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RELATIVELY BOOLEAN AND DE MORGAN TOPOSES
AND LOCALES

by Anders KOCK and Gonzalo E. REYES

CAHIERS DE TOPOLOGIE ET
GEDMETRIE DIFFERENTIELLE CATEGORIQUES

Yolume XJ~~CY 3 (1994)

Resume Nous pr6sentons une notion de topos bool6en r6lative a un topos
de base. Si le topos de base est bool6en dans le sens standard, la notion
se reduit a la notion bool6en standard. La notion r6lative nous permet de
retenir le th6or6me de structure pour les topos bool6ens de prefaisceaux,
sans hypoth6se sur le topos de base. De meme pour une notion de topos
deMorgan. Nous considerons de plus ces notions pour les topos localiques.

Introduction

The motivation for the present work was partly the topos theoretic analysis of
modal operators - notably the question of naturality of the possibility operator,
this question being related to de Morgan’s law [10] -; and partly the feeling that
the two well known results

~ a presheaf category C is Boolean iff C is a groupoid;

~ a presheaf category C is de Morgan iff C satisfies the Ore condition

are too good to be abandoned if one abandons the hypothesis that the base topos is
Boolean. We introduce relative notions of ’Boolean’ and ’de Morgan’ which make
these two results valid over any base topos (see Section 3). The notions are, of

course, lattice theoretic, so deal with frames in toposes; this leads us to consider
the question when the topos of sheaves on a locale (or frame) is relatively Boolean
over the base topos, see Section 4.

In so far as the frame theory is concerned, we have benefited from correpondence
between the first author and M. Jibladze and P. T. Johnstone, arising partly as
comments on [8]. In particular, Jibladze gives (March 1990) a list of frame theoretic
conditions, all of which reduce to the condition of being a Boolean algebra if the
base topos is boolean. Thus, the beautiful generalisation of the law of excluded
middle 1 = a V ~a, namely

(A ranging over the set (1 of truth values), we learned from him.
For open geometric morphisms, our notion of relatively Boolean, respectively

relatively de Morgan, geometric morphism -y : E -~ S can be stated: the canonical
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(monic, by openness) is an isomorphism, respectively has a left adjoint. The notion
of ’relatively Boolean’ in [8] is weaker than the one introduced in the present paper;
in fact it is precisely the de Morgan condition which upgrades the former to the
latter, see remarks after Definition 1.1. ,

1 Clopen and regular elements in a frame
Let A be a frame. Given a map T : D -~ A to A from an arbitrary set D, we consider
the following two subsets of A (omitting T from notation; in the applications, r will
often be the inclusion of a subset),

In case where A is the frame of open sets of a topological space, and D is the subset
{0~, 1~}, Clp(A) and Reg(A) consist of, respectively, the clopen and the regular
open subsets, respectively.
We shall apply these notions in two situations: the first, as in [1], where r

is the unique frame map SZ --~ A; the second where y : E -* S is a geometric
morphism, and T is the canonical comparison map 7* SZ_S -* fl-vwhich classifies the
monic 7* (true) : ’Y.1 -~ y* °V. 

- -

As in topology, clopen implies regular open:

Proposition 1.1 For any T : D --* A, Clp(A) 9 Reg(A).
Proof. Let a E Clp(A), so 1A = VÅ(o H a) where A ranges over D. We should

prove ÂÅ(o -+ A) - A  a (the other inequality always holds). It suffices to see
that for any b with b _ (a --~ a) --~ a for all A 6 D we have b  a. The assumption
on b may be reformulated

." ...."" -...... ".-’B.

Since 1~ _ VN (a H a), b is covered by the family lb A (a H A) ) a E D}, so it
suffices to prove that b n (a H A)  a. But

using ( 1) for the first inequality. This proves the Proposition.

It is well known that for fixed d E A, (- --&#x3E; d) -· d is a nucleus on the frame A.
Hence the (pointwise) meet
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is a nucleus LD . If D C_ A, it may be characterized as the largest nucleus (under
pointwise order) which fixes D; see [5]. Note that Reg(A) is by definition the
set Fiz(LD) of fixpoints for the nucleus LD, and that the inclusion Reg(A) C A
therefore has a left exact left adjoint.

Proposition 1.2 For any T : D 2013~ A, the following conditions are equivalent:
1. Clp(A) C A has a left exact left adjoint (which is then necessarily given by

~ ~»
2. Clp(A) = Reg(A)
3. For all a E A,

(a and p ranging over D,)
Proof. Assume 1. Combining the assumed left adjoint with the inclusion Clp g A,
we get a nucleus P on A with Clp as its fixpoint set. (We omit A from notation.)
Since CI p g Reg, by the previous Proposition, we have the opposite inequality for
the corresponding nuclei, so LD  P. To see LD = P (which implies 2.), it thus
suffices to see that P  LD . Since LD is the largest nucleus fixing (the image under
T of) D, it suffices to see that P fixes that image, that is, to see that T(~) E Clp
for every p E D. But (omitting r from notation),

whence p belongs to Clp. Conversely, since Reg C A has a left exact left adjoint
(given by the nucleus LD ), 2. implies 1.

Now assume 2. Since fi (a ~ p) ~ JJ E Reg, it belongs also to Clp, by
assumption, so 3. holds; conversely if 3. holds, every element of form Å,..(a -
~c) --&#x3E; ~ is in Cl p; but every element of Reg is of this form, so Reg g Cl p, hence by
Proposition 1.1, Reg = Clp.

It is well known that a Heyting algebra where every element a is regular (in the
classical sense, a = --a), has the property that every element is complemented,
1 = a V -a, i.e. is a Boolean algebra. A Stone algebra (cf. e.g. [2]), or de Morgan
algebra, is a Heyting algebra where every -a is complemented, 1 = -a V -,-,a. This
is equivalent to saying that -- commutes with finite joins, cf loc.cit. These notions
and results, being purely finitary-algebraic, make sense for Heyting algebras in an
arbitrary topos S. We may refer to them as the absolute notions. However, for the
reasons explained in the introduction, we want relative notions that take the full
set Qs of truth values into account. Since SZS is not in general finite, the relative
notions are best formulated for complete Heyting algebras, i.e. for frames.

Let A be a frame in a topos S, and T : O~ ~ A the unique frame map. We now
let the the notions Clp and Reg refer to this map. We then pose
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Definition 1.1 Let A be a frame in S. We say that

1. A is relatively Boolean if A = Clp;

2. A is pre-boolean if A = Reg;

3. A is relatively de Morgan if Reg = Clp.

Essentially, 1) was considered by Jibladze and Johnstone, and 2) was considered
in [8] under the name ’relatively Boolean’. Since by Proposition 1, Clp C Reg, it is
clear that 1. is at least as strong as 2. Jibladze has given a simple example (with
S = Sierpinski topos) showing that 1. is strictly stronger than 2. Finally it is clear
that 2. and 3. together are equivalent to 1. If Qs = 1 + 1 (i.e. S is a Boolean
topos), 2. is equivalent to 1., and the frames satisfying this condition are exactly
the Boolean algebras in the absolute sense; and the frames satisfying 3. are the de
Morgan algebras in the absolute sense.

2 Notions relative to a geometric morphism
We consider a geometric morphism y : 1 _E -~ S. Recall that it gives rise to a
comparison map T : 7* S~_S --~ Op. If y is open, T is monic (cf e.g. [4]); in any case,
it may be safely omitted from notation. The object f2E is a frame in E; y* fls will
in general only be a Heyting algebra; and T will be a lattice homomorphism, in
particular, it will preserve complements.

We now apply our general considerations to the frame flE, and with ~y* SZ_S -~ Q E
as our T : D 2013~ A. As long as we reason entirely in in _E, we may reason as if _E
were Sets (constructively). But because 0~ now is the frame of truth values, some
principles hold which do not hold for frames in general; such principles are crucial
in the proofs of Propositions 2.1 and 2.2 below. In analogy with Definition 1.1, we
pose

Definition 2.1 Ze ~ : ~ 2013~ be a geometric morphism. We let Clp 9 QE and
Reg g S2E refer to the comparison map T : ’Y.°ae. ~ QE. Then we say 

-

1. E is relatively Boolean over S if S2E = Clp;

2. E is pre-Boolean over S if f2,E = Reg;

3. E is relatively de Morgan over S if Reg = Clp.

Just as in the remarks after Definition 1.1, we see that 1. holds iff 2. and 3. hold.
We shall relate these notions to the absolute notions in Propositions 2.4 and

2.5 below. Let us first note that Reg and Clp are defined as subobjects of OE by
interpretation of certain logical formulae, involving /~a and VA with A ranging over
,y*Qs, thus they are not finitary, and thus not easy to work with. But at least for
Clp, we can avoid logic, since we have
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Proposition 2.1 The subobject Clp g OE equals the image of y* f2s --* OE. More
generally, for any T : D - S2_E in a topos E, the extension of the formula (zuith free
variable a ranging over O~,

equals the image of T.

Proof. Let us write SZ for f2E. The element true e Q is ’inaccessible by sup’ in the
sense that true = sup U (for U C_ S2) implies true E U; for, for any subset U C_ Q,
sup U equals the truth value of the statement true E U, see e.g. [9] Corollary 2.5.
Thus the formula ( 3) is equivalent to the formula

and then again to

whose extension clearly is just the image of r.

Another example of the special properties of the frame SZ appears in the (prob-
ably well known)

Proposition 2.2 Any closure operator P on f2 is left exact, i. e. is a nucleus.

Proof. We first prove that

for all a, b E SZ. Since we are dealing with truth values, it suffices to see that if the
left hand side is true, then so is the right hand side. So assume a n P(b) is true.
Then a is true, and P(b) is true. Since a is true, b = a n b, so P(a /~ b) = P(b) = true.
This proves the inequality ( 4). To see P(c) n P(b)  P(cA b), use instances of ( 4)
twice,

(Alternatively, the inequality ( 4) furnishes the monad P with a tensorial strength;
and strong monads carry monoidal structure, by [7]). The other inequality is clear,
and likewise P(1) = 1 ( where 1 = true). (Note that we need not assume a  P(a);
this is automatic from P(1) = 1.)

The notions of Definition 2.1 should perhaps be combined with the assumption
that we are dealing with an open geometric morphism y. (Recall [4] that if the
codomain of y is an (absolutely) Boolean topos, then 7 is automatically open.)
Recall from [3] the comparison map y* f2s --+ OE for an open geometric morphism
is monic (this latter property of y is called "sub-open" in [3]). Thus we get from
Proposition 2.1 (using also Proposition 1.2, for the de Morgan case):
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Proposition 2.3 Let y : _E -~ S be an open geometric morphism (actually sub-
open suffices). Then E is relatively Boolean (respectively relatively de Morgan) over
f iff the canonical comparison 7* S~_S -~ QE is an isomorphism (respectively: has a
left adjoint). 

- -

Also, we have easily

Proposition 2.4 Let ~y : E -~ S be a geometric morphism with S an (absolutely)
Boolean topos. Then E is relatively Boolean over S iff E is absolutely Boolean. And
E is relatively de Morgan over S iff E is absolutely de Morgan.

Proof. By assumption, f2s = 1-f- 1, so also y* SZS = 1 ~- 1. The formulae defining,
respectively, Clp and Reg as subobjects of SZ_E involve therefore only a binary join,
respectively meet,

So E is relatively Boolean iff Clp = OE iff true = a V -,a holds as an identity for OE,
which is the case iff E is a Boolean topos in the absolute sense. And _E is relatively
de Morgan iff Reg g Clp iff true = --a V -’-’-’a(= -a) holds as an identity for O~,
which is the case iff O~ is a de Morgan algebra, thus E is a de Morgan topos in the
absolute sense.

We finally prove

Proposition 2.5 Lel y : E --&#x3E; S’ be a geometric morphism, and assume that S
is absolutely de Morgan. If E is relatively de Morgan over S, it is absolutely de
Morgan.

Proof. Since Cl p by Proposition 2.1 is the image of a lattice homomorphism, it is
a sublattice of 0~. And since Os is a Stone algebra, then so is 7* SZS and hence also
its quotient Cl p. On the other hand, since Cl p = Reg, Clp is the fixpoint set for
a nucleus L on OE, and since it is a sublattice of OE, this nucleus preserves finite
joins. The result then follows from the following purely equational

Lemma 1 Let L be a nucleus on a Heytsng algebra, preserving finite joins. Then
if its fixpoint set AL is a Stone algebra, then so is A itself.

Proof. Since L(OA) = OA, OA E AL . Since -- is the largest nucleus on A that fixes
OA, L _ ~~, so A.,., C_ AL . Since AL is a sublattice of A, the inclusion preserves
complements, so the double negation nucleus N for the Heyting algebra AL is the
restriction of the nucleus -- on A. So, first, (AL) N c A,,; but also A,, C_ (AL)N
since the values of -- are in AL and -~-~ = -~~~~. The assumption that AL is a
Stone algebra gives that the inclusion (AL)rr g AL, and hence A~~ C_ AL, preserves
finite joins; and AL g A preserves finite joins by assumption on the nucleus L.
Composing, we get that the inclusion A~~ C A preserves finite joins, and so A is a
Stone algebra.
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3 Presheaf toposes
Let C be a category object in a topos S. It is easy to see (and follows also from
Proposition 2.6 in [3]) that the geometric morphism 7 : ê -+ S is open (where
a is the topos of 5’-valued presheaves on C). The introduction of the notions of
relatively Boolean and relatively de Morgan geometric morphism is now partially
justified by the following relativization of two classical results for S = Set (due to
Freyd (?) and Johnstone [2], respectively; the part concerning groupoids was also
known to Squire (11~, for general base topos S):

Theorem 3.1 The geometric morphism y : C --· S is relatively Boolean i,~‘ C is
a groupoid; and it is relatively de Morgan iff C satisfies the Ore condition: every

diagrams of two arrows with common codomain embeds into a commutatzve square.

Proof. We may argue as if S were Sets, provided the argument is positive and
constructive. Let C be a category in S. We describe the canonical T : "y. °2. -+ Q E
where E = C . For C E C an object, rc is the unique frame map

where P ( y(C) ) denotes the set (frame) of subfunctors of the representable functor
y(C) = home (-, C). We describe a left adjoint left inverse ~ for rc, namely given
by

a(R) =11 R is inhabited II (5)
for any subfunctor (sieve) R C_ y(C), where 11 ... 11 denotes ’truth value of ...’.
Clearly u( Te(À)) = A; and if f E R(D), R is inhabited, so f E Tc (~ ~ R is inhabited
), so R C 7~’(r(~)). To say that f - ,5’ is relatively Boolean is, in view of its
openness and by Proposition 2.1, equivalent to saying that rc is iso for all C. Now
let C be a groupoid. To prove Tc iso, it suffices to prove rc(a(R)) C R for any
sieve R C_ y(C) . Let f : D -~ C, and assume f E rc(a(R)), so a(R) is true, so R is
inhabited, say g : C’ -~ C is in R for some g. But then g o (g-1 o f) is also in R,
since R is a sieve. So f E R.

Conversely, assume C --&#x3E; S’ is relatively Boolean, so Tc is iso for all C, with a
as inverse. Let f : D --~ C be arbitrary, and let R C y(C) be the sieve generated by
f. It is inhabited (witness: f ), so a(R) = true, so idc E TC(~(R)) = R. But to say
that idc belongs to the sieve generated by f is to say that f has a right inverse. So
every arrow of C has a right inverse, and this implies that C is a groupoid.

Next, assume that C satisfies the Ore condition. To prove that C -~ S is de
Morgan is equivalent to proving that T : ~y* SZS --~ SZC has a left adjoint. We have
already point~,vise a left adjoint, given by the description ( 5) above; now we write
ac for a. It suffices to see that oc is natural in C, that is, to prove that for each
f : D 2013~ C the diagram
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commutes, where the top map x to a sieve R C_ y(C) associates the set of arrows
g with codomain D and with f o g E R. Now let R E P(y(C)) be a sieve on C.
Assume oc (R) is true, so R is inhabited, say witnessed by (h : C’ ~ C) E R.
Completing the square

f

we get that x(R) is inhabited (witnessed by h’), so ~D (~r(R)) is true. This implies
that cc (R)  ~D (~(R)). The other inequality O’D(1r(R))  cc (R) is trivial: if

O’D( 1r(R)) is true, ~(R) is inhabited which implies that R is inhabited, so ac(R) is
true.

Conversely, if ê - S is relatively de Morgan, r : 7* SZS - SZC has a left
adjoint, hence the pointwise left adjoint ac of rc is natural in C. Contemplating
the naturality square above for f : D --~ C and applying it to the principal sieve
generated by h, we get that the sieve of those h’, which fit in the Ore square above,
is inhabited. Thus C satisfies the Ore condition.

We have a generalization of part of Theorem 3.1. Given a functor F : D --&#x3E; C

between category objects in a topos S. It induces an (essential) geometric morphism
7 = F : D --&#x3E; 6 (whose inverse image functor is just "composing with F" ) . For

simplicity, we formulate the result as if S were Sets, but the character of the proof
makes it clear that it works over any base topos. We first prove

Proposition 3.1 Let F : D -+ C be a functor between small categories, inducing
the (essential) geometric morphism 7 : D -* C. Then the canonical T : -y*f2a --+
Of) has a left adjoint if and only if F satisfies the condition (*): to every commu-
tative square
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in C, there exists a commutative square d o 6 = d1 o d2 in D and an arrow y in C
with c = F( 6) oy, as displayed in

Proof. This is much in spirit and notation as the proof of Proposition 2.6 in [3],
and it generalizes the proof of Theorem 3.1. For D E D, rD : (y* SZC )(D) -~ °:5
takes a sieve R on F(D) to the sieve {,8 : D1 -~ D F(~Q) E R~. For each D, TD
has a left adjoint D’D given by D’D(S) =

Clearly T has a left adjoint (as a map in D) precisely when the O’D’s are natural in
D, which amounts to the equality, for each d : D’ -~ D in D and each sieve S on
D,

F(d)* (~D (S)) _ ~D’ (d* (s))
(where d* (S) _ 16 do ~ E S}, and similarly for F(d)*). Unravelling the description
of t1’ and d* etc, the two sides of this equation are, respectively,

and

The inclusion ( 8) C ( 7) always holds.
Now assume that the condition (*) holds, and let c E( 7), for some sieve S. By

condition (*), we find 1, 6, d2 as displayed in the diagram, with d o 6 = dl o d2 and
c = F(b) o y. By the commutativity d o 6 = dl o d2 and dl E S, it follows that

doaES, and thus ce( 8).
Conversely, assume ( 7) ç ( 8), for all sieves S on D, and consider a commutative

square ( 6). Apply the condition ( 7) g ( 8) for the sieve generated by dl. Since

ci E( 7), ci E( 8), and this provides us with the 6, y required by the condition (*).
This proves the Proposition.

For the case where the functor F : D -~ C makes the corresponding geometric
morphism y sub-open, i.e. the canonical T : y* 0 ê -+ On monic (and an elementary
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condition in terms of F : D --&#x3E; C for this is given in [3] Proposition 2.6), the existence
of a left adjoint for T is equivalent to 1 being relatively de Morgan, by Proposition
2.3. We therefore get as an immediate corollary that, assuming sub-openness of y,
the geometric morphism ~y = û makes D a relatively de Morgan topos over C iff
the functor u satisfies the condition * above; and this result is valid over any base
topos.

4 Toposes defined by frames

We remind the reader of some results of intuitionistic frame theory from [4]. Let A
be a frame in a topos S. An element a E A is called positive if every cover ~/I ai
of a has I inhabited. The frame is called open if every element of A is a supremum
of positive elements. This is equivalent to sh(A) - S being an open geometric
morphism. The map pos : A -~ Qs which to a E A associates the truth value of
the statement that a is positive, is left adjoint to the unique frame map S~S -~ A.
Finally, A is called surjective if this frame map is injective.

Consider the geometric morphismy : sh(A) --~ S, where sh(A) is the topos of
(S-valued) sheaves on A. We need to recall some standard sheaf theory. If D is

a presheaf on A, a global section of the associated sheaf D is given by an atlas,
meaning a family

{(~,A,)~e7}, (9)
where ~/ ai - lA , and Ai E D(as ) is a compatible family, meaning that for each
i, i E I, there is a cover la’ k I k E K} of ai n aj such that a= ~ ak = a~ ~ ak for each
k E K. If D is a constant presheaf, D(a) = D for all a, then this condition reads:
Ai = Aj to the extent that I~ is inhabited. If the family ( 9) is compatible,

and if the frame is open, this condition implies conversely compatibility of the family.
We apply this for the case where D = Qs and A is a surjective open frame. A global
section of ’Y.°ae. given by such an atlas f(ai, as )~ (a; E °v maps by the canonical
map ~* 7* ~_s -~ 7f~~(~) = ~ to V ~1s n ai (by surjectivity, the map °ae. -+ A is
monic, so we identify elements A of Qs with their image in A. Also, by openness,
’Y.°ae. -+ ~sh(A) is monic and hence ’Y.:Y.°ae. -+ ’y*SZah(A) = A is monic.)
Proposition 4.1 Let A be a surjective open frame. The canonical map -y.,y*fls
’Y*~ah(A) = A identifies y*7*SZs with Clp(A). 

-

Proof. Let a E Clp(A). Then we have an atlas for a global section of 7* SZ_S, ie. for
an element of ~y* ~y* ~ s , given by

for, the aHa’s cover lA since a E Clp(A); the compatibility is seen as follows: if
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then pos(aH~); now, the bi-implication here is formed in A, but the map i : ils --; A
preserves (bi-)implication, because of the left adjoint and [6], Propositions V.1.1 and
V.3.1; thus pos(I(A-p)) is true. But pos is a left inverse for i, so A-p is true, thus
a = ~. Also, the element given by the atlas ( 10) maps to a since

Conversely, let a E y*-y* SZS be given by an atlas {(as, a=) ~ i E I~; we have

and a = ~/ A, A ai. To prove lA = ~/~ (aHa), it suffices to prove that ai _ va (aHa)
for each i E I. We shall prove that we even have ai  (a+-*Ai). This amounts to
proving ai A A, _ a and ai A a  Ai. The first is obvious from the construction of a.
For the second, we have

so it suffices to prove (ai n a J ) n Any  A, for each i, j , or ai n aj _ (a~ ~ Ai) -
Since pos : A --~ Qs is left adjoint to the inclusion Os C A, this is equivalent to
pos(ai n aj)  (Ay -~ Ai). This is an equality in Qs) so assume pos(ai A ay) is true.
Then by ( 11), A; = Any is true, hence so is Any  as . This proves the Proposition.

We now have as a Corollary:

Theorem 4.1 Let A be a surjective open frame. Then 7: sh(A) -~ S is a relatively
Boolean geometric morphism iff A is a relatively Boolean frame.

Proof. By openness, the canonical -y*Qs --~ f2,h(A) is monic; if 7 is further relatively
Boolean, it is an isomorphism, and hence so is y~*~ 2013~ ,.0.h(A) = A. But by
Proposition 4.1, the domain of this map is Cl p(A) . Thus A = Cl p(A) . Conversely,
assume A is relatively Boolean. We have to prove that for each a E A, (,. °V( a) -+
O’h(A)(a) =1 a is an isomorphism. It suffices actually to prove this for positive a,
since every element in A is covered by positive elements. But if a E A is positive, ! a
is a surjective open frame, and since the map - n a : A --&#x3E;,~ a preserves everything
involved in the definition of relative Booleanness, J. a is a relatively Boolean frame.
Thus by applying Proposition 4.1 to ! a gives that the canonical
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is an isomorphism (where 7’ : sh( J, a) 2013~). But the map ( 12) identifies with

This proves the Theorem.

In a similar vein, we prove

Theorem 4.2 Let A be a surjective open frame. Then -y : sh(A) --+ S is a relatively
de Morgan geometric morphism iff A is a relatively de Morgan frame.

Proof. By openness, the canonical 7* SZ_S 2013~ ~ah(A) is monic; ify is further relatively
de Morgan, ~y* SZ_S ~ O.h(A) has a left adjoint (Proposition 2.1), which is necessarily
left exact (Proposition 2.2). Thus -y*-y*S~_S ~ 7~~A(A) = ~ has a left exact left
adjoint, but this inclusion identifies by Proposition 4.1 with Clp ~ A. Thus A is
relatively de Morgan.

Conversely, assume that A is a relatively de Morgan frame (and open, surjective).
In analogy with the proof of the previous Theorem, to see that 7* S~_S ~ Q, h(A) has
a left adjoint, it suffices to see that for each positive a E A,

has a left adjoint which is natural in a. In analogy with the previous proof, ! a is
an open surjective relatively de Morgan frame. By Proposition 4.1, the domain of
( 12) gets identified with Clp(i a), and thus the map ( 12) has a left adjoint. But
( 12) gets identified with the map ( 13). So we just have to prove that these left
adjoints are natural. Since for de Morgan frames Clp = Reg, the left adjoint for
Clp(i a) - is given by the nucleus /~~(- --~ A) -~ A with the implication signs on
the right being the one of the Heyting algebra I a. But for b  a, - n b :,~ a -*~, b
is a Heyting algebra homomorphism. This proves naturality, and hence we have a
left adjoint for ’Y.°ae, --+ SZsh(A) This proves the Theorem.
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