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EXPOSE 9

Remarks on the Maurer-Cartan §orms

by

Anders Kock

1. Maurern-Cartan fon the set of frames

A frame in physical space consists of three rigid rods of length
one meter, fitted rigidly together at a point so as to form right angles
with each other. Furthermore, the three rods are numbers 1, 2, and 3,
and in this order, they are positively oriented. So a frame looks like

this:

frame.

The left Maurer-Cartan form associates to a given pair of
neighbouring frames (0,1,2,3) and (0',1',2',3') the coordinates of
the latter in terms of the former (clearly, a frame defines a coordinate
system in space).

* The reader only interested in Maurer-Cartan for groups may proceed
directly to §2.
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The right Maurer-Cartan form associates to a pair of neighbour-

ing frames (as above) the unique infinitesional motion that moves the

first frame to the second.. (It defines a motion of the whole space).

The algebraic structure which the set G of frames in épace
has, and which makes these two Maurer-Cartan forms possible, is a
pregroup structure, [ 3 ], which means that we have a trinary operation
A(P,Q,R) on the set of frames:-given frames .P,Q,R , let us connect
P and R rigidly to each other by means of some long enough system
of rigid rods, and let us then move P so as to coincide with Q.

Then X(P,Q,R) 1is defined as the frame R has been moved to.

We may represent this state of affairs by a diagram in which
points represent frames, double lines represent rigid connections, and

arrows represent motions:

A(P,Q,R) =S

(1.1)

We now put ourselves in the context of synthetic differential

geometry. Recall that a vector field on an object M is a map

X:MXxD——M with X(m,0) =m Vm € M. A vector field X on
G (= set of frames) is called left invariant if for any P,Q € G

and d € D we have

A(P,Q,X(P,d)) = X(Q,d) ,



which expresses that the coordinate expression of the infinitesional
X-transforms of any frame P (expressed in terms of P) 1is the same
everywhere (i.e. does not depend on P). Similarly, a vector field Y

on G 1is right invariant if VYP,R € G VYd € D :
AP, Y(P,d), R) = Y(R,d) ,

which means that the infinitesional transformations of Y are

(infinitesional) motions of space.

Clearly, the notion of (left- and right-) invariant vector
field on G depends only on the algebraic structure A , which is
what we call a pregroup structure; this means that A satisfies six
equations [3 ] which essentially say thét "G is a group, but we
have forgetten which element is the unit", and which imply that each
tangent vector t : D——G is member of precisely one left invariant
vector field X (so X(t(0),d) = t(d)), and of precisely one right
invariant vector field Y. (This is anyway clear from the interpreta-

tion 'coordinate expression', 'motion', respectively.)

The 'set' (internal object) of left (respectively right)
invariant vector fields on an object G with a pregroup structure
A carries (if G is sufficiently nice, say infinitesimally linear
([21,041,061) a vector space (= R-module) structure, and is closed
under the Lie bracket formation of vector fields assuming G satisfies
the Axioﬁ 2 of [6]. We denote by LG# and LG# 5 réspectively, the
Lie algebra (-object) of left (resp. right) invariant vector fields

on G.

58
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The left Maurer-Cartan form @ on G is the differential

1-form on G with values in the vector space LG# , given as follows

Q(t):= the unique left invariant vector field on G

of which t 1is a member.

For the case where G = (frames -in physical space), our previous

remarks imply that Q(t)(d) can be interpreted as the coordinate
expression of t(d) in terms of the frame (= coordinate system) t(0).
(This coordinate expression involves six numbers, which traditionally
are denoted wl, Wy 5 Wz, w12’ wlS’ w23 3 LG# is in fact a g-dimensional

Lie algebra, with a canonical basis.)

The right Maurer-Cartan form is introduced dually, but we shall
not consider it. The Theorem which we shall now state is valid

verbatim for the right form also.

To any two tangent vectors &, n : D—>G at the same point
£(0) = n(0) (= P, say), we define a "2-tangent", [5] :

€ .
DXD — = ¢

by pufting
(€ ) (d),d,) = X(P, £(d;), n(d,))

It follows from the equational laws for A that (0,0) » P, see [3]
Axiom 1). We shall assume that the vector space LG# is Euclidean
([11,061) so that exterior differentiation of differential forms with

values in LG, can be defined, according to [5] . Under these
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assumptions, we have 'Maurer-Cartan's formula'':
Theorem (dR) (E - n) = -[Q(E), Qm)1 .

To prove the theorem, we convert it into a theorem about
groups. Now that P is fixed, we construct a binary operation on G

by putting
Q - R ':=_ A(P,Q,R).

This is actually a group structure, due to the six equations of [3] ,
with P as its neutral element e (the structure X can be recons-

tructed from the group structure as
-1
A(T,U,V) =U - T~ - V).
It likewise follows easily from [3] that a vector field X on G is

left invariant in the sense of the pregroup structure if and only if

it is left invariant with respect to group structure, meaning
Xth - g,d) =h - X(g,d) . VYg,h €G VYd €D .

Finally, to the two tangent vectors & and n considered, which are
now tangent vectors at e, the map & - n described above can now be

described simply by
(€ n) (d),d,) = £(d)) * n(d,) ,

using the group structure. It is now clear that the theorem above
follows from the corresponding theorem for groups, which we state in

the next §
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2. Mauren-Cartan for groups

Let G be a group with neutral element e. We work in the
context of synthetic differential geometry, and we assume that G is
infinitesimally linear [4]1 , [6] , and satisfies Axiom 2 of [6j .
We also assume that the tangent vector space TeG at e 1is Euclidean
(C23,061) . There is a natural 1-1 correspondance between tangent

vectors & at e
E:D~>G E(0) = e
and left invariant vector fields X on G

X:G6GxD~>G s.t. X(g,0) =g Vg €6

and Xth - g,d) =h + X(g,d) Vg,h € G,
given by associating to & the following X :
X(g,d) =g - E(d)

A tangent vector t at an arbitrary g € G is a member of
a unique left invariant vector field X given by X(h,d) = h - g_l - t(d),

which in turn corresponds to the tangent vector £ at e given by

1

E(d) =g - t(d) (= t(O)'l . t(d)) VYd €D .

The left Maurer-Cartan form £ on G is the 1-form with

values in TeG , given by "tw E" | i.e.

2.1) Q(t) = [d—> t(0)! - t(@7 .



(Alternatively, under the bijection above, Q(t) is the unique left

invariant vector field on G of which t is a member) .

Note that for & ¢ TeG , 8(E) = & . Also, for any
t : D> G and any h, we have
(2:2) QCh - t) = Q) ,
i

(2.3) Qt - h) =kt . Q) - h;

to see the latter, say, just apply the definition (2.1)

Q(t + h) = [d —> (£(0) - W)L - (t(d) - h)]
=[d—>hl . () - t(d) - hI
=[d—> h™" - QCt) - h]

The "set" of left invariant vector fields is stabie under Lie bracket
formation of vector fields, [2], and the identification of these
with tangent vectors at e € G therefore gives rise to a Lie bracket
on the '"'set" TeG of such tangent vectors. The latter Lie bracket can

be described explicitely by
(2.0) [, nl (4 * ;) = E(d)) - n(dy) * E(-d)) - n(-dy)
which is also (modulo sign?) the formula of [6]

For &, n tangent vectors at e, we define a map

E-mn:0D % (D —3 by
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(€ 1) (d), &) = £E(d;) - n(d,)

Theorem (Maurer-Cartan for groups). For £, n € TG, we

have

(2.4 () (€ -n) =-1[& " n]

Proog . It suffices to prove that for V(dl, d,) €D x D, the

equation (2.4) holds when multiplied by d1 . d2 . (This is the prin-

ciple of '"cancelling universally quantified d's.'"), Now

d, - d, - dE - n) =
dy ©(8) +d, - Q(E(d)) " n) - @1 Q€ - n(dy)) - d, - QMm)
by the definition of coboundary for 1-forms [5] and the definition
of & } N (recalling that §&(0) =n(0) = e) . Using (2.2), the second

and fourth term cancel. Because of (2.3) (and Q(&) = £) we are

left with
2.5) d; - E-ndt g nwE) .

To this expression, we apply the following Lemma (putting
_ N -1
h = n(-d,) = n(d,) ).
Lemma . Let EETeG and h € G . Then, for any d € D,

(z.6) €-h-&-n"") (d)=8d - h- £(-a) - n7t .

Proog . Note that EA— h-«§g- h_1 is a difference between

two tangent vectors at e € G, so the left hand side of the equation
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makes sense. To calculate the difference of tangent vectors, we must
use infinitesimal linearity ([2], [4], [6]1) of G and construct

that unique.

£ :D(2) — G

with

£(d,0)

€(d)

200, = ¢-h - £ b @=@m g nY ca

then, by construction of fibrewise additive structure in tangent spaces,
the left hand side of (2.6) will be given by £(d,d). But we can

manufacture such an £ explicitely, by putting.

£0d),d,) = £ - h - E(-dy) - hTE

Putting dl'= d2'= d gives the right hand side of (2.6).

Because of the lemma, (2.5) equals d1 times the following

tangent vector at e
§ > £(8) " n(-d) * E(-) * n(d,) .
i.e. equals the tangent vector

2.7 § > E(d; - &) - n(-dy) - E(-d; - §) " n(d,).

On the other hand, —d1 - d, - [€, n] is the following tangent vector



§ —> (-4 - d, - [E, n]) (8)

L€, n ((d; - &) - (-d,))

E(dy * &) * n(-dy) * E(-d; * &) - n(d,)

by (2.0). This is the same as (2.7), proving the theorem.
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We state a reformulation of the theorem which is more invariant

(it also holds for the pregroup‘case). By [5] , for any 2-form 6 on

G and 2-vector t : D x D> G the value ©6(t) only depends on the
restrictions tl’ t2 of t to the two "axes'" of D x D , and we may
denote this value S(tl, tz) B

For 1-forms Wy and w, with values in a vector space
equipped with a bilinear multiplication (denoted [-, -1 , say), there

is a unique 2-form Wy AW, such that
(Wl A wz) (t) ='[W1(t1), Wz(tz)] - [Wl(tz), Wz(tl)]

where t, tl’ and t2 are related as above. Now for the case where

t:DxD—>G is & °n, as in the theorem, t1 and t2 are

just & and n , respectively. So

d2(g, n) = d2(€ . n)

1

-[Q(8), Q)]  (by the Theorem)
-3([RE), QM - [RM), ED)

(since Lie bracket is skew)

=-2@A Q) (& n) .
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Since this holds for all pairs of tangent vectors £, n at e,

we conclude the equality of the two 2-forms in question, i.e. we have
d2 = -IQ A Q .
Regenences

1. A. Kock, Taylor Series Calculus for ring objects of line type,
Journ. Pure Appl. Alg..12 (1978), 271-293.

2. A. Kock, The Synthetic Theory of Vector Fields, in "Topos Theoretic
Methods in Geometry', Aarhus Various Publ. Series No. 30 (1979)

3. A. Kock, The algebraic theory of moving frames, Aarhus Preprint
Series 1979/80, No. 29.

4. A. Kock and G.E. Reyes, Manifolds in.Formal Differential Geometry,
in "Application of Sheaves'", Proceedings Durham 1977,
Springer Lecture Notes Vol. 753.

5. A. Kock, G.E. Reyes and B. Véit, Forms and integration in
synthetic differential geometry, Aarhus Preprint Series
1979/80, No. 31.

6. G.E. Reyes and G.C. Wraith, A note on Tangent Bundles in a
Category with a ring object, Math. Scénd. 42 (1978),

53-63.



