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Introduction

We intend to comment on some of those aspects of the theory of differential
equations which we think are clarified (for us, at least) by means of the syn-
thetic method. By this, we understand that the objects under consideration
are seen as objects in one sufficiently rich category (model for SDG), allowing
us, for instance, to work with nilpotent numbers, say d ∈ R with d2 = 0;
but the setting should also permit the formation of function spaces, so that
some of the methods of functional analysis, become available, in particular,
the theory of distributions.

The specific topics we treat are generalities on vector fields and the solu-
tions of corresponding first- and second-order ordinary differential equations;
and also some partial differential equations, which can be seen in this light,
the wave- and heat-equation on some simple spaces, like the line R. For these
equations, distribution theory is not just a tool, but is rather the essence of
the matter, since what develops through time, is a distribution (of heat, say),
which, as stressed by Lawvere, is an extensive quantity, and as such behaves
covariantly, unlike density functions (which behave contravariantly); and the
distributions may have no density function, in particular in the setting of
model for SDG where all functions are smooth.

When we consider these partial differential equations, we shall follow an
old practice and sometimes denote derivative d/dt with respect to “time” by
a dot, ḟ , whereas differential operators with respect to space variables are
denoted ∂f/∂x, f ′, ∆(f), etc.

We want to thank Henrik Stetkær for useful conversations on the topic
of distributions.
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1 Generalities on actions

Recall that an action of a set (object) D on a set (object) M is a map
X : D ×M → M , and a homomorphism of actions (M,X) → (N, Y ) is a
map f :M → N with f(X(d,m)) = Y (d, f(m)) for all m ∈M and d ∈ D.

The category of actions by a set D form a topos; we shall in particular
be interested in the exponent formation in this topos, when the action in the
exponent is invertible. An action X : D ×M → M is called invertible, if
for each d ∈ D, X(d,−) : M → M is invertible. In this case, the exponent
(N, Y )(M,X) may be described as NM equipped with the following action by
D: an element d ∈ D acts on β :M → N by “conjugation”:

β 7→ Yd ◦ β ◦ (Xd)
−1,

where Yd denotes Y (d,−) : N → N , and similarly for Xd.
In the applications below, D is the usual set of square zero elements in R.

It is a pointed object, pointed by 0 ∈ D, and the actions X : D×M →M we
consider, are pointed actions in the sense that X(0, m) = m for all m ∈ M ,
or equivalently, X0 : M → M is the identity map on M . A pointed action,
in this situation, is the same thing as a vector field on M , cf. [12].

In the above situation, if X and Y are pointed actions, then so is the
exponent described. The pointed actions likewise form a topos, and the
exponent described is then also the exponent in the category of pointed
actions; cf. [9].

For the case of vector fields seen as actions by D, we want to describe
the “streamlines” generated by a vector field in abstract action-theoretic
terms; this is going to involve a certain “universal” action (R̃,∆): R̃ is an
“infinitesimally open subset” of R, i.e., whenever x ∈ R̃ then x + d ∈ R̃ for
every d ∈ D. The main examples of such subsets are R itself, the non-negative
numbers R≥0, open intervals, and the set D∞ of all nilpotent elements of
the number line. The action ∆ is the vector field ∂/∂x, meaning the map
D × R̃ → R̃ given by (d, t) 7→ d + t. (So it is not to be confused with
the Laplace operatot ∆, to be considered later.) The main property to
be assumed is that the individual ∆d’s are homomorphisms of D-actions
(which is a commutativity requirement); the structure of R̃ could probably
be derived from this, but we shall be content with assuming that R̃ is an
additively written monoid, and that D ⊆ R̃ (with the 0 of D also being the
zero of the monoid).
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First, if (M,X) is a set with an action, a homomorphism f : (R̃,∆) →
(M,X) is to be thought of as a particular solution of the differential equation
given by X , with initial value f(0), or as a “streamline” for the vector field
X , starting in f(0). One wants, however, also to include dependence on
initial value into the notion of solution, and so one is led to consider maps

F : R̃×M →M,

satisfying at least F (d,m) = X(d,m) for all d ∈ D and m ∈ M ; we shall
consider and compare the following further conditions (universally quantified
over all d ∈ D, t, s ∈ R̃, m ∈M):

F (∆(d, t), m)) = X(d, F (t,m)); (1)

this is the main one, the two following conditions are included for systematic
reasons only:

F (∆(d, t), m)) = F (t, X(d,m)), (2)

F (t, X(d,m)) = X(d, F (t,m)) (3)

Finally, one may consider the following equation

F (t+ s,m) = F (t, F (s,m)). (4)

Writing Xd for the map X(d,−) : M → M , and similarly for F , condition
(1) may be rewritten as

F∆(d,t) = Xd ◦ Ft

The others may be rewritten in a similar way. For instance (4) may be
rewritten as

Ft+s = Ft ◦ Fs

Equation (1) expresses that, for each fixed m ∈M , the map F (−, m) : R̃ →
M is a homomorphism (and thus, by virtue of F (0, m) = m, a “solution
with initial value m”). Writing the action of D in terms of the symbol ·, we
may write it F (d · t,m) = d · F (t,m). Equation (2) expresses a certain bi-
homogeneity condition of F , F (d · t,m) = F (t, d ·m) ; (3) says that for fixed
t ∈ R, F (t,−) : M → M is an endomorphism of D-actions, F (t, d · m) =
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d · F (t,m). Finally (4) is the usual condition for action af a monoid on a set
M . Clearly, it implies all the others.

Let X be a vector field on M , thought of as a first-order differential
equation. We say that the map F : R̃ ×M → M is a complete solution or
simply a solution if Fd = Xd and F satisfies (1). A solution in this sense does
not satisfy the other conditions (2)-(4), but it does, provided thatM satisfies
a certain axiom (reflecting, synthetically, validity of the uniqueness assertion
for solutions of differential equations onM). — The axiom in question is the
following

Uniqueness property for M :
If X is a D-action on M , and f, g : R̃ →M are homomorphisms of actions,
with f(0) = g(0), then f = g.

Note that the validity of the axiom, for a given M , depends on the choice
of R̃,∆. For instance, we shall prove below that it holds for any microlinear
M if R̃ is taken to be D∞ (and ∆ = ∂/∂x).

Proposition 1 Let X be a vector field on M and assume that M satisfies
the uniqueness axiom. Then any solution F : R̃×M →M of the differential
equation X satisfies properties (2) and (3). Furthermore, if R̃ is a monoid
(under +) then F also satisfies (4).

Proof. Since the proofs are quite similar, we shall do only (4). Fix
m ∈ M and s ∈ R̃ and define the couple of functions f, g : R̃ → M by the
formulas

{

f(t) = Ft+s(m)
g(t) = Ft ◦ Fs(m)

We have to check that f and g are homomorphisms of D-actions, i.e., they
satisfy (1). Let us do this for the first

f(t+ d) = F(t+d)+s(m)
= Fd+(t+s)(m)
= Fd ◦ Ft+s(m)
= Xd ◦ f(t).

The proof that g is a homomorphism is similar. Thus, the equality of the
two expressions follows from the uniqueness property assumed for M .
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Recall that a vector field X on M is called integrable if there exists a
solution F : R̃×M →M . If we assume the uniqueness property, the equation
(4) holds; if further the commutative monoid structure + on R̃ actually is a
group structure, then (4) implies that the action is invertible, with X−d as
X−1

d (in fact F−d = F−1
d ). Of course, both the uniqueness property and the

question whether or not the vector field X is integrable, depends on which
R̃ is considered. In particular, we shall say that X is formally integrable or
has a formal solution if X is integrable for R̃ = D∞ (which is a group under
addition). For the case of M = Rn, this amounts to integration by formal
power series, whence the terminology.

Theorem 2 The uniqueness property holds for any microlinear object, (for
R̃ = D∞). Furthermore, every vector field on a microlinear object is formally
integrable. Thus, every vector field on a microlinear object has a unique
formal solution.

Proof. We need to recall some infinitesimal objects from the literature on
SDG, cf. e.g. [11]. Besides D ⊆ R, consisting of d ∈ R with d2 = 0, we
have Dn ⊆ Rn, the n-fold product of D with itself. It has the subobject
D(n) ⊆ Dn consisting of those n-tuples (d1, . . . , dn) where di · dj = 0 for all
i, j. There is also the object Dn ⊆ R consisting of δ ∈ R with δn+1 = 0; D∞
is the union of all the Dn’s. If (d1, . . . , dn) ∈ Dn, then d1 + . . .+ dn ∈ Dn.

— Now, let M be a microlinear object, and X a vector field on it. We
first recall that if d1, d2 ∈ D have the property that d1 + d2 ∈ D, then
Xd1 ◦Xd2 = Xd1+d2 . (For microlinear objects perceive D(2) to be a pushout
over {0} of the two inclusions D → D(2), and clearly both expressions given
agree if either d1 = 0 or d2 = 0.) In particular, Xd1 and Xd2 commute. But
more generally,

Lemma 3 If X is a vector field on a microlinear object and d1, d2 ∈ D, the
maps Xd1 and Xd2 commute.

Proof. This is a consequence of the theory of Lie brackets, cf. e.g. [11] 3.2.2,
namely [X,X ] = 0.

Likewise

Lemma 4 If X is a vector field on a microlinear object and d1, . . . , dn ∈ D
are such that d1 + . . .+ dn = 0, then
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Xd1 ◦ . . . ◦Xdn = 1M

(= the identity map on M). In particular, (Xd)
−1 = X−d.

Proof. We first prove that R, and hence any microlinear object, perceives
Dn to be the orbit space of Dn under the action of the symmetric group Sn in
n letters: Assume that p : Dn → R coequalizes the action, i.e. is symmetric
in the n arguments. By the basic axiom of SDG, p may be written in the
form

p(d1, . . . , dn) =
∑

Q⊆{1,...,n}
aQd

Q

for unique aQ’s in R (where dQ denotes
∏

i∈Q di). We claim that aQ = aπ(Q)

for every π ∈ Sn. Indeed,

∑

Q

aQd
Q = π(

∑

Q

aQd
Q)

since p is symmetric. But

π(
∑

Q

aQd
Q) =

∑

aQd
π(Q) =

∑

Q

aπ−1(Q)d
Q.

By comparing coefficients and using uniqueness of coefficients, we conclude
aQ = aπ(Q), and this shows that p is (the restriction to Dn of) a symmet-
ric polynomial Rn → R. By Newton’s theorem (which holds internally), p
is a polynomial in the elementary symmetric polynomials σi. Recall that
σ1(d1, . . . , dn) = d1 + . . . + dn: and each σi, when restricted to Dn, is a
function of σ1, since d

2
1 = 0; e.g.

σ2(d1, d2) =
∑

didj =
1

2
(d1 + . . .+ dn)

2 =
1

2
(σ1(d1, . . . , dn))

2.

Now consider, for fixed m ∈M , the map p : Dn →M given by
(d1, . . . , dn) 7→ Xd1 ◦ . . . ◦Xdn(m). By Lemma 3, this map is invariant under
the symmetric group Sn (recall that this group is generated by transposi-
tions), so there is a unique φ : Dn →M such that

φ(d1 + . . .+ dn) = Xd1 ◦ . . . ◦Xdn(m).

So if d1 + . . . + dn = 0, Xd1 ◦ . . . ◦ Xdn(m) = φ(0) = φ(0 + . . . + 0) =
X0 ◦ . . . ◦X0(m) = m. This proves the Lemma.
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We can now prove the Theorem. We need to define Ft : M → M when
t ∈ D∞. Assume for instance that t ∈ Dn. By microlinearity of M , M
perceives Dn to be the orbit space of Dn under the action of Sn (see the
proof of Lemma 4), via the map (d1, . . . , dn) 7→ d1+ . . .+dn, so we are forced
to define Ft = Xd1 ◦ . . .Xdn if F is to extend X and to satisfy (4). The fact
that this is well defined independently of the choice of n and the choice of
d1, . . . , dn that add up to t follows from Lemma 4.

As a particular case of special importance, we consider a linear vector
field on a microlinear and Euclidean R-module V . To say that the vector
field is linear is to say that its principal-part formation V → V is a linear
map, ∆, say. We have then the following version of a classical result:

Proposition 5 Let a linear vector field on a microlinear Euclidean R-module
V be given by the linear map ∆ : V → V . Then the unique formal solution
of the corresponding differential equation, i.e., the equation Ḟ (t) = ∆(F (t))
with initial position v, is the map D∞ × V → V given by

(t, v) 7→ et·∆(v), (5)

where the right hand side here means the sum of the following “series” (which
has only finitely many non-vanishing terms, since t is assumed nilpotent):

v + t∆(v) +
t2

2!
∆2(v) +

t3

3!
∆3(v) + . . .

Here of course ∆2(v) means ∆(∆(v)), etc.

Proof. We have to prove that Ḟ (t) = ∆(F (t)). We calculate the left
hand side by differentiating the series term by term (there are only finitely
many non-zero terms):

∆(v) +
2t

2!
·∆2(v) +

3t2

3!
∆3(v) + ... = ∆(v + t ·∆(v) +

t2

2!
·∆2(v) + ...)

using linearity of ∆. But this is just ∆ applied to F (t).

There is an analogous result for second order differential equations of the

form
··
F (t) = ∆(F (t)) (with ∆ linear); the proof is similar and we omit it:
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Proposition 6 The formal solution of this second order differential equation
··
F= ∆F , with initial position v and initial speed w, is given by

F (t) = v + t · w +
t2

2!
∆(v) +

t3

3!
∆(w) +

t4

4!
∆2(v) +

t5

5!
∆2(w) + ....

2 Exponent vector fields

In this section, we show that solutions of an exponent vector field may be
obtained by conjugating solutions of the vector fields that make up the ex-
ponent. Furthermore, this method of conjugation is equivalent (under some
conditions) to the method of change of variables, widely used to solve differ-
ential equations.

Theorem 7 Assume that (M,X) and (N, Y ) are vector fields having solu-
tions F : R̃ ×M → M and G : R̃ × N → N , respectively, and assume that
all Ft are invertible. Then a solution H : R̃ × M → M of the exponent
(N, Y )(M,X) is obtained as the map

H : R̃×NM → NM

given by conjugation: Ht(β) = Gt ◦ β ◦ F−1
t .

Proof. This is purely formal. For β ∈ NM , we have

(Y X)d(Ht(β)) = Yd ◦Ht(β) ◦X−1
d

= Yd ◦Gt ◦ β ◦ F−1
t ◦X−1

d

= Gd+t ◦ β ◦ F−1
d+t

= Hd+t(β),

where in the third step we used the equation (1) for G and F , in the form

Gd+t = Yd ◦Gt, respectively Fd+t = Xd ◦ Ft,

together with invertibility of Fs for all s and invertibility of Xd.
A similar argument gives that if each of (2)-(4) holds for both F and G,

then the corresponding property holds for H .
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In most applications, the invertibility of the Ft will be secured by sub-
traction on R̃, with F−1

t = F−t.

Recall that an R-module V is called Euclidean if the canonical map α :
V ×V → V D given by α(u, v)(d) = u+d ·v is invertible; the composite of α−1

with projection to the second factor, V D → V × V → V is called principal
part formation. If X : V → V D is a vector field on a Euclidean module V ,
we may compose it with principal part formation to get a (not necessarily
linear) map ξ : V → V , called the principal part of the vector field X ; it is
thus characterized by the formula

X(v)(d) = v + d · ξ(v).

Recall also that if β :M → V is any map into a Euclidean R-module, and
X is a vector field on M , then the directional derivative DX(β) of β along X
is the composite

M
X→MD βD

→ V D → V,

where the last map is principal part formation. Using function theoretic
notation, DX(β) is characterized by validity of the equation

β(X(m, d)) = β(m) + d ·DX(β)(m),

for all d ∈ D, m ∈M .
When M itself is a Euclidean R module, and X has principal part ξ, we

usually write Dξ(β) instead of DX(β).

Proposition 8 Assume that X1, X2 are vector fields on M1, M2, respec-
tively, and that H : M1 → M2 is a homomorphism (i.e., it preserves the
D-action). Let V be a Euclidean R-module. Then for any u :M2 → V ,

DX1
(u ◦H) = DX2

(u) ◦H.

Proof. This is a straightforward computation:

u(X2(H(m), d)) = u(H(m)) + d ·DX2
(H(m));

on the other hand

u(X2(H(m), d)) = u(H(X1(m, d))) = u(H(m)) + d ·DX1
(u ◦H)(m).

9



By comparing these two expressions we obtain the conclusion of the Propo-
sition.

For any object N , let us consider its “zero vector field” Z , i.e., Zd is the
identity map on N , for all d. For a vector field X on an object M , we then
also have the “vertical” vector field Z ×X on N ×M .

If we have a complete solution F : R̃×M →M of a vector field X onM ,
we may consider the map F : R̃×M → R̃×M given by (t,m) 7→ (t, F (t,m))

Proposition 9 The map F thus described is an automorphism of the vector
field Z ×X on R̃×M .

Proof. By a straightforward diagram chase, one sees that this is a restate-
ment of (3).

We now consider solutions F : R̃ × V → V for such vector fields, so
equation (1) holds: Xd ◦Ft = Ft+d. In terms of principal parts, this equation
may be rewritten as

Ḟt(v) = ξ(Ft(v)).

Similarly, equation (2) may be written as

Ḟt = Dξ(Ft). (6)

Using directional derivatives, we can give a more familiar expression to
the vector field (1ODE) Y X considered above on the object NM , when the
base N is a microlinear Euclidean R-module V , and the exponent M is
mocrolinear. In fact, letting η be the principal part of the vector field Y on
N = V , we have, for u ∈ V M , m ∈M , d ∈ D (recall that (Xd)

−1 = X−d)

(Y X)d(u)(m) = Yd ◦ u ◦X−d(m)
= u((X−d(m)) + d · η(u(X−d(m)))
= u(m)− d ·DX(u)(m) + d · η(u(m))
= u(m) + d · [−DX(u)(m) + η(u(m))]

(at the third equality sign, a cancellation of d · d took place in the last term)

In other words, the principal part of Y X is θ :M → V given by

θ(m) = η(u(m))−DX(u)(m).
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Recalling that the 1ODE corresponding to a vector field X on a Euclidean
R-module V may be written as ẋ = ξ(x) where ξ is the principal part of X .
In these terms, the above equation may be rewritten (leaving out the m, and
modulo some obvious abuse of notation) as

u̇ = η(u)−DX(u),

or still, recalling that ˙(−) is “derivative with respect to time”,

∂u

∂t
+DX(u) = η(u).

This is a PDE of first order “in time”.

The following may be seen as a generalization of (6), and is a form of the
chain rule. We consider a vector fieldX onM , with solution F : R̃×M → M .
Let U : R̃×M → V be any function with values in a Euclidean R-module.

Proposition 10 Under these circumstances, we have

∂

∂t
U(t, Ft(m)) =

∂U

∂t
(t, Ft(m)) + (DZ×XU)(t, Ft(m))

for all t ∈ R̃, m ∈M .

Proof. Since F is a solution of X , Ft+d = Xd◦Ft, and so for any t, t′ ∈ R̃
(Z × X)d(t

′, Ft(m)) = (t′, Ft+d(m). Therefore, by definition of directional
derivative,

U(t′, Ft+d(m)) = U(t′, Ft(m)) + d · (DZ×XU)(t
′, Ft(m)).

Putting t′ = t+ d, we thus have

U(t + d, Ft+d(m)) = U(t + d, Ft(m)) + d · (DZ×XU)(t + d, Ft(m))

= U(t + d, Ft(m)) + d · (DZ×XU)(t, Ft(m))

by a standard cancellation of two d’s, after Taylor expansion. Expanding the
first term, we may continue:

= U(t, Ft(m)) + d · ∂U
∂t

(t, Ft(m)) + d · (DZ×XU)(t, Ft(m)).

11



On the other hand,

U(t + d, Ft+d(m)) = U(t, Ft(m)) + d · ∂
∂t
U(t, Ft(m));

comparing these two expressions gives the result.

The method of change of variables has been used extensively to solve
differential equations. We shall prove that our method for solving the ex-
ponential differential equation Y X , where X is an integrable vector field on
M , Y an integrable vector field on a Euclidean R-module, and where R̃ is
symmetric with respect to the origin (if t ∈ R̃, then −t ∈ R̃), may be seen
as an application of the method of change of variables. We let η : V → V
denote the principal part of Y , as before. Let F : R̃ × M → M be the
assumed solution of X , and let F : R̃ ×M → R̃×M be the map

F (t,m) = (t, F (−t,m))

Then F (which represents the change of variables τ = t, µ = F (−t,m)) is
invertible.

Theorem 11 (“Change of variables”). If u : R̃ ×M → V is a particular
solution of Y X , or, equivalently, of

∂u

∂t
+DX(u) = η(u), (7)

then the unique map U : R̃ ×M → V given as the composite

R̃×M
(F )−1

→ R̃×M
u→ V

is a particular solution of Y Z , or, equivalently, of

∂U

∂t
= η(U), (8)

and vice versa.

Proof. Since u(t,m) = U(t, F−t(m)), we have

∂u

∂t
(t,m) =

∂

∂t
U(t, F−t(m)) =

∂U

∂t
(t, F−t(m))−DZ×XU(t, F−t(m)),

12



by the chain rule, Proposition 10. On the other hand, F is an automorphism
of the vector field Z×X , by Proposition 9, and so, by construction of F and
Proposition 8,

DZ×X(u) = DZ×X(U ◦ F ) = (DZ×XU) ◦ F .
Therefore,

0 =
∂u

∂t
+DZ×X(u)− g(u)

=
∂U

∂t
(t, µ)−DZ×X(U)(t, µ) +DZ×X(U)(t, µ)− η(U(t, µ)),

where µ = F−t(m), i.e., U is solution of

∂U

∂t
= η(U),

proving the theorem (the vice versa part follows because F is invertible).

Example. Let D be the set of elements of square zero in R, as usual.
It carries a vector field, namely the map e : D ×D → D given by (d, δ) 7→
(1 + d) · δ. It is easy to see that this vector field is integrable, with complete
solution E : R ×D → D given by (t, δ) 7→ et · δ. Now consider the tangent
vector bundleMD onM . The zero vector field Z onM is certainly integrable,
and so we have by the theorem a complete integral for the vector field Ze

on the tangent bundle. We describe the integral explicitly (this then also
describes the vector field, by restriction): it is the map R × MD → MD

given by (t, β) 7→ [d 7→ β(e−t · d)].— The vector field on MD obtained this
way is, except for the sign, the Liouville vector field, cf. [5], IX.2.

3 Generalities on distributions

We want to apply parts of the general theory of ordinary differential equations
to some of the basic equations of mathematical physics, the wave- and heat-
equations. This takes us by necessity to the realm of distributions. Not
primarily as a technique, but because of the nature of these equations: they
model evolution through time of (say) a heat distribution. A heat distribution
is an extensive quantity, and does not necessarily have a density function,
which is an intensive quantity; the most important of all distributions, the
point distributions (or Dirac distributions), for instance, do not. For the case
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of the heat equation, it is well known that the evolution through time of any
distribution “instantaneously” (i.e., after any positive lapse of time, t > 0)
leads to distributions that do have smooth density functions. But in SDG,
we are interested also in what happens after a nilpotent lapse of time. In
more computational terms, we are interested in the Taylor expansion of the
solutions of evolution equations. For this, it is necessary to stay within one
vector space, that of distributions.

The vector space of “distributions of compact support” on any object M
can be introduced purely synthetically (see [15] p. 393, or [14] p. 94) as the
R-linear dual of the vector space RM (which internally represents the vector
space of smooth functions on M). What follows could, to a certain extent
(in particular for the wave equation), be treated purely synthetically.

Presently, we shall only be interested in distributions on R,R2 , and R3,
so for the presentation, we have chosen to assume that we are working in a
sufficiently good “well-adapted” model E of SDG, containing the category
of smooth manifolds as a full subcategory. In such models, for any given
manifold M , we could define the linear subspace D(M) of RM consisting
of functions with compact support, (the “test functions”). Then the vector
space of distributions onM , D′(M), is taken to be the R-linear dual of D(M).

One could take an alternative, slightly more concrete, approach: namely,
take a model E of SDG which contains the category of smooth manifolds as
above, but which also contains the category of Convenient Vector Spaces [4]
and the smooth maps between them as a full subcategory. The embedding is
to preserve the cartesian closed structure. Such models do exist: we provided
in [7], [8] such an embedding of Convenient Vector Spaces into the “Cahiers”
topos of Dubuc [2]. Note that the usual topological (Fréchet) vector spaces of
smooth functions, test functions, distributions, etc. on a smooth manifoldM
have canonical structure of Convenient Vector Spaces. In such a model, we
can construct internal functions, say curves f : R → D′(M), by constructing,
externally, a function by an “excluded middle” recipe of the form

f(t) = .. if t 6= 0 ; f(t) = .. if t = 0,

and then proving smoothness of f by a usual limit argument.
We have to resort to this kind of “external” constructions only for the heat

equation, and there our embedding from [7], [8] is not quite good enough,
since it does not take manifolds with boundary into account; for the heat
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equation, one constructs externally an “evolution” map

R≥0 → D′(R)

by an excluded middle recipe.
So, for the justification of our treatment of the heat equation, we need

an extension (hopefully forthcoming) of our work [7], [8], i.e., we need to
construct a Cahiers-like topos that includes also manifolds with boundary,
and then to construct an embedding of Convenient Vector Spaces into that
“extended” Cahiers Topos. (Maybe even the Cahiers Topos itself will be
good enough.)

For what follows about wave equation, the Cahiers Topos, and the em-
bedding of Convenient Vector Spaces into it, is sufficient; in fact, for these
equations, a purely synthetic treatment alluded to will be sufficient, since the
distributions considered there are all of compact support.

As stressed by Lawvere in [13], distributions should not be thought of
as generalized functions: functions are intensive quantities, and transform
contravariantly; distributions are extensive quantities and transform covari-
antly. For functions, this is the fact that the “space” of functions on M ,
RM is contravariant in M , by elementary cartesian-closed category theory.
Similarly, the “space” of distributions of compact support on M is a sub-
space of RRM

(carved out by the R linearity condition), and so for similar
elementary reasons is covariant in M . We shall write D′

c(M) for this sub-
space. The space of functions of compact support on M is only functorial
with respect to proper smooth maps, (counterimages of compact set required
to be compact), and so similarly, the space D′(M) of all distributions on M
is covariant functorial only w.r.to proper maps. The formula for covariant
functorality looks the same for D′ and D′

c; let us make it explicit for the D′

case. Let f : M → N be a proper map. The map D′(f) : D′(M) → D′(N)
is described by declaring

< D′(f)(µ), φ >=< µ, φ ◦ f >, (9)

where µ is a distribution on M , and φ is a test function on N , (so φ ◦ f is a
test function on M , by properness of f). The brackets denote evaluation of
distributions on test functions.

We shall also write just f(µ) instead of D′(f)(µ).

Recall that a distribution µ on M may be mulitplied by any function
g :M → R, by the recipe

< g · µ, φ >=< µ, g · φ >, (10)
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observing that g · φ is a test function (has compact support) if φ is.
If X is a vector field on M , one defines the directional derivative DX(µ)

of a distribution µ on M by the formula

< DX(µ), φ >= − < µ,DX(φ) > . (11)

This in particular applies to the vector field ∂/∂x on R, and reads here
< µ′, φ >= − < µ, φ′ > (φ′ denoting the ordinary derivative of the function
φ). One has the following Leibniz rule:

DX(f · µ) = DX(f) · µ+ f ·DX(f) (12)

for any distribution µ and function f on M . This is an elementary con-
sequence of the Leibniz rule for directional derivatives DX of functions on
M .

Remark. The equation (11) becomes a theorem, rather than a definition, if
one takes the following line of reasoning: let F be a covariant functor from
microlinear spaces (and invertible maps between them) to Euclidean vector
spaces. Then one may define the Lie derivative along X , LX(α), as a map
F (M) → F (M). For the functor F = D′, LX becomes the DX described.
We shall not pursue this line further here.

Applying DX twice leads to

< DX(DX(µ)), φ >=< µ,DX(DX(φ)) >

In particular, for µ a distribution on Rn

< ∂2/∂xi
2(µ), φ >=< µ, ∂2/∂xi

2(φ) >

and therefore for the Laplace operator ∆ =
∑

∂2/∂2xi = div ◦ grad, we put

< ∆(µ), φ >=< µ,∆(φ) > . (13)

The following Proposition is an application of the covariant functorality
of the functor Dc, which will be used in connection with the wave equation in
dimension 2. We consider the (orthogonal) projection p : R3 → R2 onto the
xy-plane. (It is not a proper map, so functorality only works for compactly
supported distributions.)
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Proposition 12 For any distribution S (of compact support) on R3,

p(∆(S)) = ∆(p(S)).

(The same result holds for any orthogonal projection p of Rn onto any linear
subspace; the proof is virtually the same, if one uses invariance of ∆ under
orthogonal transformations.)

Proof. Let ψ be any test function on R2. Then

< p(∆(S)), ψ >=< ∆(S), ψ ◦ p >=< S,∆(ψ ◦ p) > (14)

But, with ψ = ψ(x, y), ψ ◦ p is just ψ, considered as a function of x, y, z
which happens not to depend on z; so

∆(ψ ◦ p) = ∂ψ

∂x
+
∂ψ

∂y
+
∂ψ

∂z
;

the last term vanishes because ψ does not depend on z, so the equation
continues

=
∂ψ

∂x
+
∂ψ

∂y
= (∆(ψ)) ◦ p.

So the right hand expression in (14) may be rewritten as

=< S,∆(ψ) ◦ p >=< p(S),∆(ψ) >=< ∆(p(S)), ψ >,

from which the result follows.

3.1 Spheres and balls as distributions

For a, b ∈ R, we let [a, b] denote the distribution f 7→ ∫ b
a f(x) dx. Such

distributions on the line, we of course call intervals; the length of an interval
[a, b] is defined to be b − a. Note that the interval [a, b] as a distribution
is not quite the same as the order theoretic interval, i.e., the subset of R
consisting of x with a ≤ x ≤ b. For instance, the order theoretic interval
from 0 to 0 contains all nilpotent elements, whereas the distribution [0, 0] is
the zero distribution. The distribution theoretic interval [a, b] contains more
information about a and b than does the order theoretic one. We consider
the question to which extent [a, b] determines the endpoints. The answer is
contained in
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Proposition 13 Let [a1, b1] and [a2, b2] be two intervals in the distribution
theoretic sense. They are equal as distributions if and only if they have same
length, b1−a1 = b2−a2 (= l, say), and l ·(a1−a2) = 0 (this then also implies
l · (b1 − b2) = 0).

Proof. Assume [a1, b1] = [a2, b2]. The statement about length follows
immediately by applying each of these two distributions to the function f
which is constant 1. Generally, we have for any function f that

∫ b1

a1
f(x) dx =

∫ b2

a2
f(x) dx

=
∫ b1

a1
f(t+ a2 − a1) dt,

by making the change of variables t = x+ a1 − a2. Subtracting, we get

0 =
∫ b1

a1
(f(x)− f(x+ a2 − a1)) dx.

Apply this equation to the function f(x) = x, we get

0 =
∫ b1

a1
(x− (x+ a2 − a1)) = (a1 − a2) · (b1 − a1) = (a1 − a2) · l.

Conversely, assume b1−a1 = b2−a2 (= l, say), and 0 = l · (a1−a2). For any
function f , we calculate the values of the distribution [a1, b1] on f . We have

[a1, b1](f) = (b1 − a1)
∫ 1

0
f(a1 + t · (b1 − a1)) dt = l

∫ 1

0
f(a1 + t · l) dt.

Similarly

[a2, b2](f) = l
∫ 1

0
f(a2 + t · l) dt.

The difference is

l
∫ 1

0
(f(a1 + t · l)− f(a2 + t · l)) dt. (15)

By Hadamard’s Lemma, f(a1 + t · l)− f(a2 + t · l) may be written as (a1 −
a2) · g(a1, a2, t) for some function g, and so the integral (15) can be written
as
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= l · (a1 − a2)
∫ 1

0
g(a1, a2, t) dt,

which vanishes if l · (a1 − a2) = 0.
The assertions about b1 − b2 is similar.

Note the following Corollaries: First, if the length b1 − a1 of an interval
[a1, b1] is invertible (positive, say), then the endpoints a1, b1 are uniquely
determined by the distribution [a1, b1]. Secondly, for any t1, t2, we have

[−t1, t1] = [−t2, t2] implies t1 = t2.

In fact, by the Proposition, their lengths must be equal, i.e., 2t1 = 2t2. The
distribution [−t, t] will appear below under the name Bt, “the ball of radius
t in dimension One”.

We shall also consider such “balls” in dimension Two and Three, where,
however, t cannot in general be recovered from the distribution, unless t is
strictly positive.

We fix a positive integer n. We shall consider the sphere St of radius t,
and the ball Bt of radius t, for any t ∈ R, as distributions on Rn (of compact
support, in fact), in the following sense:

< St, ψ >=
∫

St

ψ(x)dx = tn−1
∫

S1

ψ(t · u) du,

< Bt, ψ >=
∫

Bt

ψ(x)dx = tn
∫

B1

ψ(t · u) du,

where du refers to the surface element of the unit sphere S1 in the first
equation and to the volume element of the unit ball B1 in the second. The
expressions involving

∫

St
and

∫

Bt
are to be understood symbolically, unless

t > 0; if t > 0, they make sense literally as integrals over sphere and ball,
respectively, of radius t, with dx denoting surface-, resp. volume element.
But the expression on the right in both equations make sense for any t, and
so the distributions St and Bt are defined for all t; in particular, for nilpotent
ones.

It is natural to consider also the following distributions St and Bt on Rn

(likewise of compact support):

< St, ψ >=
∫

S1

ψ(t · u) du,
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< Bt, ψ >=
∫

B1

ψ(t · u) du.

For t > 0, they may, modulo factors of the type 4π, be considered as “average
over St” and “average over Bt”, respectively, since S

t differs from St by a
factor tn−1, which is just the surface area of St (modulo the factor of type
4π), and similarly for Bt.

Note that S1 = S1 and B1 = B1. And also note that the definition of St

and Bt can be formulated as

St = Ht(S1) , B
t = Ht(B1),

where Ht : R
n → Rn is the homothetic transformation u 7→ t · u, and where

we are using the covariant functorality of distributions of compact support.

For low dimensions, we shall describe the distributions St, Bt, S
t and Bt

explicitly:

Dimension 1

< St, ψ >= ψ(−t) + ψ(t)

< Bt, ψ >=
∫ t

−t
ψ(s) ds

< St, ψ >= ψ(−t) + ψ(t)

< Bt, ψ >=
∫ 1

−1
ψ(t · s) ds

Dimension 2

< St, ψ >=
∫ 2π

0
ψ(t cos θ, t sin θ) t dθ

< Bt, ψ >=
∫ t

0

∫ 2π

0
ψ(s cos θ, s sin θ) s dθ ds

< St, ψ >=
∫ 2π

0
ψ(t cos θ, t sin θ) dθ

< Bt, ψ >=
∫ 1

0

∫ 2π

0
ψ(ts cos θ, t s sin θ) s dθ ds

Dimension 3

< St, ψ >=
∫ π

0

∫ 2π

0
ψ(t cos θ sin φ, t sin θ sinφ, t cosφ)t2 sinφ dθ dφ

20



< Bt, ψ >=
∫ t

0

∫ π

0

∫ 2π

0
ψ(s cos θ sin φ, s sin θ sinφ, s cosφ) s2 sinφ dθ dφ ds

< St, ψ >=
∫ π

0

∫ 2π

0
ψ(t cos θ sin φ, t sin θ sin φ, t cosφ) sinφ dθ dφ

< Bt, ψ >=
∫ 1

0

∫ π

0

∫ 2π

0
ψ(ts cos θ sin φ, ts sin θ sinφ, ts cosφ) s2 sin φ dθ dφ ds.

Notice that these formulas make sense for all t (positive, negative, nilpo-
tent, ... ), using the standard convention :

∫ b
a = − ∫ a

b ), whereas set-theoreti-
cally St and Bt (as point sets) only make good sense for t > 0.

It is clear from the very definition that St = tn−1St and Bt = tnBt (in any
dimension n); but since we are interested also in t’s that are not invertible,
St and S

t cannot be defined in terms of each other.
Note also that S0 = B0 = 0, whereas S0 and B0 are constants times

the Dirac distribution at the origin 0. The constants are the “area” of the
unit sphere, or the “volume” of the unit ball, in the appropriate dimension.
Explicitly,

S0 = 2 · δ(0), 2π · δ(0), 4π · δ(0),
and

B0 = 2 · δ(0), π · δ(0), 4π

3
· δ(0)

in dimensions 1,2, and 3, respectively.

We shall also have occasion to consider the distribution (of compact sup-
port) t · St on R3 as well as its projection p(t · St) on the xy-plane (using
functorality of D′

c with respect to the projection map p : R3 → R2). For t > 0
(more generally, for t invertible), we can give an explicit integral expression
for it, but note that since St and t ·St are defined for all t, then so is p(t ·St),
whether or not we have such an integral expression. The integral expression
(for t > 0) goes under the name of Poisson kernel for the wave equation in
dimension 2 and may be obtained as follows: using the above expression for
St in dimension 3, we have for a test function ψ that only depends on x, y,
but not on z that

< t · St, ψ >=
∫ π

0

∫ 2π

0
ψ(t cos θ sin φ, t sin θ sin φ) · t · sin φ dθ dφ.

We then make the change of variables ρ = t sinφ, φ = arccos ρ/t, dφ =
dρ/

√
t2 − ρ2, and then the integral becomes

2
∫ π

2

0

∫ 2π

0

ψ(ρ cos θ, ρ sin θ) ρ dθ dρ√
t2 − ρ2

,
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using the explicit form of the ball distribution Bt in dimension 2, we may
rewrite the right hand side here as

<
2√

t2 − ρ2
·Bt, ψ >,

so that we have, for t > 0 (or even for t invertible),

p(t · St) =
2√

t2 − ρ2
· Bt. (16)

4 Vector Calculus

The Main Theorem of vector calculus is Stokes’ Theorem:
∫

∂γ ω =
∫

γ dω,
for ω an (n − 1)-form, γ a suitable n-dimensional figure (with appropriate
measure on it) and ∂γ its geometric boundary. In the synthetic context, the
theorem holds at least for any singular cubical chain γ : In → M (In the
n-dimensional coordinate cube), because the theorem may then be reduced
to the fundamental theorem of calculus, which is the only way integration
enters in the elementary synthetic context; measure theory not being avail-
able therein. For an account of Stokes’ Theorem in this context, see [14]
p.139. Below, we shall apply the result not only for singular cubes, but also
for singular boxes, like the usual γ : [0, 2π]× [0, 1] → R2, parametrizing the
unit disk by polar coordinates,

γ(θ, r) = (r cos θ, r sin θ). (17)

We shall need from vector calculus the Gauss-Ostrogradsky “Divergence The-
orem”

flux of F over ∂γ =
∫

γ
(divergence of F),

with F a vector field, for the geometric “figure” γ = the unit ball in Rn. For
the case of the unit ball in Rn, the reduction of the Divergence Theorem to
Stokes’ Theorem is a matter of the differential calculus of vector fields, differ-
ential forms, inner products etc. (See e.g. [10] p. 204). For the convenience
of the reader, we recall the case n = 2.

Given a vector field F(x, y) = (F (x, y), G(x, y)) in R2, apply Stokes’
Theorem to the differential form

ω := −G(x, y)dx+ F (x, y)dy
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for the singular rectangle γ given by (17) above. Then










γ∗(dx) = cos θdr − r sin θdθ
γ∗(dy) = sin θdr + r cos θdθ
γ∗(dx ∧ dy) = r (dr ∧ dθ)

Since dω = (∂G/∂y + ∂F/∂x) dx ∧ dy = div (F) dx ∧ dy, then
γ∗(dω) = div (F) r (dr ∧ dθ)

On the other hand,

γ∗ω = (F sin θ −G cos θ)dr + (F r cos θ +G r sin θ) dθ, (18)

(all F , G, and F to be evaluated ar (r cos θ, r sin θ)). Therefore
∫

γ
dω =

∫ 2π

0

∫ 1

0
div (F) r dr dθ;

this is
∫

B1
div (F) dA. On the other hand by Stokes’ Theorem

∫

γ dω =
∫

∂γ ω which is a curve integral of the 1-form (18) around the boundary of
the rectangle [0, 2π] × [0, 1]. This curve integral is a sum of four terms
corresponding to the four sides of the rectangle. Two of these (corresponding
to the sides θ = 0 and θ = 2π) cancel, and the term corresponding to the
side where r = 0 vanishes because of the r in r (dr ∧ dθ), so only the side
with r = 1, 0 ≤ θ ≤ 2π remains, and its contribution is, with the correct
orientation,

∫ 2π

0
(F (cos θ, sin θ) cos θ +G(cos θ, sin θ) sin θ) dθ =

∫

S1

F · n ds

where n is the outward unit normal of the unit circle. This expression is
the flux of F over the unit circle, which thus equals the divergence integral
calculated above.

We insert for reference two obvious “change of variables” equations. Re-
call that Ht : R

n → Rn is the homothetic transformation “multiplying by t”.
We have, for any vector field F on Rn (viewed, via principal part, as a map
Rn → Rn):

div (F ◦Ht) = t · (div F) ◦Ht, (19)

and
tn

∫

B1

φ ◦Ht =
∫

Bt

φ. (20)

We now combine vector calculus with the calculus of the basic ball- and
sphere-distributions, as introduced in Section 3, to prove
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Theorem 14 In Rn (for any n), we have, for any t,

d

dt
St = t ·∆(Bt),

(∆ = the Laplace operator).

Proof. We prove first that

tn−1 · d
dt
St = tn ·∆(Bt).

In fact, for any test function ψ,

< tn−1 · d
dt
St, ψ >= tn−1 · d

dt

∫

S1

ψ(tu) du = tn−1
∫

S1

(∇ψ)(tu) · u du,

(by differentiating under the integral sign and using the chain rule)

= tn−1 · flux of ((∇ψ) ◦Ht) over S1,

where Ht : R
n → Rn is the homothetic transformation “multiplying by t”.

This, by the Divergence Theorem, may be rewritten as

tn−1
∫

B1

div ((∇ψ) ◦Ht) = tn
∫

B1

( div (∇ψ)) ◦Ht,

(using (19))

= tn ·
∫

B1

(∆ψ) ◦Ht =
∫

Bt

∆ψ

(by a standard change of variables, cf. (20)), so

=< Bt,∆ψ >=< tn · Bt,∆ψ >= tn· < ∆Bt, ψ > .

From

tn−1 <
d

dt
St, ψ >= tn < ∆Bt, ψ >,

we may of course conclude the desired equality, by cancelling tn−1 on both
sides, if t is invertible; but we want the equation for all t. We can get
this from “Lavendhomme’s principle”, which says that if f : R → R satisfies
t ·f(t) = 0 for all t, then f(t) is constantly 0. This principle was derived from
the integration axiom purely synthetically by Lavendhomme in [11] p.25. So
the claim of the Theorem is valid for all t.

24



We collect information about t-derivatives of the four basic distributions
St , Bt, S

t and Bt in Rn. The results are valid for any n and any t. For
invertible t (say positive t), some of the statements may be simplified by
multiplying by t−1, but we prefer having formulae which are universally valid.

Theorem 15 We have in dimension n for all t:

d

dt
(Bt) = St, (21)

t · d
dt
(St) = (n− 1) St + t ·∆(Bt), (22)

t · d
dt
(Bt) = St − n Bt, (23)

d

dt
(St) = t ·∆(Bt), (24)

In dimension 1, we also have

d

dt
(St) = ∆Bt (25)

Proof. Equation (21) is an immediate consequence of the fundamental
theorem of calculus; e.g. for n = 2, consider the explicit formula for Bt

given above in Section 3 (“Spheres and balls as distributions”). With
∫ t
0 as

the outer integral, the d/dt of it is just the inner integral, i.e., exactly the
exhibited formula (idem) for St.

For (22), we t-differentiate the equation St = tn−1 ·St by the Leibniz rule
and get (n− 1) · tn−2 · St + tn−1 · d/dt(St); so by Theorem 14,

d/dt(St) = (n− 1) · tn−2 · St + tn−1 · t ·∆(Bt).

If we multiply this equation by t, we get

t · d/dt(St) = (n− 1) · tn−1 · St + tn+1 ·∆(Bt);

using St = tn−1St and Bt = tnBt, the result follows (note that ∆ commutes
with multiplication by t).
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The proof of (23) is similar: t-differentiating tn · Bt = Bt, we get

n · tn−1 · Bt + tn · d/dtBt = d/dtBt = St,

(using (21)), so using St = tn−1St, this equation may be rewritten as

tn−1 · (n ·Bt + t · d/dtBt) = tn−1 · St

The result now follows by cancelletion of the factor tn−1 by Lavendhomme’s
principle, and rearranging.

Next, (24) is identical to Theorem 14, and is included again for complete-
ness’ sake.

Finally, (25) follows from (22): the first term vanishes, since n − 1 = 0,
and in the remaining equation, we may cancel the factor t by Lavendhomme’s
principle. Alternatively, (25) can be proved directly, by a very simple calcu-
lation.

5 Wave equation

Let ∆ denote the Laplace operator
∑

∂2/∂x2i on Rn. We shall consider the
wave equation (WE) in Rn, (for n = 1, 2, 3),

∂2

∂t2
Q = ∆Q (26)

as a second order ordinary differential equation on the Euclidean vector space
D′

c(R
n) of distributions of compact support; in other words, we are looking

for functions
Q : R → D′

c(R
n)

so that for all t ∈ R, Q̈(t) = ∆(Q(t)) (viewing ∆ as a map D′
c(R

n) →
D′

c(R
n). We shall only be looking for particular solutions, in fact, so called

fundamental solutions: solutions whose initial value and initial speed is either
the Dirac distribution at 0, or 0. Given any other initial value and speed
— these being both assumed to be distributions of compact support —, the
corresponding particular solution may, as is well known, be obtained from the
fundamental solution just by convolution ∗ with these fundamental solutions.
This follows purely formally from the rules for convolution of distributions
P and Q, such as Q ∗ δ(0) = Q, D(P ∗ Q) = D(P ) ∗ Q, where D is any
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differential operator on Rn with constant coefficients; and from linearity of
the convolution, implying that d/dt(Pt ∗ Q) = (d/dt Pt) ∗ Q; see e.g. [16],
Ch. 3.

Dimension 1

Theorem 16 The function R→ D′
c(R) given by

t 7→ 1/2 · St

is a solution of the WE in dimension 1; its initial value and speed are, re-
spectively δ(0) and 0.

The function R → D′
c(R) given by

t 7→ 1/2Bt

is a solution of the WE; its initial value and speed are, respectively, 0 and
δ(0).

Proof. The statements about the initial values are immediate from the
explicit integral formulas for Bt and St (putting t = 0). The statements
about the initial speeds are equally immediate from the following formulas
(27) and (29) for the t-derivatives, (putting t = 0). We have by (24)

d

dt
(St) = t ·∆(Bt), (27)

and so by further t differentiation

d2

dt2
(St) = ∆(Bt) + t · d

dt
(∆(Bt));

now, d/dt and ∆ commute, so we may continue

= ∆(Bt) + ∆(t · d
dt
Bt) = ∆(Bt) + ∆(St − 1 ·Bt),

using (23) with n = 1. Now by linearity of ∆, the terms involving Bt in the
last expression cancel, and we are left with

d2

dt2
(St) = ∆(St), (28)

27



which establishes WE for St and hence also for 1/2 · St.
Also, by (21), we have that

d

dt
(Bt) = St, (29)

and so by further t differentiation

d2

dt2
(Bt) =

d

dt
(St) = ∆(Bt),

using (25), which establishes WE forBt and hence for 1/2·Bt. So the theorem
is proved.

Dimension 3

Theorem 17 The function R→ D′
c(R

3) given by

t 7→ 1

4π
· t · St

is a solution of the WE in dimension 3; its initial value and speed are, re-
spectively, 0 and δ(0).

The function R → D′
c(R

3) given by

t 7→ 1

4π
· (St + t2 ·∆(Bt))

is a solution of the WE; its initial value and speed are, respectively, δ(0) and
0.

Proof. We calculate first d/dt of t · St, using (24):

d

dt
(t · St) = St + t2 ·∆(Bt), (30)

and so by Theorem 14 (= (24)),

d2

dt2
(t · St) = t ·∆(Bt) + 2 · t ·∆(Bt) + t2 ·∆(

d

dt
Bt)

= 3 · t ·∆(Bt) + t ·∆(t · d
dt
Bt)

= 3 · t ·∆(Bt) + t ·∆(St − 3Bt),
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using (23), and now by linearity of ∆, the terms involving ∆(Bt) cancel, so
we are left with the equation

d2

dt2
(t · St) = ∆(t · St), (31)

which establishes WE for t · St and hence for 1/4π · t · St. The statements
about initial value and speed are immediate (using (30) for the speed).

Because d2/dt2 and ∆ commute, it is clear that if t 7→ Q(t) is a distribu-
tional solution of WE, then so is t 7→ d/dtQ(t). So since t · St is a solution,
then so is its t-derivative (calculated in (30) above), i.e. St + t2 ·∆(Bt) is a
solution. Its initial value and its initial speed can be found by putting t = 0
in (31) (note δ commutes with multiplication by t).

Dimension 2

Recall that we considered the orthogonal projection p : R3 → R2. Apply-
ing covariant functorality, we get for any distribution Q on R3 of compact
support a distribution p(Q) on R2, also of compact support.

Theorem 18 The function R→ D′
c(R

2) given by

t 7→ 1

4π
· p(t · St)

is a solution of the WE in dimension 2; its initial value and speed are, re-
spectively, 0 and δ(0).

The function R → D′
c(R

2) given by t 7→ 1/4π · p(St + t2 · ∆(Bt)) is
also a solution of the WE in dimension 2; its initial value and speed are,
respectively, δ(0) and 0.

Recall that an explicit integral formula for p(t · St), for t > 0, was given
above, in (16) (“Poisson kernel”).

Proof. The fact that the two distributions in question are solutions of
the WE is immediate from the Proposition 12 (“p commutes with ∆”) and
from the fact that D′

c(p) : D′
c(R

3) → D′
c(R

2) is linear, and hence commutes
with formation of d/dt; also, D′

c(p) sends Dirac distribution at 0 ∈ R3 to
Dirac distribution at 0 ∈ R2, so the initial values and speeds are as claimed.

The Taylor Series at t = 0 for the solutions given can be calculated
directly, but they can more easily be obtained from the formal solution given
in Proposition 6.
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6 Heat equation.

In this section we deal with distributions that do not have compact support
and we only consider the one-dimensional case. We are thus considering
solutions for the vector field on the Euclidean vector space D′(R), whose
principal part is given by ∆ : D′(R) → D′(R). We consider the particular
solution K : R≥0 → D′(R) whose initial value is the distribution δ(0). Thus,
referring to the general treatment of solutions for (differential equations given
by) vector fields, we are considering R̃ = R≥0; for the heat equation, one
cannot do better, as is well known. Also, as mentioned above, we rely on
external (classical) calculus; namely, we consider the classical “heat kernel”
function, i.e., the function K : R≥0 → D′(R) given by

K(t) =















1√
4πt

e−
x
2

4t for t > 0

δ(0) otherwise .

(32)

Here, for the case t > 0, we described a function rather than a distribu-
tion, so here we do make the identification of functions g(x) with distributions
φ 7→ ∫∞

−∞ g(x)φ(x) dx. Differentiation of distributions reduces to differentia-
tion of the representing functions. For t > 0, we thus have Kt(x) = K(t, x),
a smooth function in two variables, described by the above expression. It
satisfies the heat equation

∂K

∂t
=
∂2K

∂x2
,

for t > 0. Also the following limit expression is classical:

lim t→0+

∫ ∞

−∞
K(t, x)φ(x) dx = φ(0) (33)

for any test function φ. More generally,

Proposition 19 For any integer n ≥ 0, and any test function φ

lim t→0+
∂n

∂tn

∫ ∞

−∞
K(t, x)φ(x) dx = φ(2n)(0). (34)
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Proof. The case n = 0 is just (33); the general case follows by iteration.
Let us do the case n = 1. Then

∂

∂t

∫ ∞

−∞
K(t, x)φ(x) dx =

∫ ∞

−∞

∂

∂t
K(t, x)φ(x) dx

=
∫ ∞

−∞

∂2

∂x2
K(t, x)φ(x) dx

(by the heat equation for K)

=
∫ ∞

−∞
K(t, x)φ(2)(x) dx

(by integration by parts.)

We then use (33), for the test function φ(2) to conclude (34) for n = 1.

Proposition 20 The function K : R≥0 → D′(R) is smooth.

Here, smoothness is taken in the following sense (appropriate for conve-
nient vector spaces): for each test function φ, the function R≥0 → R given
by t 7→< K(t), φ > is smooth.

Proof. It suffices to prove that K is infinitely often differentiable at 0, since
smoothness for t > 0 is clear. For fixed t > 0, we let Kt denote the function
in x described in (the first clause in) (32) above. Thus, < K(t), φ > is given
by the integral

∫ ∞

−∞

1√
4πt

e−
x
2

4t · φ(x) dx. (35)

We first notice that, by Hadamard’s Lemma, φ(x) = φ(0) + xψ(x). By
linearity, < Kt, φ >=< Kt, φ(0) > + < Kt, xψ(x) > . But < Kt, φ(0) >=
φ(0) and this implies that the derivative of < Kt, φ > at 0 is

lim
t→0+

(1/t) < Kt, xψ(x) > (36)

To compute this limit, we use the formulas and notations in Lang’s book [10],
with the exception that we use F for the Fourier transform. We also use the
following well known formulae, where all the functions under considerations
belong to the class S of fast decreasing functions and thus F works with no
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limitations. First, for any pair of functions α, β in this class, one has the
“adjointness” formula

∫ ∞

−∞
F(α)β =

∫ ∞

−∞
αF(β).

Furthermore

F((1/
√
4π)e−tξ2)(x) = (1/

√
4πt)e−x2/4t (37)

F(xψ(x))(ξ) = i(F(ψ))′(ξ) (38)

ξF(ψ)(ξ) = −iF(ψ′)(ξ) (39)

To show the existence of the limit, we compute, using (37), adjointness,
and (38)

< Kt, xψ(x) > =
∫ ∞

−∞
(1/

√
4πt)e−x2/4txψ(x)dx

=
∫ ∞

∞
F((1/

√
4π)e−tξ2)(x)xψ(x)dx

=
∫ ∞

∞
((1/

√
4π)e−tξ2)F(xψ(x))(ξ)dξ

=
∫ ∞

∞
((1/

√
4π)e−tξ2)i(F(ψ))′(ξ)dξ

= 2it
∫ ∞

−∞
(1/

√
4π)e−tξ2ξF(ψ)(ξ)dξ,

The last step uses integration by parts. Using (39), this may be rewritten as

= 2t
∫ ∞

−∞
(1/

√
4π)e−tξ2F(ψ′)(ξ) dξ

= 2t
∫ ∞

−∞
(1/

√
4πt)e−x2/4tψ′(x) dx

using adjointness and (37) in the last step. Now we divide by t, as requested
in (36), and let t→ 0+. Using (33), we thus get that the limit in (36) equals

lim
t→0+

2
∫ ∞

−∞
(1/

√
4πt)e−x2/4tψ′(x) dx = 2 · ψ′(0).

But since φ(x) = φ(0)+x ·ψ(x), 2 ·ψ′(0) = φ′′(0), This proves that the limit
in (36) exists and equals φ′′(0); we conclude that

lim
t→0+

(1/t)[< Kt, φ > − φ(0)] = φ′′(0). (40)
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To better understand what has been done and to develop this matter
further, let us define for every t ≥ 0

f(t) =< Kt, φ >

We can summarize the results of this section as follows

f ′(0) = φ′′(0)

Recall from Proposition 19 that

f (n)(t) =< Kt, φ
(2n) >

and thus, by going to the limit when t→ 0+,

lim
t→0+

f (n)(t) = φ(2n)(0)

These results suffice to summarize the result in the present Section in the
following way:

Corollary 21 The function f is smooth and, furthermore, f (n)(0) = φ(2n)(0).

Proof. Let us show, for instance, that f ′′(0) exists and equals φ′′′′(0).
Using the previous results, (1/t)[f ′(t) − f ′(0)] = (1/t)[< Kt, φ

′′ > − φ′′(0)]
and this implies the corollary, by going to the limit when t → 0+ and using
(40) with the function φ′′ instead of φ. Now, iterate.

The idea to use Fourier transform to prove smoothness was pointed out
to us by H. Stetkær and E. Skibsted.

Summarizing: we have a smooth function K : R≥0 → D′(R), satisfying
the heat equation ∂K/∂t(t) = ∆(K(t)) for all t ≥ 0; for t = 0, this follows
from Proposition 19. By the assumed fullness of the embedding of smooth
manifolds with boundary and convenient vector spaces into the model of
SDG, we have the desired solution internally in the model. We may then
ask for the values of K for nilpotent t. The answer can be deduced from
the Taylor Series at 0 for the function K, and the coefficients can be read
off from Proposition 19; alternatively, by the uniqueness of formal solutions
(Theorem 2), they can be read off from the formal solution we know already
from Proposition 5. In any case, we get for nilpotent t

K(t) = δ(0) + t ·∆(δ(0)) +
t2

2!
∆2(δ(0)) + . . . (41)
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the series being a finite sum, since t is nilpotent. In particular, for d with
d2 = 0, we have K(d) = δ(0) + d ·∆(δ(0)), or since ∆ = ( )′′,

K(d) = δ(0) + d · δ(0)′′ (42)

In some sense, the motivation for our study of the heat equation in particular
was to see how δ(0) evolves in nilpotent lapse t of time and specially for t = d
with d2 = 0; the answer is (42) (or more generally (41)).

Being an extensive quantity, a distribution like (42) should be drawable.
In fact, it can be exhibited as a finite linear combination of Dirac distributions
δ(a) (= “evaluate at a”). This hinges on:

Proposition 22 Let h4 = 0. Then

h2 · δ(0)′′ = δ(−h)− 2δ(0) + δ(h).

Proof. It suffices to prove, for an arbitrary test function φ, that h2 ·φ′′(0) =
φ(−h) − 2φ(0) + φ(h); now just Taylor expand the two outer terms in the
sum on the right; the terms of odd degree cancel, the terms of even degree
(0 and two) give the result. (There is a similar result for higher derivatives
of δ(0): for hn+1 = 0,

hn · δ(0)(n) =
n
∑

i=0

(−1)i(n, i)δ(i · h),

where (n, i) denotes the binomial coefficient n!/i!(n − i)!. This hinges on
some combinatorics with binomial coefficients, cf. [3] p. 63, Problem 16).

To make a “drawing” of K(d) where d2 = 0, we assume that d = h3 for
some h with h4 = 0 (we shall not deal here with the question whether this
can always be done). Then

K(d) = δ(0)+d ·δ(0)′′ = δ(0)+h ·h2 ·δ(0)′′ = δ(0)+h ·((δ(−h)−2δ(0)+δ(h))

using (42) and (22). The drawing one can make of δ(x) (as for any discrete
distribution), is a column diagram: erect a column of heigth 1 at x. The
distribution above then comes about by removing 2h units from the unit
column at 0, and placing the small columns of heigth h at −h and h. This is
the beginning of the diffusion of the Dirac distribution. Several other ways of
exhibiting K(d) as linear combination of Dirac distributions are also possible.
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Since D′(Rn) is a microlinear and Euclidean R-module, and ∆ : D′(Rn) →
D′(Rn) is linear, we may apply the general results of Propositions 5 and 6 to
conclude that the formal solution of the heat equation Ḟ (t) = ∆(F (t)) with
initial value (the distribution) µ, is the series

µ+ t∆(µ) + t2/2!∆2(µ) + t3/3!∆3(µ) + . . . .

Similarly, the formal solution of the wave equation F̈ (t) = ∆(F (t)) with
initial value (the distribution) µ, and initial speed the distribution ν is the
series

µ+ tν + t2/2!∆(µ) + t3/3!∆(ν) + t4/4!∆2(µ) + t5/5!∆2(ν) . . . .

Applying (in the one-variable case, say) these formulas to a test function
φ in the variable x and to the distributions δ(0) and δ′(0) we obtain the
following Maclaurin series for the heat equation

< F (t), φ >= φ(0) + tφ(′′)(0) + t2/2!φ(′′′′)(0) + . . . .

Here (̇) refers to the time derivative, whereas ()
′

to the space derivative ∂/∂x.
The variable x has been left unexpressed. There is a similar series for the
wave equation:

< F (t), φ >= φ(0) + tφ̇(0) + t2/2!φ(′′)(0) + t3/3!φ̇(′′)(0) + t4/4!φ
′′′′

(0) + . . . .

6.1 Simple Transport

For the sake of completeness, we also consider the function δ : R → D′
c(R)

given by t 7→ δ(t), the Dirac distribution at t ∈ R. This is the “fundamental
solution” for the equation for “simple transport”, cf. e.g. [17].

Proposition 23 The function δ is the solution for the differential equation
for “simple transport”,

d

dt
(δ) = (δ)′

with initial value δ(0).

Proof. For any test function φ,

d

dt
< δ(t), φ >=

d

dt
φ(t) = φ′(t) =< δ(t)′, φ > .
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Cahiers de Top. et Géom Diff., (20), 231-279, 1979

[3] Feller, W. An Introduction to Probability Theory and its Applications
volume I John Wiley and Sons 1965 (Second Edition)
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