence relation r on M, i.e., a global 

section f of E. 

Definition 2.1. An r-transport on the sheaf E is a global section t of ?;E such that 

p(t) = r. An r-sheaf on M is a sheaf on M equipped with r-transport. 

Remark 2. Recall from Section 1 the fine topology MT-fine on a space equipped with a 

local equivalence relation r; since r is fixed in what follows,we omit it from notation: 

we shall in fact write Ml,,f instead of M T - fine to stress the relationship to foliation theory, 

where this topology is usually called the leaf topology. Let p: E + M be a sheaf on 

M. Write Eleaf for the space E but equipped with that unique fine topology making the 

given map p: E -+ M an Ctale map into Mleaf. If p: E -+ M has the structure of an 

r-sheaf, then p is a covering projection when viewed as a map Eleaf + Mleaf (i.e., Eleaf 

is a locally constant sheaf on Mleaf). This follows from Remark 1. 

We shall study only the case of a locally connected r, where the situation simplifies 

considerably, due to 

Theorem 2.2. Let r be a locally connected local equivalence relation on a space M. 

Then any sheaf E on M has at most one r-transport. 

Proof. Suppose s and s’ are two transports on the sheaf p: E + M for the local 

equivalence relation r on M. Consider any point x E M; we will show that s and s’ 

have the same germ at 2. To this end, choose charts (U, R, V) and (U, R, 0’) for s 

and s’, with the same underlying chart (U, R) for r, where U is a neighbourhood of x. 

Since r is assumed to be locally connected, we can choose U so small that (U, R) is a 

connected chart. Let y be any point, and consider the two maps (where EY denotes the 

stalk of E over y, and Ry the equivalence class of y) 

V,,V’, : Ry x EY -+ ElRy 

given by V,(z, e) = V,,y(e) and similarly for V’. By the unit and cocycle conditions for 

transport, V, has a continuous inverse V, -’ defined by Vy’(e’) = (p(e’), V,,,,,,,(e’)). 
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Consider for each e E Ev, the embedding Ry -+ Ry x EY given by z c) (z, e). Then 

the composite 

RY- Ry x EY “& E[Ry O” -Ry x E,=-+Egr 

is a continuous map from the connected space Ry into the discrete space Ev, hence is a 

constant map, necessarily with value e since it takes the value e at y. Thus V;’ V&(.z, e) = 

(z, e), for any z E yR. It follows that V, = V7&. 0 

Remark 3. If r is locally connected, then for a sheaf E to be an r-sheaf, it suffices 

to give transports on E by each of the equivalence relations in an atlas for r; local 

compatibility is then automatic, by the uniqueness. 

From this, it also follows that the property of being an r-sheaf is a local property, 

i.e., if the base space M is covered by open sets U such that the restriction of the sheaf 

E + M to each U is an rlU-sheaf, then E is an r-sheaf. 

It is possible to define the notion of transport preserving map between two r-sheaves 

on M, so as to obtain a category, equipped with a faithful functor to the category sh(M) 

of all sheaves on M. For the case of a locally connected local equivalence relation, this 

functor can be proved full and faithful. Since we shall be interested only in such local 

equivalence relations, we take the easy way out and put: 

Definition 2.3. Let r be a locally connected local equivalence relation on a space M. 

The category sh(M, r) is the full subcategory of sh(M) determined by those sheaves 

that admit an r-transport (necessarily unique, by Theorem 2.2). 

Example 2.4. Let M be a space equipped with an open local equivalence relation r, and 

let T be an arbitrary space. Let U & M be open. A function f : U + T is r-invariant 

in x E U if there exists an open V, x E V & U and a chart (V, R) for r for which f is 

constant on the equivalence classes of R; f is called r-invariant on U if it is r-invariant 

in all z E U. The germs of r-invariant T-valued functions form a subsheaf of the sheaf 

of germs of all T-valued functions on M. Let us denote it F(r, T). 

Since the equivalence classes in all charts for r (the plaques) form a basis for Mleaf, 
it follows that if f : U + T is r-invariant, then it is locally constant on Uleaf (= U, 

equipped with the topology induced from Mleaf). The converse holds if r is assumed 

locally connected; for if z E U is an arbitrary point, we may pick a chart (V, R) for T 

with x E V c U, and with connected equivalence classes. These are then open connected 

sets in Uleaf, so f is constant on them, so f is r-invariant in x. 

If T is open (not necessarily locally connected), we shall equip F = F(r, T) with the 

structure of an r-sheaf. For any open chart (U, R), there is a canonical map 0 = OU,R, 

e:RxU(FjU)+FIU, 

and these Qu,Ewill form an atlas for an r-structure on F. To define &,& let (y, x) E R, 
and let fz E F,, (x E U). Then there is an open V with x E V C U and a continuous 
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function f : V + T which is invariant for RIV and has the given fz as germ at x. 

Then f extends uniquely to an R-invariant f + : V+ -+ T, where V+ is the saturation 

of V under R. It is an open set, since R is an open equivalence relation, and ff is 

continuous since V/(RIV) is h omeomorphic to V+/(RjV+) (by openness of R and 

hence of the quotienting map). We define e((Y, x)(f3;)) as the germ of f+ at y. Thus in 

the_neighbourhood of ((Y, xc), fz) given by V+_ x V, and f+ (the latter being a section 

of F, thus defining a neighbourhood of fz E F), Q is given by 

(Y’, x’, fz/) * f +Y’l 

and thus is clearly continuous. The unit- and associative laws are clear. If (U’, R’) 

is a subchart of (U, R), then clearly QU,R and &,P,R~ agree on U’, and from this the 

compatibility conditions for the BU,R’S follow. 

One may also consider a vector field X on a manifold M; the local integral curves 

for it define a local equivalence relation T (actually a one-dimensional foliation, possibly 

with singularities). The sheaf of germs of smooth functions f on M which satisfy the 

partial differential equation X(f) = 0 is an r-sheaf. 

For the rest of this section, we shall be interested in locally connected and open 

equivalence relations, local as well as global. 

Theorem 2.5. Let R be an open, connected, locally connected equivalence relation on 

a space M, and let p: E --t M be a sheaf whose restriction to each equivalence class 

is constant . Then E admits an R-transport (and conversely, by Remark 1). 

Remark. A third equivalent condition is that E “descends” to M/R, meaning that it is 

of the form q* F for some sheaf F om M/R, where q : M -+ M/R is the quotienting 

map. This condition will not play any role in the main body of the paper. 

Proof. The assertion that ElRx is a constant sheaf means that there is given an action 

8 : R x M E + E whose restriction to each equivalence class Rx is continuous. The 

assertion to be proved is that 0 is actually continuous on the whole of its domain. Let 

(y, x) E R, and let e E E with p(e) = x. We prove continuity of the action 8 in the 

point ((y, z), e). Let X denote the equivalence class of x (and y). For each t E X, there 

exists a neighbourhood V of t in M, and a section s over V with 

s(t) = e(t, x)(e), 

and such that RIV has connected equivalence classes (this uses local connectedness of R). 

Therefore by connectedness of X, there exists a chain of such neighbourhoods U,, . . , Uo 

with y E U,, x E Ua, with Ui n Vi_ 1 n X nonempty, and with sections si : Ui --t E with 

Si(ti) = B(ti, x)(e) f or suitable ti E Vi n X. Since si(-) and 0(-,x)(e) are continuous 

sections of E over the connected set Ui n X, and since they agree in the point ti, they 

agree on all of Ui n X, 

Si(t) = e((t,y),e) for all t E UiflX. 
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The right hand side here does not depend on i, so in particular sz and si-1 agree on 

C.J, n LJ,_l n X, and since this set is nonempty, say zi E lJ, n V,_, n X, it follows from 

Ctaleness of p that we may find open subsets Vi with Zi E V, 2 Cri n Ui-1, an which si 

and si_1 agree. For any open set W, write WR for its saturation under R; it is an open 

set, because R is an open equivalence relation. Again, because R is open, we may pick 

a sequence of open sets IV,+, , . . . , Wo around y, z,, . . , ~1, x, respectively, with 

ti E Wi & Vi n Wi+,R, 

Z, E W, c VI n W2R, 

ZE Wo~UonWIR. 

We claim that 

S,L (Y’) = @(Y’, &(e’) (3) 

for all y’ E W,+], z’ E WQ, and e’ E so(W ) 0 with p(e’) = x’ and y/Rx’. From this, 

the continuity of 0 in the neighbourhood of ((y,x),e) given by Wn+l, Wo, so(Wo), 

immediately follows. TO prove (3), pick ~1 E WI with WI Rx’ and pick inductively 

wi E Wi with WiRWi_1. All the points y’, I+, . , w1,d belong to the same equivalence 

class, X’, say. Now nate that E restricts to a constant sheaf over each equivalence class, 

and SO and 8(-,z’)(e’) are continuous sections of E over the connected set UO n X’, 
and they agree in z’, so they agree on all of UO n X’, in particular in WI : so(wl ) = 

8(wl ,z')(e') =: e]; also SI and 19(-, wl)(e,) are continuous sections of E over the 

connected set U, n X’, and they agree in WI, since 

SI (2~1) = SO(~) = Ed = @(VI, we) 

(the first equality since wl E Vj where so and s1 agree), so they agree on all of U, n X’, 
in particular in w2: 

s1(w2) = O(W~,~I)(~I) = B(wz,zQ)~(uQ,~‘)(~‘) = 8(~2,2’)(e’). 

Proceeding in this way, we get (3) after R steps, and the theorem is proved. u 

For local equivalence relations, we then get as a corollary: 

Theorem 2.6. Let r be an open, locally connected local equivalence relation on a space 

M, and let E be a sheaf on M. Then the following conditions are equivalent. 

(I) E is an r-sheax 

(2) there exists an atlas U for r such that E is a U-sheaj i.e., U consists of charts 

(U, R) with the property that EjxR is a constant sheaf for each x E U (where xR 

denotes the equivalence class of 5 under R). 
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Proof. Assume (1) and take an atlas for the r-structure on E. For each chart (V, R) of it, 

R acts on EIU, so ElzR is a constant sheaf. Conversely, assume (2). So there is an atlas 

U such that E is a U-sheaf. Then clearly for any refinement U’ of U, E is a U/-sheaf. By 

the assumptions on r, we may find a refinement U’ of U whose charts (V, R) are open, 

connected, and locally connected. Since E is a U/-sheaf, it is constant on each of the 

equivalence classes Rx for each chart (U, R), and by the previous theorem, therefore, 

EIU carries R-transport. By local connectedness of T, this means that E is an r-sheaf 

(cf. Remark 3). 0 

Corollary 2.7. Let r, E, and M be as in Theorem 2.6. If Eleaf + Mleaf is a constant 

sheai E + M is an r-shea$ 

Proof. For any atlas for r, each plaque xR is not only a subspace of M, but also of M,,,f, 

by Proposition 1.2. Therefore ElxR = EleaflxR, which is constant. Thus the theorem 

implies that E is an r-sheaf. 0 

In general, the assumption of constancy in this corollary cannot be replaced by local 

constancy. But it obviously can if r is furthermore assumed locally simply connected: 

Theorem 2.8. Let r be a local equivalence relation on a space M, and assume that r 

is locally simply connected (as well as locally connected and open). Let E + M be 

a sheafi Then E is an r-sheaf of and only if Eleaf -+ Mleaf is a covering projection 

(= locally constant sheafi. 

Proof. The implication + was already argued in Remark 2, and does not depend on 

the special assumptions on r. Conversely, assume that Eleaf + Mleaf is a covering 

projection. Choose any simply connected atlas U for r. Then for each chart (V, R) of it, 

any equivalence class xR is not only a subspace of M, but of Mleaf, by Proposition 1.2. 

Therefore E restricts to a covering projection on each such equivalence class xR. But 

these equivalence classes are simply connected, so ElzR is a constant sheaf. By the 

previous theorem, therefore, E is an r-sheaf. 0 

Remark 4. From the proof, we in fact see a little more: if E + M is an r-sheaf, and U 

is any simply connected atlas for r, then E is a U-sheaf, i.e., the r-action can be defined 

on the atlas U. In other words, with self-explanatory notation, the inclusion sh(M,U) 

C sh(M, r) is an equality. 

Let us remark that Theorem 2.8 is not in general true without the simply-connectedness 

assumption on r: 

Example 2.9. Consider the (open, locally connected) equivalence relation R on the com- 

plex plane Cc whose equivalence classes are (0) and the circles with center in the origin, 

and consider the local equivalence relation r to which it gives rise. Consider the punc- 

tured Riemann surface for &; it is a double cover of @ - {0}, and thus is a sheaf on @ 
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which is a covering projection over each of the leaves of r. However, it is not an r-sheaf; 

for an atlas for an r-action on it would have some chart (U, R’, q) with 0 E U, and U 

would contain a circular disk D around 0 on which R’ agrees with R. It would then 

follow that E restricted to D is constant along the leaves (circles) inside D, whereas E 

is only locally constant along these leaves (being a nontrivial double covering space of 

them). 

Example 2.10. We finish this section by a discussion of local equivalence relations 

corresponding to foliations arising by suspension. 

First recall Grothendieck’s notion of G-sheaf [9]: if G is a discrete group acting on a 

space X (not necessarily faithfully), then there is a category (a topos, in fact) sh(X, G), 

consisting of sheaves E + X over X equipped with a G-action 8 compatible with the 

given G-action on X. There is an obvious forgetful functor sh(X, G) + sh(X). If G acts 

“freely”, in the strong sense that (act, proj) : X x G + X x X is a subspace inclusion, 

it follows from descent theory (cf., e.g., [13, Theorem D], [25], or [31] (or [9, p. 1991, 

for the case where the action is free and proper)) that 

sh(X, G) E sh(X/G), 

where X/G is the quotient space. 

If h: X A X is a homeomorphism, it may be identified with an action by Z on X, 

and we may write sh(X, h) instead of sh(X, Z). 

For such h, we get a free (in the strong sense), and proper action E by Z on X x E%, 

given by E(z,r) = (h(z),r + 1). L t e us denote the orbit space for this action by 2. 

Since the action is proper, the quotienting map q : X x Iw -+ _% is a covering projection, 

in particular &ale. The local equivalence relation r’ on X x R whose leaves are the 

sets {x} x IR is compatible with the action h, and hence induces a well-defined local 

equivalence relation r on 2. (This is the local equivalence relation given by the so-called 

suspension of the homeomorphism h on X.) We shall prove that 

sh(&-) 2 sh(X, h). 

There is an obvious full and faithful functor sh(X) --t sh(X x R) taking a sheaf E on X 

to the sheaf E x IFI on X x R. It lifts to a full and faithful functor sh(X, h) -+ sh(X x R, h) 

given by (E --+ X,0) ++ (E x Iw + X x L&e), where $(z,r) = (e(x),r + 1). It is 

straightforward to see that if a sheaf on X x Iw is in the image of sh(X) + sh(X x R) 

and carries a Z-action compatible with x, then it comes from a sheaf in sh(X, h); in 

other words, we have a pull-back diagram of categories 

sh(X)- sh(X x R) 

1 
sh(X, h)~--t sh(X x i&h) N sh(X) 

On the other hand, we shall prove that sh(X, r) can be obtained by essentially the 

same pull-back. Recall that we considered for a local equivalence relation on A4 the 
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fine topology A4iear on M, and for any local homeomorphism f : N + M the induced 

fine topology Niear on N. It comes from a unique local equivalence relation r-’ on N 

(which we may denote f*(r)), and T’ is locally (simply) connected if r is. From the 

fact that being an r-sheaf is a local property (cf. Remark 3), it is immediate that for a 

sheaf E on M, if it is an r-sheaf, then f*(E) IS an r’-sheaf, and vice versa provided 

the local homeomorphism f is surjective. This can be expressed by stating that a certain 

commutative diagram of categories is a pull-back, which for the case at hand (with f 

being the surjective local homeomorphism X x R + X) is the diagram 

sh(X) --% sh(X x Iw, r’)--+ sh(X x Iw) 

sh(j?, T)----+- sh(X) 

Comparing these two pull-backs then gives the desired equivalence sh(X, h) = sh(X, r). 

3. The monodromy groupoid 

Let r be a locally simply connected (and locally path connected, open) local equiv- 

alence relation on a space M, fixed throughout this section. We shall construct two 

topological groupoids with M as space of objects, generalizing the monodromy and 

holonomy groupoid of a foliation. The monodromy groupoid will for the present purpose 

be the more important one, since its “equivariant sheaves” will be proved to be precisely 

the r-sheaves. Recall from, e.g., [17,19] that a topological groupoid G is given by a 

space Go (“of objects”) and a space G1 (“of arrows”), together with continuous maps da 

and dl : G1 + Go associating to each arrow its domain and codomain, a continuous map 

associating to each composable pair of arrows their composite, and a continuous map 

associating to each object an “identity arrow” for this object, and such that the usual unit 

and associative laws hold; also, one requires the existence of a continuous “inversion” 

map Gi + Gi associating to each arrow an inverse for it. Recall that for any topological 

groupoid G = Gi = Go, we have a notion of a G-equivariant sheaf (or sheaf with 

a (right) G-action), namely a sheaf E + Go with a continuous map E XG(, G1 + E, 
satisfying the evident unit and associative laws. Also there is an evident notion of when a 

map between two such sheaves is G-equivariant; so we have a category of such sheaves. 

(This category BG is in fact a topos, called the classifying topos of G, cf. the Ap- 

pendix.) We shall prove that the r-sheaves are exactly the G-equivariant sheaves for the 

monodromy groupoid which we are going to construct, cf. Theorem 3.6 below. 

The monodromy groupoid is constructed as a topological groupoid consisting of homo- 

topy classes of leafwise paths (much as in [21], who, however, only treats the manifold 

case). Recall that when we have a local equivalence relation r on a topological space 

M, the latter aquires a further topology Mleaf, finer than the original one. The following 

consideration applies to any such topological space M equipped with a further, finer, 

topology M’. Since we have a continuous identity map M’ + M, we have a continuous 
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(and injective) map M” --t M’ between the path spaces. We endow its image P g M’ 

with the subspace topology (inherited from the compact-open topology on MI). For 

the special case where 111’ = Mrear for a local equivalence relation T on M, we write 

P(M, T) for P. We shall consider an explicit description of a basis for the topology on 

P(M, r) below. 

Assigning to each path cr its domain o(O) and its codomain ~(1) makes M’ into 

a topological oriented graph M’ = M, which further carries a natural multiplication 

structure (concatenation of paths), and a natural section M + M’ (formation of constant 

paths). It also admits a reparametrization action by the monoid of continuous maps I -+ I, 

in particular an inversion, namely reparametrization by t G 1 - t. This whole structure 

comes close to being a topological groupoid, except that the associativity etc. laws hold 

only up to standard explicit homotopies. Now the subspace P(M, r) of M’ is evidently 

stable under this structure, and thus itself is a topological oriented graph P = M. For 

any space E --t M over M it thus makes sense to talk about continuous actions on it by 

M’ or by P(M,r). 

Let E + M be a topological space over M, and let E’ + M’ be its pull-back along 

the bijective continuous M’ + M; thus, E’ is just E, but with a finer topology. From 

the continuous map M” + P, and the fact that E’ is defined by a pull-back, it is clear 

that any continuous action a by P on E gives rise to a continuous action a’ of 111” on 

E’ (set theoretically, a’ is the same mapping as a). 

From standard covering space theory, we quote: 

Proposition 3.1. Let E + X be a sheaf (= local homeomorphism) on a locally simply 

connected space X. Then it admits a continuous action by X’ iff it is a covering space 

over X. If P is a subspace of X’ (containing with every path also every continuous 

reparametrization of it), then a sheaf E + X admits at most one continuous action 

by P. 

We then have the following extension of Theorem 2.8; T is a locally simply connected 

local equivalence relation on a space M, so that Mleaf is a locally simply connected 

space; we also assume that T is locally path connected. 

Theorem 3.2. Let E --t M be a sheaf on M. Then the following conditions are equiv- 

alent: 

(1) E is an r-sheaf 

(2) E + M pulls back along Mleaf + M to a covering space Eleaf + Mleaf. 

(3) E -+ M admits a continuous action by P(M, r). 

Proof. The equivalence of the two first conditions is expressed in Theorem 2.8. If (3) 

holds, Eleaf A Mleaf admits a continuous action by Mjiaf, by the general remarks above, 

hence is a covering space, by Proposition 3.1. Finally, assume (2). The evaluation map 

ev: P(M, r) x I -+ M (sending (<,t) to r(t)) IS continuous, since P(M, r) has the 
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subspace topology from Mr. Now pull E + M back along ev to obtain a sheaf E’ on 

E’AE 

i i 
P 

P(M,r) x I?M 

The assumption that E -+ M pulls back to a covering space on Mleaf implies that, for 
each [ : I + M which is continuous for Mleaf, the pull-back of E + M along [ yields 

a locally constant sheaf EC on I; since I is simply connected, Et is in fact constant. 

This in turn implies that the sheaf E’ + P x I is constant along each subspace (0 x I. 

By Theorem 2.5, it follows that the equivalence relation, whose equivalence classes are 

the subsets {E} x I, acts in a continuous way; denote this action by V, as in Section 2. 

But now it is clear that path lifting, i.e., the action a of P(M, r) on E, can be described 

explicitly in terms of V: 

de, C) = ~(V((U),(LO))(~, (E, 0)))) 
for p(e) = t(O) = ev(<, 0). F rom this the continuity of a is clear, thus proving (3). This 

proves the theorem. 0 

We shall now investigate some topological properties of the topological graph P( M, r), 

which will allow us to construct the monodromy groupoid (as a topological groupoid) as 

a quotient of it. 

For any topological space X, one of the standard descriptions of the compact open 

topology on the space X’ of continuous paths is as the topology where the basic open 

sets are given in terms of finite lists (VI, . . , Un) of open subsets of X (which may 

even be taken from any prescribed basis for X), this list defining the basic open set 

NX(Ul,. . . , Un) of paths cy : I + X satisfying a( [(i- 1)/n, i/n]) C Vi for i = 1, . . . , n. 

Thus in particular as basic open subsets of the space P(M, r) G M’ we may take the 

sets P(M,r) f? NIM(U~, . . . , U,), such that each Vi is underlying set of a chart (Vi, Ri) 

for r, i.e., as the set of continuous LY : I -+ M which satisfy (4): 

ct!iscontinuousforM,,r, ando([+],i) CUi. 

(This set we denote by NM((U~, RI), . , (U,,, R,).) This set can equally well be de- 

scribed as the set of continuous a: : I + M satisfying (5): 

a([?,:]) ,~(i)Ri (=a(v)Ri). (5) 

Using this explicit description of the topology on P(M, r), we can now easily prove 

Proposition 3.3. The domain and codomain maps P(M, r) = M are open. The mul- 

tiplication (concatenation of paths) is an open map 

P(M,r) xlll P(M,r) + P(M,r). 
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Proof. Let cre E P(M, r) be a path from 5 to y. Consider a basic neighbourhood V 

of a~, given as the set of paths cy satisfying (4) or equivalently (5), but where we now 

further assume that the Ri-equivalence classes are path connected (using the assumption 

of local path-connectedness of r). Since each Ri is an open equivalence relation, we 

may, as in the proof of Theorem 2.5, find an M-open neighbourhood N, around x such 

that for each xt E NZ, there is a chain zt,z2, . . . , z,, with ~1 = x1, with zj E U,__t n U, 

for j = 2,. . , n, with xt RI 22,-t~R223,. . . , z,-1 R,_l z,, and with z, E U,. Since each 

Ri has path connected equivalence classes, we may choose paths cyt , . . , an_ 1 with oi 

a path from Zi to Zi+t inside the equivalence class ziR%. Also let CZZ~ be the path with 

constant value zn. Concatenating these n paths yields a path CY with o(0) = xl, and 

LY([(~. - I)/n,i/n]) C ZiRi for i = 1,. . . , n. This path therefore satisfies (5). So every 

~1 E N, is the domain of a path LY E V, and thus da: P(M,r) -+ M is open. The 

codomain formation dt is treated similarly. Finally, let us consider the multiplication 

(path concatenation). It is clear that if a,,D E M’ can be concatenated and have their 

concatenation (Y * p E P(M, r), then both (Y and p are in P(M, r). From this follows 

that the diagram 

P(M,r) x kfP(M,r)- M’ x MM1 

* 
J ( 

f’(M, r) 

is in fact a pull-back of spaces; since the multiplication structure * on M’ (right hand 

vertical map in the diagram) is known (and easily seen) to be open, then so is the 

multiplication structure on P(M, r) (left hand vertical map in the diagram). This proves 

the proposition. 0 

We now discuss leafwise homotopy. (We will always mean homotopy relative to end- 

points.) Thus a homotopy between two paths CY and p in a space X is a continuous map 

h : Ix I -+ X, restricting to LY and p on the two horizontal edges of Ix I, and to constant 

maps on the two vertical edges. In particular o(0) = /3(O) and CY( 1) = p(l). We say that 

cy and /3 E P(M, r) are leafwise homotopic if they are homotopic by a homotopy in Mleaf. 

Let h : I x I --a Mleaf be such a homotopy. Since the covering of Mleaf by plaques Q is an 

open covering, 1 x I is covered by open subsets of the form h-’ (Q); finding a Lebesgue 

number for this covering, we conclude that there is a natural number n such that the 

restriction of h to each of the small squares [(i - 1)/n, i/n] x [(j - 1)/n, j/n] C 1 x I 

factors through some plaque Qi,j, given by a chart (Ui,j, Ri,j). 

We will show that these leafwise homotopy classes of paths admit a continuous com- 

position operation. The proof is based on the following proposition. 

Proposition 3.4. Assume the local equivalence relation T on M is locally simply con- 

nected. Then the equivalence relation of leafwise homotopy on P(M, r) is an open 

equivalence relation. 
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Proof. Let us write N for the relation “leafwise homotopic to”. Let us write cy w p 

for the relation: cy N ,f?, and for every open U around CY, there is an open V around @ 

such that for every 6 E V there is a 7 E U with 7 N S. Thus to say that N is an open 

equivalence relation is to say that N N @ implies cy w /3. The relation of --+ is evidently 

reflexive and transitive. It is probably not symmetric, in general. 

Lemma 3.5. Let K denote the constantpath at o(l), where a E P(M, r). Then CY IU CY*K 

and cy * K + a. Also, for K the constant path at (Y(O), (Y - K * cy and K * (Y -+ cy. 

Finally, if CY - /3 , then y’ * cy * y” -Q y’ * /3 * y”, for any y’ and y” where it makes 

sense. 

Proof. Given a neighbourhood U = Nhf(Ui, . , U,)flP(M, r) of a, the neighbourhood 

of ct: * K given by V = N,w(UI, U,,, U,, , UT,) n P(M, r) (with n extra copies 

of U,) will serve, since any path 6 E V is leafwise homotopic (namely by a pure 

reparametrization) to a path in U. On the other hand, given a neighbourhood U around 

cy * K, it contains one of the form Nh{(Ul, . , UsTb), and since IC is constant = o(l), it 

follows that the n-t 1 last of these U,‘s have the point a( 1) in common, so there is an open 

setWwitha(1) E WC U,nU,,n...nU2n.Theset N~(U~,...,U~,bb’)nP(hil,r) will 

now serve as V, for clearly if 6 E V for this V, then for the constant path K at the endpoint 

of 6, &*K E N&U ,,..., U,-l,W,W ,..., W) C Nhf(U, ,..., Un_l,Un ,..., Uzn);and 

S N b * K by a reparametrization homotopy. The second assertion follows similarly, and 

the third is an elementary consequence of the fact (Proposition 3.3) that the multiplication 

* is continuous and open. This proves the lemma. 0 

Now let a: N p by virtue of a homotopy h : I x I + M, as described above, but where 

we now assume that the plaques QL,3 into which the n2 small squares are mapped 

by h are simply connected (using local simply connectedness of r). By the above, 

cy w (Y * K, and K’ * /3 w ,0 (where 6 and 6’ are the relevant constant paths), so it 

suffices to see that Q: * K -+ K’ * ,0. Between these two paths we can (in many ways) 

interpolate a sequence of 2n paths, each of which is a restriction of h to a rectangular 

zig-zag through the grid lines of the division of I x 1 into the n2 small squares; and 

each of the two consecutive terms in the sequence agree, except that they take opposite 

routes around one of the elementary squares, as for example displayed in the below 

figure. 

Call the common part prior to A of these two paths y’, and the common part after 

B y”, and call the two paths from A to B p and g, respectively. By Lemma 3.5, it 

suffices to prove that p -.A 0. For simplicity, let (IV, R) denote a chart with the plaque 

Q+ as one of its equivalence classes (where i,j is the index pair corresponding to the 

little square from A to B). Consider an open neighbourhood of p. It contains one of the 

formu=Nn/l((Ul,RI),...(U,,R,,)), with the Ri’s having path connected equivalence 

classes, and with Ri = RIUi for any i. Proceeding as in the proof of Proposition 3.3, 

we may find a neighbourhood N, around x = p(O) such that every x’ E N, is the 

beginning point of a path y E U; we may even find such y from x’ to any prescribed 

end point in U, R-equivalent to x’ (using path connectedness of the equivalence classes 
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of R,,). Clearly, such y stays inside one equivalence class of R. Now let V be the open 

neighbourhood of G defined as 

v = NM(w, R) f-7 d,‘(N,) n d,‘(U,). 

Any path 6 in this neighbourhood has its endpoints R-equivalent, and in N, and U,, 

respectively, and there is therefore, by the above, a path y E U with the same two 

endpoints. But since the equivalence classes of R are simply connected, y and b are 

homotopic inside one equivalence class of R, and hence in particular y N b. This proves 

p -+ 0, and thus openness of the relation N of “leafwise homotopy”. Proposition 3.4 is 

proved. 0 

Let us denote by 171 (M, r) the quotient space of P(M, r) under the equivalence rela- 

tion “leafwise homotopy”. By Proposition 3.4 the quotienting map P(M, r) -+ IIt (M, T) 

is an open surjection, and hence the pull-back of it along any map is again an open sur- 

jection. This finally enables us to see that composition of paths, as well as formation of 

de and dt of paths, being compatible with the equivalence relation, induce continuous 

maps * : 171 (M, r) x ~4 171 (M, r) + IIt (M, r) and do, dt : 171 (AI, r) + hf. Note also 

that it follows from Proposition 3.3 that they are open maps. Finally, inversion of paths in 

P(M, r) (reparametrization by t ti 1 -t) induces a continuous inversion in I7(M, r). All 

this structure, together with formation of constant paths, M + P( M, r) t 171 (M, T), 

makes 171 (M, T-) into a topological groupoid; this is the monodromy groupoid of the local 

equivalence relation. 

Clearly any continuous action of P(M,r) on a sheaf E + M is invariant under 

homotopy, so induces an action of 171 (M, r). This action is again continuous, because the 

quotient map P(M, T-) -+ 171 (M, T-) (and hence any pull-back of it) is an open surjection. 

Thus a sheaf E + M carries a continuous action by 171 (M, T) iff it carries one by the 

topological graph P(M, r) (in both cases, the action is unique if it exists), and combining 

this with Theorem 3.2, we see that the subcategory sh(M,r) C sh(M) of r-sheaves, 

described in various equivalent ways in this theorem, can furthermore be described as 

the full subcategory of sh(M) consisting of sheaves which admit a (necessarily unique) 

continuous action by the monodromy groupoid IT1 (M, T-). We therefore have 
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Theorem 3.6. Let T be a locally simply connected local equivalence relation on a 

space M. Then the monodromy groupoid I71 (M, r), as described above, is a topo- 

logical groupoid; and a sheaf on M is an r-sheaf if and only if it is ITl(M, r)- 

equivariant. 

Remark 5. The theorem expresses that the two subcategories of sh(M), sh(M, r) and 

B(17i (M, r)), are equivalent. In particular, since the latter is a Grothendieck topos, we 

conclude that sh(M, r) is. Further topos theoretic implications of the theorem may be 

found in Appendix A. 

4. l?tale monodromy and holonomy 

To get further information about the equivalence sh(M, r) 2 B(17i (M, r)) of The- 

orem 3.6, we shall prove (Theorem 4.1 below) that the topological groupoid 171 (M, r) 

is essentially equivalent (in a sense to be made precise below) to an &ale topological 

groupoid G (a notion that we shall also recall). In the foliation case, one would construct 

G as a full subcategory of Dt (M, r) with space of objects some complete transversal 

T c M of the foliation. Such a procedure is not available in the present generality, where 

instead we must let G have for its space of objects a certain “local quotient space” of 

M (which, just as for the case of a transversal, is noncanonical, but depends on a choice 

of an atlas for r). 

Recall that a morphism of topological groupoids p : H + G is called full andfaithful 

if the space of arrows Hi of H is the pull-back of Gt along pc x po (the relevant 

diagram appears in (11) below), and is called an essential equivalence [ 181 if further 

p. is “essentially surjective on objects”-the exact meaning of this need not concern us 

here, since in the cases to be considered, pa will actually be an open surjection, which 

is a stronger condition. 

Full and faithful functors appear in particular when constructing “full images” (or 

“inverse images”, in the terminology of [17, p. 1 l]), a construction which we shall 

now recall in slightly more general form. Let do, dr : P t M be continuous maps 

making P = M into a topological oriented graph. If 4: 2 + M is any continuous 

map, we may form the topological graph P = %? obtained by pulling (do, di) : P -+ 

MxMbackalong~x~:~xMtMxM.Wemaydenoteit~*(PrM)orjust 

Pt G. Since open surjections are stable under pull-back and composition, an easy 

diagrammatic argument shows that if da : P -+ M and 4 are open surjections, then so is 

the structural map & of 4” (P). And if P = M is part of the structure of a topological 

multiplicative graph, respectively of a topological groupoid, then a similar structure is 

induced on p. 

Theorem 4.1. For any locally simply connected (locally path connected, open) local 

equivalence relation r on a space M, the monodromy groupoid IT1 (M, r) of Theorem 3.6 

is essentially equivalent to an &ale groupoid. 
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Proof. Let { (Ui, Ri) 1 i E I} be a simply connected atlas for the local equivalence 

relation T on M. Let % = u Vi. Thus we have an open (even &ale) surjection 4 : E + 

Ad, and one may form the topological graph p Z G = 4* (P(M, r) = M). Its arrows 

are thus lubelled leafwise paths (cx, i, j) where (i, j) E I x I (the “label”), and where 

CY is a leafwise path with a(O) E Ui and (~(1) E Uj. Note that the space of arrows 7; 

of this topological graph is a disjoint union of the open subsets di’ (Ui) n d,’ (Uj) of 

P(M, r). 
Now the map (de, dl) : P + M x M for P = P(M,r) factors across the map 

h:P(M,r) -+ IT,(M,r) = 17, as displayed in the right hand column in the following 

diagram 

and we may therefore perform the pulling back that defines F in two stages, i.e., by 

constructing it from the two pull-backs that appear on the right in the diagram. Since h 

is an open surjection, then so is x. 

We introduce now an equivalence relation N on 7, by putting (cr, i, j) N (Q’, 2, J”) if 

i = i’, j = j’, and if cr is leafwise homotopic to 224 * CY’ * zy, for some (hence any, by 
t 

simply-connectedness) path xx’ from z = a(O) to z’ = a’(O) inside XRi, and for some 

(hence any) path zy from y’ = o’(l) to y = a(l), inside yRj. 

Note that the equivalence relation N is a disjoint union of equivalence relations on the 

individual d,‘(Ui)f~d,‘(Uj)’ s; and each of these individual equivalence relations is open, 

due to openness of the relation of leafwise homotopy, and openness of the concatenation 

map *. Thus - is an open equivalence relation on p. Let us denote the quotient space 

Gt . If we also let Go denote U(Ui/Ri) (which is a quotient qo : 2 + Go of G), we -- 
have well-defined continuous maps da, dt : Gt + Go obtained from the structural maps 

da, z for the topological graph 2 = M, and since these structural maps are open, then 
-- 

so are da, dt . Let us denote the topological graph Gt = Go by G. 

Now because the equivalence relation N includes leafwise homotopy, we evidently 

may factor the quotient map p -+ Gt across fi as displayed in the diagram, with both 

factors open surjections. The factor q1 is compatible with the structural maps, so that we 

get a morphism q of topological graphs 

q : 4* (DI (M, 4) -+ G. 

There is (set theoretically) a unique multiplicative structure on the graph G making q into 

a homomorphism of multiplicative graphs; and using that all the maps displayed in the 

relevant square (lower left hand square of (6)) are open surjections, one concludes that 
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the multiplication on G is in fact continuous. And since 4* (RI (M, r)) is a topological 

groupoid, so is G. 

We shall prove that the morphism q of topological groupoids is an essential equiva- 

lence. Clearly, qo is an open surjection. So it remains to be seen that q is full and faithful, 

i.e., that the lower left hand square in the diagram is a pull-back. Set theoretically, this 

is clear. To see that it is also topologically so, observe that the whole picture in question 

is a disjoint union over the set of labels (i,~‘); fix one such label (i, j) and suppress it 

from notation. So consider a point [o] = h(a) E Z?, i.e., a leafwise homotopy class of 

a path cy with o(0) E Ui and o(j) E Uj, and consider an open neighbourhood h(0,) 

around it, where 0, is an open neighbourhood around cy in P(M,r). We may assume 

that 

0, =N~((~,s,),...,(~L,sIL)) 

with VI c Vi and V, C: Uj, and with 5’1 = Ri IV, and S, = Rj IV,. To see that the - 
topology on fi is not finer than the topology induced from Gi and M x k?, it suffices 

to see that 

d,-‘(6) n Z;‘(K) n 4;‘0(0:,) c h(o,) (7) 

for some open set O& around N in P(M, r). Let pi be the saturation of VI under the 

equivalence relation Ri, and ?i = RiIcl; similarly, ?n is the R,-saturation of V, and 

?n = Rj iGn,. Let O& be the basic open set 

O&=~M((~,S^I)$4>S1) >...> (K,S?J,(Qn,%J). 

We easily see that h(O&) is saturated for N, i.e., equals q;‘qlhOk. For, if p E Ok, 

then z * p * & is easily reparametrized (and hence leafwise homotopic) to a path 

y likewise belonging to Ok, for any paths & and J inside one equivalence class 

of Ri (respectively Rj), since such paths also belong to one equivalence class of s^i 

(respectively Z&). 

Now if p E Ob, and furthermore p(O) E V,, p( 1) E V,, we may, by simply-connect- 

edness of the equivalence classes of s^i , deform the restriction of p to [0, 1 /(n + 2)] by 

a leafwise homotopy into a path entirely in VI C cl, and similarly for the restriction of 

P to [(n + l)/(n + 2), 111 and then by a reparametrization deform it further into a path 

in 0,. These three deformations together yield a leafwise homotopy of p into a path in 

O,, proving the inclusion (7). 

We finally prove that & : Gi + Go (and hence dr) is locally injective. Let an element 

in Gi be represented by (a, i, J’) E p. It suffices to find an open neighbourhood N 

around (a, i, j) such that if (p, i, j) E N and ct(O)R$(O), then (a, i, j) N (p, i, j). We 

first take a neighbourhood of Q E P(M, T) of form 

N((K > Sl), . . . , WL, St,) (8) 

with each (Vk, Sk) a simply connected chart for r, and with VI C Vi and V, C Uj as 

charts, i.e., with Si the restriction of Ri and S,, the restriction of Rj. Then cu(lc/n) E 

Vk nVk+l for each Ic = 1,. . , n - 1; we may therefore find an open %‘k with cy(Ic/n) E 
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W, c VknVk+l and such that Sk and S k+t agree on wk and have connected equivalence 

classes there. Let N be the open set consisting of (p, i, J’) which satisfy 

,OE N((V,,S1),...,(K,,Sn)) and P L E wk (k= l,...,n- 1). 
0 

Assume now that the elements in Gt represented by (cr, i, j) and (p, i, j) have com- 

mon &-value; we want to prove (cr, i, j) N (0, i, j). The assumption of common &- 

value means that o(0) N p(0). Since o(O) and p(O) are in Vl, cy(O)S1/3(0). It follows 

that a(l/n)S~p(l/n), and since both these points by construction of N are in WI 

where St and Sz agree, we have o( l/n)S#( l/n). Continuing in this way, we conclude 

cy(l)S,,D(l). Let 2 and J be paths inside the equivalence classes of St and S,, re- 

spectively, connecting z’ = /3(O) with z = u(O) (respectively y = a( 1) with y’ = /3( 1)). 

We claim that 

II -$ xx*a*yy is leafwise homotopic to ,S. (9) 

For, we may connect o(k/n) to ,B(k/n) by a path inside their common equivalence 

class of ,S’,lWk = Sk+, 1 Wk (k = 1, . . , n - l), and using simply-connectedness of the 

equivalence classes of the Sk’s, we can then, in n steps, deform .z * (Y * y3 to p by 

a leafwise homotopy. Thus (o, i, j) N (/3, i,j), so they represent the same arrow in Gt. 

This shows that & is injective when restricted to the open neighbourhood of [(cy, i,j)] 

represented by N. 

Together with the fact, already proved, that & is open, it now follows that da is 

Ctale. We remind the reader that a topological groupoid is called an &ale groupoid if its 

da-map (and hence its dt-map) is Ctale. Thus our groupoid G is &ale. This proves the 

theorem. 0 

Since the monodromy groupoid is essentially equivalent to an &ale topological 

groupoid G, and the categories of invariant sheaves for two essentially equivalent 

groupoids are equivalent (cf. [ 1 S]), we thus conclude from the Theorems 4.1 and 3.6: 

Corollary 4.2. Let r be a locally simply connected (and locally connected, open) local 

equivalence relation on a space M. Then the category sh(M, I-) is equivalent to the 

category of G-sheaves, for a suitable &ale topological groupoid. 

This implies that sh(M, r) is in fact an Ctendue topos, in the sense of Grothendieck, 

cf. Appendix A. Let us also note that the existence of an equivalence 171 (M, r) E G 

by [ 121 implies that 171 (M, ) I- IS an e’tale-complete groupoid, i.e., can be reconstructed 

as the topological groupoid of points of its classifying topos BDt(M,r) E sh(M,r); 

cf. [ 181 for this notion. 

We shall, for use below, explicitly record an information contained in the proof of the 

above theorem, namely the information how the local section s which is a right inverse 

for ;iolN looks in a sufficiently small neighbourhood 0 of [x:, i] = qa(z, i); if (x’, i) has 

2’ so near z that there exists a path /5’ E N with p(O) = x’, then the formula (9) shows 
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that the N-equivalence class of p only depends on the equivalence class of (x’, i), so 

that 

[a%] * [(AiJ)] 

is a well-defined map 

O/S, -+ N/ w. 

(The set of (z’,i) for_which there exists a path p E N with p(O) = 2’ is open, by 

openness of do : P --t M. Thus O/S, = O/R, is open in Go.) 

Holonomy 

The rest of this section is not used anywhere else in this paper, and is included only 

to contrast the holonomy with the monodromy. 

It is well known that the holonomy groupoid of a foliation is the standard model 

for the quotient “space”, i.e., the “space” of leaves. There are constructions of this 

holonomy groupoid ([7,32,21,2], following a suggestion of Pradines) directly in terms of 

the foliations, and these constructions can also be adapted for local equivalence relations. 

Here, however, in order to compare the holonomy with the monodromy discussed above, 

we will give a roundabout construction of the holonomy groupoids, namely in terms of 

the monodromy groupoids. 

For any &ale topological groupoid G = (Gi Z Go), one can construct a morphism 

of groupoids G + TGo, where EGO is the (Ctale) topological groupoid of germs of 

local homeomorphisms of Go, namely by associating to an arrow g : 2 + y in G the 

germ at z of the map dl o s where s is a local section of do : Gi + Go with s(z) = g. 

The morphism G + rGe is the identity map on the space of objects and is &ale on the 

space of arrows. The image JG of G + rGe is thus an open subgroupoid of EGO. 

Returning to the specific Ctale groupoid G constructed above, and recalling the de- 

scription of local sections of do given above, it follows that the germ E rGc at [x, i] 

associated to the arrow [(cr, i, j)] E Gt (where o(0) = z, CX( 1) = y) may be described by 

([. . .] denoting Ri-equivalence class, respectively Rj-equivalence class), where [z’, i] E 

0 and y’ = p(l) for some path ,D E N with p(O) = 2’. We call this germ germ,(a,i,j). 

Since the description of N did not depend on the specific label (i, j) (when V, and 

V, are chosen small enough, the same N will work for any other label (i’, j’) with 

z E Ui,, y E U,I), it follows that if two leafwise paths oi and (~2 from z to y have 

the property that (or, i,j) defines the same germ as (c~,i, j), then ((~1, i’,j’) defines 

the same germ as (CQ, i’, j’). In other words, there is a well defined equivalence relation 

ho1 on P(M, r) (coarser than leafwise homotopy, thus also descending to an equivalence 

relation on IT(M, T-)), such that, for two paths err and CY~ from IC to y 

CYI ho1 CYZ iff germ,(or,i,j) = germ,(az,i,j) 

for some (hence any) label (i, j) with z E Ui, y E Uj. 
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Let us denote the quotient 17(M, r)/hol by Hol(M, r). From the construction given 

of Ho1 it is clear that Hol(M, r) sits in a diagram 

in which all four squares are pull-backs; now 4_ is &ale, so 17(&f, T) + Hol(M, r) is 

&ale. Composition in JG thus induces a continuous composition on Hol(M, T), and 

IT(M, r) + Hol(M, T) is thus an e’tule homomorphism of groupoids. 

It is clear that the construction of Hol(M, r), unlike that of (G and) JG, does not 

depend on the choice of atlas (Ui, Ri). 

We shall prove, however, that, modulo essential equivalence, the Ctale groupoid JG is 

determined by (M, r) alone. Any other choice of atlas would give another &ale groupoid 

G’, essentially equivalent to 17, so G and G’ are essentially equivalent. By the construc- 

tion of [ 18, Section 71, this implies that there is a topological groupoid H and essential 

equivalence functors H + G and H -+ G’, with H Ctale since G and G’ are. So to 

prove the essential equivalence of G and G’, it suffices to prove 

Proposition 4.3. If f : H + G is an essential equivalence between .&tale topological 

groupoids, then JH is essentially equivalent to JG. 

Proof. As shown by Pronk [24, Lemma 1.3.21, the assumptions of the proposition imply 

that fe : Ilo -+ Go is &ale. Therefore, it is clear that the square 

rHO e rGO 

Ho x Ho -Go x Go 

(10) 

is a pull-back. Also, the assumption that f is an essential equivalence functor implies 

that 

HI -G1 

(11) 

Ho x Ho -Go x Go 

is a pull-back. It follows that we have a pull-back 

HI ----+Gi 

1- 1 
FHo - rGo 

(12) 
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The left hand vertical map here associates to an arrow h E HI the homeomorphism 

germ on Ho to which it gives rise. Similarly for G. But the space of arrows of JH, 

respectively JG, are just the images of these vertical maps (with subspace topology from 

rH0, respectively TGo). The image factorization of a pull-back diagram is for trivial 

reasons a pull-back, so 

(JHh - (JG)I 

I I 
I-Ho - rGo 

(13) 

is a pull-back. Concatenating this with the pull-back diagram (10) yields a pull-back 

diagram witnessing that JH --t JG is full and faithful. Since H t G is essentially 

surjective on objects, it follows that so is JH + JG (in fact, the space of objects of 

JH agrees with that of H, and similarly for G). 0 

5. Constructing local equivalence relations from groupoids 

In this section, we shall prove a converse of our construction of an &ale groupoid out 

of a local equivalence relation, namely we shall prove the following result. (In the next 

section, we will reinterpret this result as a characterization theorem in topos theory.) 

Theorem 5.1. For any e’tule topological groupoid G, there exists a topological space 111, 

equipped with a locally connected, locally simply connected local equivalence relation 

r, such that there is an equivalence of categories 

BG N sh(M, T-) 

between G-equivariunt sheaves and r-sheaves on M. 

The space M in the statement of the theorem will in fact be constructed as (a variant 

of) the classifying space BG of the topological groupoid G, which generalizes Milnor’s 

construction of the classifying space for a topological group (cf. [30]). As in the case of 

groups, one has on BG a (“universal”) principal G-bundle EG, 

EGLGo 

I 
4 (14) 

BG 

and since G1 + Go is etale, then so is 4, see below. 

The strategy is to consider the equivalence relation R, on EG given by (2, y) E 

R, iff T(X) = n(y). It provides an atlas for a local equivalence relation T, on EG 

which we shall prove “descends” to a local equivalence relation T on BG (meaning that 

4*(r) = r,), and th’ IS T will be proved to have the property claimed in the theorem. 

We begin by some general considerations concerning principal G-bundles. 
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Recall that a left G-bundle over a space It4 is a space P equipped with a map 

(p: P + M and a continuous fibrewise left action by G, given by maps 

GI x&PAP. 

To say that the action is fibrewise means that 

4(9 . PI = 4(P) 

for any p E P and g E G1 for which g ‘p is defined, i.e., for which do(g) = n(p). Also, 

the action should be unitary and associative, in the evident sense, The G-bundle is called 

principal if 4: P + M is an open surjection, and the map 

given by (g,p) * (9 . P,P> is a homeomorphism. Thus, in such a principal bundle, 

for any two points p, q in the same fibre of 4: P + M, there exists a unique arrow 

g : n(p) + r(q) in G with g . p = q. It is not difficult to prove that for such a principal 

G-bundle, the Ctaleness of the structural maps for G implies the Ctaleness of C#J (cf., 

e.g., [ 191). 

Recall also that when P is a G-bundle, as above, one may construct a new topological 

groupoid PG with P as space of objects, and with arrows p + q those arrows g E Gi 

for which g .p is defined and equals q; so the space of objects of PC is Gt XG~ P. There 

is an evident functor rr : PC + G given on objects by r: P + Go. Pull-back along 

this functor defines a functor taking G-equivariant sheaves to PG-equivariant ones; we 

denote it 

Br* : BG + BPG. 

We next consider, for a principal bundle as above, the local equivalence relation r, 

on P obtained from the global equivalence relation R, on P given by (z, y) E R, iff 

7r(Cr) = 7r(y). w e will prove that this local equivalence relation descends to an local 

equivalence relation on M: 

Lemma 5.2. There exists a (unique) local equivalence relation r on M such that r, = 

4*(r). 

Proof. As we pointed out above, the map 4 : P -+ M is necessarily &ale, and hence has 

enough local sections. For any open set U 2 M and section a : U + P of 4, consider 

the equivalence relation R, on U having as equivalence classes the sets 

@c’(t) n u), t E Go. 

It suffices to show that these equivalence relations R,, for all open U c M and all 

sections a, are locally compatible. For in this case they together define a local equiva- 

lence relation r on M which evidently has the property that C++*(T) = r, on P. So, for 

compatibility, consider any point x E M and two sections a : U -+ P and b : V + P of 
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4 defined on neighbourhoods U and V of x. We need to find a smaller neighbourhood 

W C U n V of z on which R, and Rt, agree. To this end, let g: TT(U(X)) + n(b(x)) be 

the unique arrow in GI with 

g . a(x) = b(s). 

Since do : G1 + Go is an &ale map, there is a small open neighbourhood K of x(u(x)) in 

Ge so that there is a section 9: K + G1 of da with s(n(a(z))) = g. Choose W C UnV 

so small that for any point p E W, 

ii(+(P))) * U(P) = b(P). 
For any two points p, q E W with (p, q) E R,, i.e., with ~(a&)) = r(u(q)), one then 

has 

n@(p)) = r+(r+(p))) ~44) = ~li$~hw) 

= Gi(MqN) = +++-4))) 4q)) = @(q)) 7 

hence (p, q) E &. This shows that R, fl (W x bb’) & Rt,. A symmetric argument will 

produce a neighbourhood W’ so that Rb n (W’ x W’) C R,, so that R, and Rb agree 

on W n W’, as required. 

This proves the lemma. •I 

If the map R has sufficiently good properties, the local equivalence relation r, on 

P will be open and locally path connected, and hence so will the local equivalence 

relation r on M, so that our theory applies; in particular, we will have full subcategories 

sh(M, r) C_ sh(M) and sh(P, r,) 2 sh(P). Finally, we let B(PG, r,) be the category 

of those Pc-equivariant sheaves which, as sheaves on P, are r,-invariant. 

The various categories and functors considered fit into the diagram below. In this, the 

top composite is just 7r*. Note that a sheaf of form x*(F) on P is evidently r,-invariant, 

so that 7r* factors as indicated; similarly for BTT* : BG + BPc. 

sh(P) c-- sh(P, r,) (‘) - sh(Go) 

i 1 1 
B(PG)c- B(PGA)~,)BG 

b 

sh(M) - sh(ti, r) 

Consider now the case where 7r is an open map with connected fibres. Then the functor 

7r* : sh(Gc) -+ sh(P) IS in fact full and faithful. Also the functor Bn* : BG + BPG 

is full and faithful; this is an easy diagram chase argument utilizing that 7r* is full and 

faithful, and that the space of arrows of PG is r*(Gi) (so all the horizontal arrows in 

the diagram represent full inclusions). A similar argument proves that if for a sheaf F 
on Go the sheaf x*(F) on P is provided with a PG-action, then this action comes from 

a unique G-action on F, via r*. In other words, the composite of the two top horizontal 

squares in the diagram is a pull-back of categories. 



A. Kock, 1. Moerdijk / Topology and its Applications 72 (1996) 47-78 73 

Also the composite of the two left hand squares is a pull-back; this follows from the 

fact that T and r, correspond under the local homeomorphism 4, and that the prop- 

erty of being an r-sheaf (respectively r-,-sheaf) is a local property. Finally, the top left 

hand square is a pull-back, by definition of the category B(PG, r,). From elementary 

properties of pull-back diagrams, it follows that the two remaining squares are also 

pull-backs. 

We now have 

Lemma 5.3. Let P + M be a principal bundle for the e’tale topological groupoid G, 

with structural map x : P + Go. Assume that the map n is open and such that r, is 

locally connected, and assume that the fibres of r are connected and simply connected. 

Then the funcors (2) and (4) in the diagram are equivalences of categories, and in 

particular sh(M, r) = BG. 

Proof. The proof hinges on consideration of the above diagram, in conjunction with the 

following result. This result is a corollary of the Theorem 2.5, and may be of use in 

other contexts, so that we state it in form of a separate proposition: 

Proposition 5.4. Let K : P + X be any open continuous map such that the fibres of 

it are connected and simply connected; also assume that the local equivalence relation 

r, on P induced by x is locally connected. Then n* : sh(X) -+ sh(P) establishes an 

equivalence 

sh(X) 2 sh(P, r,). 

Proof. It is clear that any sheaf of the form r?(F) carries the structure of the r,-sheaf. 

Conversely, assume E + P is an r,-sheaf. So there exists a covering of P by open sets 

Vi such that the equivalence classes of R,IUi are connected, and E is constant along 

these equivalence classes (where R,, as above, is the global equivalence relation (kernel 

pair) of n). Thus E is locally constant along the equivalence classes of R,. But these 

are simply connected, by assumption, so E is constant along them. Theorem 2.5 now 

implies that R, act continuously on E, and thus by descent theory (cf. the discussion in 

the example at the end of Section 2), E is of form r*(F) for some sheaf F on X. This 

proves the proposition. 0 

From the proposition it now follows that the functor (1) in the diagram is an equivalence 

of categories, and since the square under it is a pull-back, it follows that the functor (2) 

is an equivalence. Also, the functor (3) is an equivalence; for, the assumption that the 

G-action on P is principal is equivalent to the statement that the action groupoid PC is 

isomorphic to the equivalence relation P x M P, but then B (PG) N B(P x M P), the 

category of actions of this equivalence relation on sheaves on P. But by descent theory, 

(as in the proof of the Proposition), B(P x~ P) ? sh(M), via the functor (3), so (3) is 

an equivalence. Since the square next to it is a pull-back, it follows that the functor (4) 

is an equivalence of categories. This proves Lemma 5.3. 0 
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Remark. The local equivalence relations T and T, are both locally simply connected if 

there exists a basis of open sets U in P with the property that they intersect each fiber 

in a connected and simply connected (or empty) set. 

To prove Theorem 5.1, it now suffices to construct a suitable principal G-bundle. We 

will use a variant of the standard universal bundle EG + BG of (Milnor-)Buffet- 

Lor [5], considered in [19]. Its base space 

M=BG 

is the usual [30] classifying space, constructed as the geometric realization of the nerve 

N(G) of G. (This nerve is a simplicial space, and the appropriate realization is the 

“thick” one of [30].) For the construction of the total space P = EG of the bundle, 

consider the topological groupoid Dee(G), the objects of which are the arrows g : z + y 

in G, while the arrows from g to g’ are the commutative triangles in G of form gob = 9’; 

thus there is a unique arrow h = g-’ 0 g’ from g’ to g in Dee(G) iff g and g’ have the 

same codomain. Dee(G) inherits an evident toplogy from G. We define 

P = B Dee(G) 

to be the classifying space of this groupoid. The domain map of G defines a homomor- 

phism Dee(G) + G, hence a map of classifying spaces 4 : P + M. 

The groupoid G acts on P by composition. In fact, it acts on the simplicial space 

N(Dec(BG)), h w ose n-simplices arc the strings 

1J_g 
hl h 

q)+.--...&z,. 

The structure map rr, : iV,,(Dec(BG)) + G 0 sends such a string to the point y, while 

an arrow acts on this string by left composition, 

u.(g,ht,...,h,) = (ug,ht,...,h,). 

In this way, each space N,(Dec(G)) comes equipped with a G-action. This action, with 

the projection maps C& : N,(Dec(G)) + N,(G) sending (9, hl, . . . , h,) to (hl, . , h,), 

makes N,(Dec(G)) into a principal G-bundle over N,(G). By geometric realization, 

one thus obtains a principal G-bundle structure on C$ : P + M. 

Observe that since the groupoid G is Ctale, so are the maps r, : N,(Dec(G)) + Go. 

Thus N.(Dec(G)) 1s in fact a simplicial sheaf over Go. Its fiber over a point y E Go 

is the nerve of the (discrete) groupoid G/y, and the fiber n-‘(y) of 7r : P + Go is the 

classifying space B(G/y) of this groupoid. Since G/y has a terminal object, this space 

is evidently contractible. 

The following lemma shows that the map rr : P + Go is open and has the property 

that the local equivalence relation T, defined by it (as above) is locally path connected 

(cf. the preceding remark), so that all conditions in Lemma 5.3 are in fact satisfied by 

the bundle constructed. 

Lemma 5.5. Let E. be a simplicial sheaf on a space B, and let 1 E. 1 be its geometric 

realization, with canonical map p : 1E.l + B. Then p is an open map, and 1 E. 1 has a 

basis of open sets which intersect each$ber of p in a contractible set. 
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Proof. The proof is a straightforward adaption of the standard construction of contractible 

neighbourhoods in the geometric realization of a simplicial set, see, e.g., [ 10, p. 45-471. 

In detail, let us write p, : En + B for the &ale map corresponding to the sheaf En 
on B, and let us say that an open set W C En is p-small if p, 1 W is a homeomorphism. 

With the standard skeletal filtration 1 El cn) of 1 El, there is for each n a canonical quotient 

map un : E,, x An + [El(“), whose restriction to En x aAn maps into IElnpl, to give 

a pushout 

By construction, \E\ has the inductive topolgy with respect to this skeletal filtration. 

Since each projection En x An + En + B is clearly an open map, so is the map 

lEl(n) 3 B for each n; so p: E + B is open. Next, following [lo], we describe a 

procedure for extending an open set U,_l 5 IEl(“-‘) to an open set U, C IEI(“) : for 

z E En and each t E An with gn(x, t) E Un_l, choose a small (in the above sense) 

neighbourhood W, of x in En and a convex open neighbourhood V, of t in An, such 

that #(Wz x (Vt n aAn)) 2 Un_l. Let U,, be the union of the images under (m of all 

these open sets W, x V, C En x An: 

U, = u (a”(W3: x Vt) I (2, t) E En x A”, a”(~, t) E &_I}. 

Now suppose < is any point of 1 E I. Then there exists a smallest k such that < = crk (~0, to) 

for some 50 in Ek and some interior point to of A’“. Let uk = a”(W x V), where W 
is a p-small neighbourhood of x0 in & and V is a convex open set in A” containing t. 

Starting from this set uk, define uk C: uk+l C ... by the procedure just described, and 

let U = U,>!, U,. This set U is an open neighbourhood of < in /El, and the collection 

of all open neighbourhoods constructed in this way is a basis for the topology on /El. 
Moreover, since all neighbourhoods in the various En used in the construction are p- 

small, the intersection ub of such an open set U c [El with a fiber p-’ (b) is an open set 

of standard form in the realization lE[b of the simplicial set Eb, hence is contractible, 

see [lo, p. 471. 
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Appendix A 

In the previous sections, we have proved that every locally simply connected local 

equivalence relation on a space A4 has a monodromy groupoid essentially equivalent to 

an Ctale groupoid (Theorem 3.6) and conversely, that every Ctale topological groupoid 

arises this way (Theorem 5.1). In this appendix, we will rephrase these results in the 

language of topos theory. 

Recall (cf., e.g., [16, p. 1271) that a topos is a category (equivalent to the category) 

of sheaves on a small site. One can equivalently define a topos to be a category which 

satisfies the exactness conditions of “Giraud’s theorem” ([l, p. 3031 and [16, p. 5751). 

In the following, we will use no other topoi than those listed in the following examples. 

Example A.l. (a) For any topological space X, the category sh(X) of sheaves on X is 

a topos. 

(b) For any topological groupoid G, the category BG of all G-equivariant sheaves is 

a topos (the classifying topos of G). 

(c) If E is a topos, and U is an object of E, then the “comma category” E/U is a topos 

(see, e.g., [16, p. 1901 and [l, p. 3651). 

Recall also (from, e.g., [ 16, p. 3481) the definition of a (geometric) morphism f : & + .F 

of topoi, as a pair of functors f* : E + F and f’ : F + tT (called direct and inverse 

image, respectively), such that f* is left exact, and left adjoint to f*. This morphism f 

is said to be an equivalence, denoted 

if f* and f* together define an equivalence of categories. Again, we will only use some 

simple examples: 

Example A.2. (a) A continuous map f :X + Y of topological space induces a mor- 

phism of topoi f : sh(X) + sh(Y), [16, p. 3481. 

(b) A continuous homomorphism 4: G --+ H between topological groupoids induces 

a morphism between their classifying topoi B#J: BG -+ BH. If d: G -+ H is an 

essential equivalence, then B$: BG E BH (cf. Section 4 above and [18]). 

(c) if & is a topos and U is an object of E, the functor Y ++ (pi : U x Y -+ U) is the 

inverse image of a geometric morphism I/U --+ 1. 

Definition A.3 [ 1, p. 4821. A topos & is called an &endue if there exists an object U E & 

and a topological space such that 

(i) U + 1~ is epi (1~ is the final object of E); 
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(ii) there exists an equivalence of topoi E/U N sh(X). 

These &endue topoi were introduced by Grothendieck and Verdier in the context of 

foliations and other local equivalence relations. In particular, it was conjectured in [ 1, 

p. 4891 that for a suitable local equivalence relation T on a space M, the category sh(M, r) 

of r-invariant sheaves is an &endue if r satisfies certain (rather abstract) conditions. 

The following theorem provides two concrete characterizations of &endue topoi. The 

first description, expressed by the equivalence (i) H (ii), is proved in [l]. The second 

characterization, expressed by (ii) ti (iii), summarizes our earlier results. In particular, 

the implication (iii) + (i) proves a form of the conjecture of Grothendieck and Verdier. 

Theorem A.4 For a topos E, the following are equivalent: 

(i) & is an &endue topos. 

(ii) There exists an &ale topological groupoid G such that & is equivalent to the 

category BG of G-equivariant sheaves. 

(iii) There exists a space M and an (open, locally path connected) locally simply 

connected local equivalence relation r on M such that & is equivalent to the category 

sh(M, r) of r-invariant sheaves on M. 

(A further, equivalent, condition, follows by combining [26] and [12].) 

Proof. As said, (i) H (ii) is in SGA4 ([ 1, p. 4811); the implication (iii) + (ii) is Theo- 

rem 3.6 above, while Theorem 5.1 provides the implication (ii) + (iii). 0 

As pointed out in the introduction, we can now apply the Comparison Theorem of 

[ 191 to characterize the weak homotopy type of sh(M, T). 

Corollary AS. For any (locally path connected, open) locally simply connected local 

equivalence relation r on a space M, the topos sh(M, r) has the same weak homotopy 

type as the classifying space BI71 (M, r) of its monodromy groupoid. 

Proof. By Theorem 3.6, sh(M, r) N BG for an &ale groupoid essentially equivalent to 

171 (M, r). Furthermore, by lot. cit. the canonical map BG -P BG is a weak homotopy 

equivalence. Finally, the essential equivalence G -+ ITI (M, r) induces a weak homotopy 

equivalence of classifying spaces BG + Bl71 (M, r) (cf. [ 111). 
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