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Strong Functors and Monoidal Monads 

By 

ANDERS KOCK 

In  [4] we proved that a commutative monad on a symmetric monoidal closed 
category carries the structure of a symmetric monoidal monad ([4], Theorem 3.2). 
We here prove the converse, so that, taken together, we have: there is a 1-1 cor- 
respondence between commutative monads and symmetric monoidal monads 
(Theorem 2.3 below). 

The main computational work needed consists in constructing an equivalence 
between possible strengths 

8tA,B: A c~ B -+ A T ~  B T 

on a functor, and possible "tensorial s t ren~hs"  on T 

t"X,B: X (~ BT--> (X (~ B) T; 

T is assumed to be a functor between categories tensored over a monoidal closed 
category 3~'. The equivalence is stated in Theorem 1.3. (There is a similar theorem 
for the notion of eotensorial strength Ax,B: (Xt~ B) T--+ Xr B T, which we do 
not include in this note.) 

As an application of the theory here, we construct strength on certain functors 
related to the power set monad. 

I f  ~r is a 3~-category, we use t~ to denote the hom-functor ~r x ~r as 
well as to denote the hom-functor of 3r ~ itself. 

1. Making a functor strong. Let ~r and ~ be categories tensored over the symmetric 
monoidal closed ~r [3]. Let T: ~ 0  --> ~0 be a functor between the underlying cate- 
gories. To a family of maps 

(1.1) 8tA,A,: Ac~A'--> A Tc~A' T 

we associate a family of maps 

(1.2) t"X,A : X (D A T -> ( X @ A ) T 

by commutativity of 
~''X,A 

X Q A  T ~(X ~ A )  T 

(1.3) ua| 

(A~ (X | |  T .~|174 T~ (X | T) | T; 
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conversely, to a family (1.2) we associate a family (1.1) by commutat ivi ty  of 

A dpA' stA.z ~ A T t ~ A '  T 

(1.4) ua~ I ir 

A T c~ ((A ?pA') Q A T) let ,u~,.  > A T ~p ((A gp A') Q A) T . 

I t  is not difficult to prove that  ff the family (1.1) is natural  (not necessarily S/--na- 
tural  - -  we have not yet assumed tha t  T is a ~-functor) ,  then so is the family (1.2) 
constructed out of it; and ff the family (1.2) is natural,  then so is the family (1.1) 
constructed out of it. (To prove natural i ty  of st in the first variable, as well as proving 
natural i ty of t" in the second variable, involve diagTams consisting of seven natu- 
ral i ty squares; whereas the remaining variables involve only three-square diagrams.) 

Proposition 1.1. The ,passages (1.1) ~-> (1.2) and (1.2) ~-> (1.1) are mutually inverse 
on natural/amilies. 

P r o o f .  Each argxlment consists in expanding the definitions, and chasing a d i a ~ a m  
consisting of natural i ty squares (naturality of u, ev, and t" in the one case ; naturali ty 
of u, ev, and st in the other case) and some triangles expressing the adjunction 
equations between u and ev. 

For any family st as in (1.1) we shall say tha t  st commutes with units ff 

I 
/ \ 

(1.5) / ,~ 

A eb A s---7~ A T c~ A T 

commutes for all A e d .  This d i a ~ a m  is the same as the diagram of Axiom VF 1' 
in [2], p. 497. Likewise, we say that  st commutes with composition if  the d i a ~ a m  of 
Axiom VF2 '  (same place) commutes:  

M 
( B g ~ C ) ( ~ ( A  c~B) ) A r 

I 

(1.6) st | [ st 

(B T ?p CT) @ (A T gp B T) ~ A Tgp C T . 

Proposition 1.2. I / the  ]amily st is natural and commutes with units and composition, 
then it makes T into a $/'-functor T : d -~ ~ with underlying/unctor To the original 
one. Conversely, the strength st o /a  $/'-]unetor T is a /ami ly  (1.1) which is natural with 
respect to the underlying/unctor T o / T ,  and which commutes with unit and composition. 

P r o o f .  To prove the first part  means just proving that  T0 = T, that  is, for 
a �9 ~r A'),  we should prove 

(a) T ~- (a) (stA,A') V 

(where V: SF __> 2~o is part  (ii) of the data  of the closed category $/~, see [2], 1.2). 
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Using naturali ty of st with respect to a, this follows ff 

(1A) (StA,A) V = 1At; 

but  this holds since st commutes with units, and since * ~ (I) V by (?'x) V is sent to 
l x  for any X, by 1.3.17 in [2]. 

Conversely, the strength of a 3~'-functor ~' commutes with units and composition 
by definition; and it is natural in both variables by Proposition 1.9.4 in [2]. 

For  any family t" as in (1.2) we shall say tha t  t" satis/ies the unit condition if  

I |  r'~'~(I |  T 

(1.7) l .~ ' \~ -~ z.~' 

A T  

commutes for all A ~ ,~r (Ix being the isomorphism which is part of the data of ~r 
(resp. ~ )  being tensored over 3r Likewise, we say that  t" satis/ies the associativity 
condition if  

X |  |  T ) I |  |  |  T ~ ( X  | ( r  |  T 

(1.s) , i ~  ~1 , r  

( x  @ Y) @A T r ) ((X @ Y) @A) T 

commutes for all X,  Y ~ $/', A ~ d (here, the isomorphisms a are deducible from 
data for d (resp. ~ )  being tensored over ~ ;  for d ---- ~ ----- tP, a is just the given 
associativity isomorphism for @ in ~ ) .  

Theorem 1.3. Let d ,  ~ be categories tensored over $/', and let T: ~r -> ~o be a 
[unctor. Then the correspondence o] Proposition 1.1 establishes a 1-1 correspondence 
between ]amilies st (as in (1.1)) making T into (the underlying of) a strong [unctor, and 
natural ]amilies t" (as in (1.2)) which satis[y the unit and associativity condition. 

The theorem justifies callLn, g t" a tensorial strength on T. 

P r o o f .  A proof of the full theorem, as it stands, may be found in [5]. We shall 
here only W e  the proof for the base that  ~r = ~ = $/', which is all we need for the 
main Theorem 2.3. 

Let  us start  with t", satisfying the conditions, in particular naturality; so, as we 
have remarked, the family st corresponding to it is natural. By Proposition 1.2 we 
need only check that  ~t commutes with unit and composition. 

To prove commutativity of (1.5), with st defined by (1.4) in terms of t", we transpose 
the two legs of the d ia~am under the adjointness 

(1.9) --  | A T -t A Tqh -- ; 

then jAT yields 
1A~: I |  T-~> A T .  

8* 
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The composite ]A " st, on the other hand, yields 

jA @ 1-st  @ 1 " e V = ] A  @1 . u A T @ I  �9 (leb t") @1 "(leb (ev) T)  @1 .ev = 

-~ ].4 @ 1 �9 u AT Q l " ev " t" " (ev) T 

by naturali ty of ev. Now u AT ~ 1 and ev cancel, by adjunetion equations, whence 
we are left with 

]A | 1 .  t "  . (ev) T = 

= t"- (iA | 1) T -  (ev) T = 

t" " lA T 

by naturali ty of t" with respect to ]A, and by the definition of IA as transpose of ]A. 

But t" �9 IA T is Idr ,  by the assumption (1.7). 
To prove that  st commutes with composition, transpose both legs of (1.6) under 

the adjointness (1.9), with st expanded in terms of t". Using naturali ty of ev and of 
t", it is easy to see that  the clockwise composite 5delds (1.10) (where we for ease of 
notation assume ~ to be strictly associative) 

( B e b  C) @ ( A  e b B  ) @ A T t " >  ((Beb C) @ (A ebB) @A) T - +  
(1.10) 

(~| ((A eb C) ~)A) T (~)T> C T .  

The transpose of the counterclockwise composite of (1.6), on the other hand, is 

~t @ s t  @ 1 A T ' M  @ 1AT 'eV  

which by Lemma 1.3 in [4] (which says just M @ 1 �9 ev -= 1 @ ev .  ev) is 

st @ st @ l.42 . l @ ev . ev = st @ l @ l . l @ st @ l . l @ ev . ev . 

From the construction of st in terms of t" ,  it is obvious that  this equals 

st (~ l ~ 1  �9 1 Q t " .  1 Q ( e v )  T . e v - ~  

= 1 Q t " .  1 Q ( e v )  T . s t ( ~ l  .ev----- 

= 1 | t" .  1 | (ev) T .  t".  (ev) T 

the last equation again by definition of the relation between st and t" .  Finally, using 
naturali ty of t", we get 

1 (~ t " -  

which, again by Lemma 1.3 in [4], 

1 ( ~ t " .  

t " .  (1 | ev) T .  (ev) T 

is 

t " .  ( M  Q 1) T . ( e v )  T ,  

which by the assumed assoeiativity condition (1.8) for t" equals (1.10). This proves 
that  st commutes with composition M. -- Let  us remark that,  in the proof of the 
theorem in its full strength, the "assoc ia t i v i t y"  of the tensor product which makes 
d (or ~ )  tensored over St, is not given as a primitive, but has to be constructed; 
consequently, the Lemma 1.3 of [4], which we used t~dce, must be replaced in the 
above argument, by an analogous (but not so easily proved) relation between com- 
position and evaluation. 
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Conversely, if st is a strength, the corresponding t" satisfies the unit and associa- 
t ivi ty condition, by  Proposition 1.5 in [4]. This proves the theorem (in the case 
,~r = ~---- ~ ) .  

Remark 1.4. Suppose To, T1 : ~r --> ~ are funetors with t 0' : X Q B To -> (X ~) B) To 
derived from a strength sto of To, and similarly t~ ~ derived from a strength stz of T1. 
Then a family 

7:A: A To--~ A Tz 

is Y/--natural ff and only if 

X C )  B T 0  t~' ) ( X @ B ) T 0  

I| I~x| 

commutes for all X,  B. This is quite easy to see. 
Let  again ~r ~ ,  ~ be tensored over ~ .  I f  To : ~r -~ ~ ,  T1 : ~ -~ ~ are ~/~-functors, 

then To" T1 : ~ --~ ~ carries a canonical "composite" s t ren~h.  I f  to', t~ ~ are the 
tensorial strengths, then the tensorial strength of To �9 T~ corresponding to the com- 
posite strength is given by 

," (~;')TA~ 
X @ ( A )  T o T 1 - - - - > ( X ( ~ A T o ) T 1  ( X @ A )  ToT1 .  

The proof of this is formally the same as the proof of Lemma 1.2 in [4]. 

2. Making a monoidal funetor strong. The results of section 1 apply in particular 
to functors T:  ~ 0  -+ $/'0, where $ / i s  a monoidal closed category. Recall [1], or [2], 
p. 473--474, tha t  making T into a monoidal functor means giving a natural 

%o,4,~: A T Q B T--> (A Q B) T 

and a map  
~fo : I--+ I T , 

satisfying unit and associativity conditions (MF1--MF3,  p. 473 in [2]). A trans- 
formation between monoidal functors is monoidal, i f  it is compatible with ~p, ~v 0 
(MN1, MN2, p. 474 in [2]). The identi ty functor 1: Sr 0 --~ SPo carries a canonical 
(identity) monoidal structure. The composite of two monoidal functors carries a 
"composite" monoidal structure. 

Proposition 2.1. Let T, %v, V ~ be a monoidal ]~znctor ?f"---> ?V'. Let rl : 1 ~ T be a 
monoidaI trans/ormation. Then the composites (A, B e ~ )  : 

(2.0) A Q ;B T ~A| A T Q B T ~A.~ (A • B) T 

constitute a tensorial strength t" /or T. 

P r o o f .  From MN1 it  follows tha t  r/z ---- lp~ the unit condition for t" is then MF 1 
for T, V, ~po. The associativity condition is easily proved by a small diagram chase 
using M572 for ~7 and MF3 for T, iP, V ~ 



118 A. KOCK AKCH. MATH. 

I t  is easy to see t h a t  if v: T ~ T '  is a monoidal  t ransformat ion between monoidal  
functors, and ~:  1 ~ T is monoidal,  then the two monoidal  t ransformations 

~ : I - ~ T ,  ~ . ~ : I  ~ T '  

give rise to tensorial  s trengths ~ i th  respect to which r is a strong natura l  t ransforma- 
tion. I n  particular,  if  ((T, V, V~ ~?,/~) is a monoidal monad  on ~ (meaning tha t  
and # are monoidM transformations),  then the s trength on T derived f rom ~ makes 
(T, ~, #) into a strong monad;  for, ~ and # ~411 be strong transformations since the 
diagrams 

1 T ~- 

l z [ ,z..z] I T 
1 ~ n/z 

1 F, 

T 

commute ,  and since the monoidal  t}ansformation ~ �9 ~ T is easily seen to give rise 
to the " i tera ted"  tensorial s t rength t" �9 . t "T  on T 2. 

We now assume (for the first t ime in this paper) a s y m m e t r y  

CA,B: A @ B--> B @ A 

given on ~ .  Then, by  [4], to a strong monad  ((T, t"), ~?,/~) there exist two monoidal  
structures on T 

(2.1) ~ : A T @ B T  t ' - - ->(A@BT)  T t " T > ( A @ J B ) T 2 - ~ > ( A @ B ) T  

and  
(2.2) ~ : A T @ B T  t " _ , ( A T @ B )  T r__T ( A @ B )  T 2 F , + ( A @ B )  T .  

where t' = c �9 t" �9 c T. I f  the strong monad  was derived, as above, f rom a monoidal 
m o n a d  ((T, V, V~ ~7, t z) .one m a y  ask:  when is ~ or V equal to V ? A partial  answer 
is given by 

Proposition 2.2. I / ( ( T ,  ~p, ~oo), ~, #) is a monoidal monad and (T, ~f, V ~ is a s y m -  
m e t r i c  monoidal /unctor meaning ([2], MF4)  that the/ollowing diagram commutes 

(2.3) 

t h e n  V' = = ,7-  

A T Q B T  v, > ( A Q B )  T 

c~ lJ 
B T Q A T  ~ - ( B @ A )  T ,  

V 

P r o o f .  F rom the symmet ry  condition (2.3), and f rom c-  c = 1, i t  is immediate  
t ha t  t" = c �9 t" �9 c T (with t" = r 1 @ 1 �9 V) m a y  be described directly as 1 @ ~ �9 V" 
Then 

= t ' - t "  T . ~  = 1 |  ( V |  = 
(2.4) = 1 @~.~T@I.v.vT.#. 
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the last equality sign just by naturali ty of V- But  now, the assumption tha t /x  is a 
monoidal transformation says precisely 

(2.5) V/. ~o T-/~ =/~ |  �9 V/; 

V = V is immediate from (2.4), (2.5), and monad laws. The proof of V ~- V is similar. 

Theorem 2.3. Let T,  7, /~ be a monad on the underlying category ?V" o o] a symmetric 
monoidal closed category $:. Then there is a 1-1 correspondence between the/ollowing 
two kinds o] structure on T:  

(i) a strength st on T making ((T, st), 7, /~) into a commutative monad. 

(ii) a monoidal structure V, v/o on T making ((T, V, V~ 7, #) into a symmetric monoidal 
monad. 

P r o o f .  Starting with the symmetric monoidal structure, Proposition 2.2 asserts 
that  the tensorial s t r en~h  constructed makes the monad commutative, and that  it 
gives V/, V 0 back by the described process. Combining this fact with Theorem 1.3 
tells us tha t  the processes (V/, V ~ ~-> st ~ (V, V ~ give the original monoidal structure 
back. Conversely, starting with a commutative monad, the process gives, by Theorem 
3.2 of [4] rise to a symmetric monoidal structure V/, V 0 with v/0 = ~I. The tensorial 

strength ~ t' �9 t " T  ~,~ constructed out of V = �9 is 
/ t  

~A @ 1. V/A,B = ~A @ 1 �9 t'~,~r, t~,BT" tu = 
H H 

~ -  T ] A |  B T �9 t A ,  B T " / ~  ~ t A ,  B �9 7 ] ( A |  B )  T " [.g --~ 
I t  

tA, B 

USing the definition of V/, the unit  law for t', naturali ty of 7, and a monad law, re- 
spectively. Thus the two processes give the original t" back. Combining this fact with 
Theorem 1.3 tells us that  the processes (st) ~-> (V/, V o) ~ (st) give the original strength 
back. This proves the theorem. 

Example. Let  8 be an elementary topos in the sense of L.awv~.~E and TrERNEY, [6]. 
They proved that  the assigvnment 

A ~ A d~t2 

(where ~ is the recipent object for characteristic functions) becomes a covariant 
functor P by letting (/) P be the left adjoint of / ~ ~ .  I f  # = sets, P is the power-set 
functor. I t  is easy to make P into a monoidal functor, in fact, by the "product subset" 
construction; let 

v : A P  • B P- ->(A  • B)  P 

be the map whose transpose (A P • B P) • (A • B) -> s is the characteristic func- 
tion for 

(2.5) e A • 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5 2 1 5  

(ex is the subobject whose characteristic function is the evaluation (X ~h ~2) • X-->D.) 
Then V is a right adjoint for 

~: (A • B) P - - ->AP • B P  
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(defined by  ~ �9 = (proWl) P, i ----- 0,1). Since z satisfies an obvious associativity 
condition, we immedia te ly  get, by  passing to r ight adjoints,  the associativity condi- 
t ion required for P to be a monoidal functor  via ~o (Axiom MF3  in [2]). For  ~p0: 
1 --> 1 P = .(2 we take the maximal  m a p  t: 1 -+ ~ .  Since the (only) map Q -> 1 is 
a left adjoint  for t, the uni t  conditions for (P,  ~o, ~f0) are again proved by  passing to 
adjoints. 

The "singleton" t ransformat ion 

id~-~ P 

defined by  letting UA : A --> A P ---- A gp ~Q be the transpose of  the characterist ic 
function of  the diagonal A --+ A • A can be proved monoidal  by  the technique 
characteristic for elementary toposes : by  comparing two maps into X r ~Q, pass by 
exponential  adjointness to two maps into f#, and prove tha t  the two subobjects 
classified by  these maps are equal. Specifically, to  prove U monoidal  means proving 
tha t  two maps  A • B --~ (A x B) r ~ agree. By  the procedure described, we end 
up by  proving tha t  two certain subobjects of (A • B) • (A • B) are equal, namely  
in fact  both the diagonal A • B --~ (A X B) • (A • B). 
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