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Abstract 

We analyse the 2-dimensional categorical algebra underlying the process of completing 
categories, or posets. The algebra explains why and how completeness of a category is 
describable in monad theoretic terms, and why the limit formation for freely completed 
categories admits a further adjoint. 

We present here the purely equational 2-dimensional categorical algebra underly- 

ing the process of freely completing categories under a given suitable class of colimits. 

Examples are the In&completion (completion under filtered colimits) studied in SGA 

4 [2], or the Fam-construction, cf. e.g. [16] or [9], which completes a category under 

coproducts. Also the exact completion of a left exact category studied in [S], and the 

completion procedures for partially ordered sets with respect to “subset systems” 

(cf. [25] and the references therein) fall under our theory. General information about 
free cocompletion of categories may, at various levels of generality, be found in [ 14,28, 

11, 3, 11. 

A common feature is that the category F(C), which freely completes C, for its 

objects has diagrams (functors) I --t C in C with index category I any category of the 
prescribed class, thus Z filtered, for the In&completion case, and discrete for the 

Fam-case. The morphisms in F(C) are usually more complicated to describe. In any 

case, to say that a category C has colimits of the appropriate kind can be expressed by 

saying that there is a functor lim, : F(C) + C which to an object of F(C) - i.e. to 
a diagram D :I + C - associates a colimit lim,(D) for it. The universal property 

defining the notion of colimit can be expressed by saying that lim, is a left adjoint to 

the canonical functor y,: C + F(C) (the one assigning to an object C E C the singleton 
diagram C : 1 + C). 

On the other hand, the statement that F(C) is the free (co-) completion expresses 
a universal property pointing in the direction of adjoint functors and monads; thus 

F is “up to isomorphism” a left adjoint for the forgetful functor U: Scat + Cat 

(where Cut is the (Z)category of (locally small) categories, and Scat is the categoryof 
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categories admitting (and functors preserving, up to isomorphism) the appropriate 
kind of colimits. (Similarly, the exact completion of [S] is a left adjoint, up to 
isomorphism, for the forgetful functor from the category of exact categories to that of 
left exact categories.) The composite T = U 0 F becomes a monad-up-to-isomor- 
phism, with the canonical “singleton” functors y, as units; and, as we shall see 
(Proposition 3.3), the category of (Eilenberg-Moore-) algebras-up-to-isomorphism is 
equivalent to Ss, with c: T(C) -+ C being a T-structure (up to isomorphism) 
precisely when it is a (retraction-) left adjoint for y,: C + T(C). 

From this fact stems the title of the paper. Our thesis is, that all the special 
properties and data for the “monad” and its “algebras” (e.g. the various isomorphisms 
and their coherence) all stem from one single piece of 2-dimensional data, 1 (and three 
equations for it). This data A is a 2-cell (natural in C): 

T(Y,) 
T(C) U& ,T’(C) 

j+(C) 

constructed out of the front adjunction for the adjointness which defines the colimit 
assignment m, for T(C). 

The four pieces of data T, y, m, 1, and the equations, lead to a purely formal calculus, 
which makes sense in the generality that T could be any endo(2-)functor on any 
2-category %? (Cat, Lex or Posets, say); one could even view T as an object of the 
strict monoidal 2-category (A, 0) of endo-2-functors W --) V (with composition of 
functors as 0) and develop the whole calculus for objects T of such a category 
(as we did in some of the preliminary versions [16,19]). However, we feel that we stick 
closer to the intuition and applications of the theory if we phrase it in terms of 
endofunctors T. 

It should be mentioned that if the horn-categories of the 2-category %’ are partially 
ordered sets, so that the various structural isomorphisms are actually equalities, 
a simpler axiomatics is available, with the l-dimensional equation that m is strictly 
associative, instead of the three 2-dimensional equations TI-T3. Also, if m is strictly 
associative, the axiomatics simplifies, and it turns out [20] that this simpler axio- 
matics in fact describes precisely the 2-category A of finite ordinal numbers. 

However, the notion considered in the present paper does not include strict 
associativity for the monad multiplication, but rather deriues associativity-up-to- 
isomorphism. Note, though, that the cocompletion procedures described in [13,14] 
were actually, by hook and by crook, constructed so as to be monads in the strict 
sense; likewise, it was, in certain cases, argued that, by replacing the category in 
question by an equivalent one, colimits could be chosen so as to be strict algebra 
structures for the monad. But, for instance, the skeletal category of sets does not admit 
a strict structure for the (strict) finite-coproduct completion Fam, as proved in 
Proposition 7.5 of [13]). 

On the other hand, a different chain of reasoning was employed in [6] to prove that 
there does exist a strict (KZ-) monad on Cut whose strict algebras are categories - 
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equipped with finite colimits. Max Kelly has indicated to me that the same reasoning 
should apply to more general classes of colimits, say with size of the indexing 
categories bounded by some cardinal. 

Due to these strictness properties, [4] were able to apply their 2-dimensional 
monad theory, with its flexibility notions, to such cocompletion monads. At present, 
no general 2-dimensional theory, in the spirit of [4], seems to be available explaining 
to what extent KZ-doctrines may be strictified into monads, or whether (pseudo-) 
algebras may be strictified. Such theory would have to extend the [l] theory of classes 
of colimits into a theory of Albert-Kelly equivalence of KZ-doctrines. 

This work has developed and crystallized slowly, since my Ph.D. thesis [ 131 in 1967; 
stages in the development are marked by [14,16,17,19] (with [20] and [18] as 
sideline developments). The development comprises contributions and insights by 
several other people, e.g. Zijberlein [30], and, notably, Street [26, 271, who called 
these “monads” “monads with the Kock property” or (in a slightly more general 
context) Kock-Ziiberlein- or, for short, K.&doctrines; we adopt the latter name. The 
crystallization process has also been spurred by conversations and correspondence 
with many friends and colleagues during the years: Lawvere, Ulmer, Kelly, Street, 
Wood, Johnstone, Jacobs, Carboni, and Rosebrugh (in approximately chronological 
order). I want to thank them all. 

Special reference should be made to the influence of Street, who in [27] gave a very 
conceptual global account of the notion of KZ-doctrine, in terms of the 2-category 
A of finite ordinals (which in turn led to [20]). In some sense, the present paper puts 
Street’s theory back in a form which is directly applicable for understanding cocom- 
pletion processes. But it also completes Street’s formulation, in the sense that I prove 
the existence of one adjoint more than Street has; essentially, he explicitly (in [27] 
2.27) excluded the “leftmost” adjoint (“ T(y) --I m” of our Theorem 3.2) from his 
notion, and did not provide any indication whether it could be put back in. 

0. Prerequisites from 2-dimensional categorical algebra 

We shall employ standard conventions and notation from 2-dimensional category 
theory. The horizontal (“Godement”) composition of l-cells and 2-cells is denoted * , 
the vertical composition of 2-cells is denoted by a dot . . We compose from right to left 
(unlike [19] and its predecessors). Identity 2-cells are often just denoted id, so that the 
context will have to make it clear what l-cell it is the identity 2-cell of. Adjointness 
relation between l-cells is denoted f-i g (f left adjoint to g). Of course, one must 
specify the 2-cells II: id *g*f and E: f*g => id (front- and back-adjunctions) by 
virtue of which one has the adjointness. We shall writefi r g for the special case where the 
back adjunction E is an identity 2-cell (“fis a reflection (-left)-adjoint to g), andf+ co g if the 
front adjunction is (“g is a coreflection (-right)-adjoint off”); the terminology of [7] 
would be thatfis a lali, respectively, that g is a rali. If an arrow m is at the same time 
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a reflection and coreflection adjoint, it is what Lawvere [22] calls a unity-and- 
identity-of-opposites (“UAIO”). Our main “extra” left adjoint (Theorem 3.2) will in 
fact show that the colimit formation for freely cocompleted categories will always be 
a UAIO. 

We shall employ a convenient “macro-package” for simplifying certain 2-dimen- 
sional calculations, the so-called mute caZculus, as it has been developed mainly by the 
Sydney category theorists, cf. [12]. We shall briefly recall what we need. 

Given a square with a 2-cell $ 

and assume there are given adjointnesses a^ -I ii, F -I 6. The mute 4 of $ (with respect to 
these adjointnesses) is the 2-cell 

P 

obtained by pasting the front adjunction for a^ -I ii and the back adjunction for F -I 6 
on the left and right side of (l), respectively. There is a similar process, likewise called 
mating, leading from data (2) to data (l), and these processes are mutually inverse. 

If one has a further square which can be pasted on the right of (l), i.e. a 2-cell 
*‘:p’*6 * i.*q’, where E has a left adjoint 2, then the mate of the composite 
(= pasted) square equals the composite ( = paste) of the mates. (There is also a state- 
ment of this kind about vertical pasting, which we shall not consider.) 

The mate of an invertible (or even an identity-) 2-cell need not be invertible. But if 
ii = 6, and p and 4 are the respective identity l-cells, and $ is the identity 2-cell of ?i, 
then the mate of $ is the identity 2-cell of a^. 

For the special case where p and 4 are identity l-cells, we get the familiar bijective 
correspondence between 2-cells 

;;*i; 

baa”’ 

which we shall call simple mating. 
We shall finally need the following fact about naturality of the mating process for 

fixed 6,&6,6. Consider Fig. 1 and assume there are given 2-cells Ic/ and t,Y in the 
unprimed and primed square, respectively, each ready to be mated. If the total 
diagram commutes on the 2-dimensional level, meaning 

(6*%l)+ = $‘-(V*a), 
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as 2-cells p * ii =S b * q’, and if C$ and C/I’ are the mates of r(/ and $‘, respectively, then 
Fig. 2 commutes on the 2-dimensional level, 

(qo*L?)*4 = &(F*q) 

as 2-cells 6 * p -b q’ * 6. 

Fig. 1 

Fig. 2. 
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1. The axioms and the motivation 

Let 9 be a 2-category. Let I : V -+ % denote the identity functor. 

Definition 1.1. A KZ-doctrine on % consists of an endo-2-functor T: W + W and two 
2-natural transformations y : I + T, m: T 0 T + T and, for each C E 59, a 2-cell 

&: T (y,-) =yTcC), (natural in C) 

T(Yc) 

T(C) U & l T’(C) 

satisfying the following axioms: 
l TO y is a strict two-sided unit for m,mc * T(yc) = mc * y.(c) = idTcC); 
l Tl AC * yc is an identity 2-cell; 
l T2 mc * lc is an identity 2-cell; 
l T3 mc * T(mc) * ATC is an identity 2-cell. 

(The naturality of 2 in C is in the evident (“modification-“) sense, cf. e.g. 112, p.82.1) We 
note that the equations Tl-T3 do not impose any equations on l-cells since the 
domain- and codomain l-cells of the 2-cells in question are already equal, by virtue of 
TO. Thus, for example, both the domain- and codomain-l-cell of the 2-cell in T3 equal 
mc, as the reader may see by contemplating Fig. 3, where the square commutes by 
naturality of y with respect to mc and the unmarked regions commute by TO. 

Note that if m were associative, mc * T(mc) = mc* mTc, then the middle l-cell 
in the diagram could be replaced by mTc, which then would immediately “kill” &c 
(i.e. convert it into an identity 2-cell), by T2. So for strictly associative m, T3 follows 
from T2. 

id 

Fig. 3. 
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Proposition 1.2. We have the rejection adjointness mc ‘I, yTc, with T(mc) * &C asfront 
adjunction. 

Proof. The left two thirds of Fig. 3 reveals that T(mc) * lTc indeed is a 2-cell 
id =s. yTc * mc, and axiom T3, i.e. the assumption that Fig. 3 is an identity 2-cell, is one 
of the triangular equations for the front- and back-adjunction; the other follows from 
1 Tc * yrc = id which is a consequence of Tl. 

There is a “mirror image” version T3* of T3, which we shall prove (on basis of 
TO-T3) below, Proposition 3.1 below; for associative m, T3* follows from T2. 

We now motivate the axiomatics. The “freely adjoining colimits”-constructions 
mentioned in the introduction consists in a functor F: Cat 4 Scat which is adjoint- 
up-to-isomorphism for the forgetful functor U : Scat + &, in theprecise sense that - 
there is, for each C E Cat, a 2-cell 

y,:C + UFC= TC 

such that composing with yc provides an equivalence of horn-categories (for any 
D E Scat) - 

homsc,, (TCJ) -, homc,t(C,% - - 

furthermore, for C to be in S-Cat (i.e. to have the appropriate kind of colimits), it is 
necessary and sufficient that yamits a left adjoint (= colimit formation) & (which 
may be taken in such a way as to be split by yc, i.e. a retraction left adjoint for yc). In 
particular, any freely cocompleted category TC admits a reflection left adjoint 
m,: T2C -+ TCfor y T& m, may at the same time be taken to be split by T(y,-). (In 
fact, the general theory, Theorem 3.2 below, will prove that m, will then be a coreflec- 
tion right adjoint for T(yc).) The adjointness me-i yTc is expressed by means of 
a front adjunction v],-, 

TC 

satisfying the usual triangular equations, which here simplify (by m, being a retrac- 
tion) to 

“lc * YTC = idYTC, (3) 

m, * vc = id,,. (4) 

Let us put 1, = v]~* T(y,). Then Tl easily follows from (3) and naturality of y; T2 
follows immediately from (4). Finally, for T3, the 2-cell to be proved an identity 2-cell 
is, as we observed contemplating (Fig. 3) a 2-cell m, * mc. But m, is an arrow in 
Sg, so is an object of horn,& T ‘C, TC), and since yTC: horns&T 2C, TC) + 
hom..,(TC, TC) is faithful (iF fact an equivalence), it suffices to see that - 
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the 2-cell in question (i.e. the left-hand side of T3) is killed by pre-multiplication by 
y,,. But we may after the premultiplication by yTC replace the resulting T(y,,-) * yTc 
by yTzC * yTc (by naturality of y), and this will kill Q-, by (3) (with C replaced by TC). 

This proves that a cocompletion process T = UF does in fact carry structure of 
a KZ doctrine - The reader may wonder why m,: T2 C + TC should be natural in 
C - after all, the back adjunctions for the adjointness-up-to-isomorphism F -I U are 
colimit assignments, and such cannot be formed strictly naturally. But m,: T2 C + 

TC is colimit formation for thefree cocompletion, and the construction of colimits (of 
the appropriate kind) in TC will by inspection reveal itself to be strictly natural 
(uniform) in C - as is to be expected of a construction of “syntactic” or “term model” 
type as Ind C or FamC. For the same reason, & is natural in C. Secondly, the reader 
may wonder why m, may be a retraction of both yTc and T(y,). This is (for the 
Fam-case) essentially the assertion that we may choose coproducts in Sets in such 
a way that ux 1 = X and ulX = X. 

2. Algebras and homomorphisms 

Let T = ( T, y, m, ,I) be a KZ-doctrine on a 2-category 55’. It will turn out (Section 3) 
that ( T, y, m) is automatically a monad-up-to-coherent-isomorphisms. Also the 
notion of algebra and homomorphism of such, which we now introduce, turn out to be 
equivalent to the monad-theoretic ones, up to isomorphism, thus justifying the 
terminology. 

Definition 2.1. An algebra for T(or a T-algebra) consists of an object A E % and a map 
a : TA + A, which is a reflection left adjoint for yA : A + TA. We call a the structure of 
the algebra. 

Thus, structures a are adjoint to units airyA, whence the title of the paper. 
Therefore, a structure on an object A is unique, up to isomorphism, if it exists. It 
furthermore turns out that the front adjunction q for a-i ,. y, is unique, in fact given by 
an explicit expression involving 1: 

Proposition 2.2 Let a : TA + A be an arrow such that a-l, y,_, by virtue of a 2-cell 

~:id~y,*a.Then~=Ta*1,.Inorderthatal-ceZla:T(A)-*Awitha*yA=idis 

a structure, it is necessary and suficient that 

a* T(a)*i, = id. (3 

(The calculation that the domain- and codomain-l-cells of Ta * AA are in fact id and 
yA * a, respectively, are similar to the one contemplated in the left two-third of Fig 3.) 

Proof. Consider the horizontal composite shown in Fig. 4. We calculate it in two 
ways as a .-composite, by the fundamental exchange law for * and . . On the one 
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TA 
id 

* TA 

T(YA) 

u LA * T2A 
Ta 

* TA 

Fig. 4. 

hand, we may calculate it as 

using naturality of y with respect to a, and the assumed triangular equation a * v] = id 
for u-i ryA. On the other hand, we may calculate it as 

using that the left-hand .-factor is an identity 2-cell by Axiom Tl, and that 
T(a) * T(y,) = T (a * yA) = idA. For the last assertion, if a is reflection left adjoint for 
yA by virtue of a front adjunction q, one of the triangular equations for the adjointness 
says a * g = id. But since q must be T(a) * &, this equation is (5). Conversely T(u) * LA 

will serve as front adjunction v], with (5) being one of the required triangular equations; 
the other one, g * yA = id follows from Tl. This proves the proposition. 0 

Consider now two algebras (A, a) and (B, b) and an arbitrary mapf: A -+ B. By the 
canonical 2-cell for S, we shall understand the 2-cell 

TA Tf - TB 

A 
f B 

which is the mate (under a -i yA, b -I ye) of the identity 2-cell 

TA 
Tf 

- TB 

A 
f B 

(this diagram commutes, by naturality of y). 

(6) 

Remark 2.3. Consider the case TA is a free colimit completion of category A, so that 
a: TA + A is colimit formation, (assuming A has the relevant kind of colimits). If 
D:I + A is a diagram in A, the value CpD of #J at this diagram D E TA is the 
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well-known comparison 

To say that C$ is invertible is thus to say that f commutes with colimits. This also 
motivates the following definition. 

Definition 2.4. Let (A, a) and (B, b) be T-algebras, and f: A + B an arbitrary map. 
We say that f is a T-homomorphism if the canonical 2-cell associated to f is 
invertible. 

From the mate calculus (“paste of mates is the mate of paste”) immediately follows 
that the composite of two T-homomorphisms is a T-homomorphism. Also identity 
maps are T-homomorphisms; and then it also follows from the naturality of the 
mating process, as described above, that any isomorphism A + B is a T-homomor- 
phism (in fact an invertible such). 

We thus get a category T-A& of T-algebras and their homomorphisms, and 
a forgetful functor U : T-A& -+ V. We may make T-Alg into a 2-category by counting 
any 2-cell in % as a 2-cell in T-4. Thus U is faithx, and locally full and faithful. 

In view of Remark 2.3, and the known fact that left adjoint functors preserve 
colimits of any kind that may exist, the following useful result is not surprising. 

Proposition 2.5. Let (A, a) and (B, b) be T-algebras, and let f: A + B be a map. If f is 

a left adjoint arrow, it is a T-homomorphism. 

Proof. Let g : B + A be some right adjoint for J; by virtue of n : id - g *f and 
E : f * g a id. In Fig. 5, the two 2-cells in the squares are the canonical 2-cells for f and 
g respectively. Also, E is displayed. And because T is a 2-functor, T f -I Tg by virtue of 
Tq, TE, and Ty is displayed also. The three 2-cells TV, Ic/ and 8 in Fig. 5 paste to a 2-cell 
t,V: f * a --* b * Tf (which is in fact the mate of $, but now with respect to f -1 g, 
T f -I Tg). We claim that this 2-cell is an inverse of C# : b * T f + f * a. We prove that 
c$.+’ = id,,, (the argument that II/‘.4 = id bt TS is similar, but requires consideration 
of the diagram with 4 and $ pasted together in the opposite order). To prove the 
desired equation 4. $’ = id is, by the construction of $‘, equivalent to proving that the 
total paste in Fig. 5 is an identity 2-cell. 

By naturality of y with respect to q, we have a commutative diagram as shown in 
Fig. 6. 

The mate of the front (straight) square under a -1 yA is the canonical 2-cell for g *f, 
hence the paste $ and I,+ appearing in Fig. 5. The mate of the rear (curved) square is an 
identity 2-cell. The naturality principle for mating thus says that pasting Ty on the 
paste of C$ and $ gives the same result as pasting an identity 2-cell on q. In other 
words, the paste of the three cells TV, 4 and II/ in Fig. 5 yields as result just q * a. Using 
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Fig. 5. 

TA * TA 

Fig. 6. 

this, the further pasting of the E in Fig. 5 yields 

(E*f*a).(f*q*a) = (&*f.f*q)*a =f*a, 

the last equality by one of the triangular equations for q, E. This proves the desired 
equation, and thus the proposition. 

Another, completely austere equational proof, using no diagrams or mate calculus, 
may be found in the version [19]. 

Since front adjunctions id S- yA * a for T-algebra structures a : TA + A by Proposi- 
tion 2.2 have an explicit expression in terms of 1, and since canonical 2-cells are mates 
of identity Zcells under adjunctions a •-1 ya, b -I yg, it follows that the canonical Z&cell 
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4 for f: A + B, where (A, a) and (B, b) are T-algebras, has a canonical expression in 
terms of 1, namely given by 

4=b*Tf*Ta*&. (7) 

The following useful result is due to Street [26, Proposition.]. 

Lemma 2.6 (Recognition Lemma). Given T-algebras (A, a) and (B, b) and a map 

f: A + B. In order that a 2-cell 4 : b * Tf * f * a is the canonical 2-cell for f, it is 
necessary and sujficient that it is annihilated by yA, i.e. that 4 * yA = id. 

Proof. If 4 is the canonical 2-cell for f, it is given by (7), and this expression is 
annihilated by yA, because of Tl. 

On the other hand, assume 4 * ya = id. We calculate the mate of 4 by pasting the 
front adjunction q for b -I y, and the (trivial) back adjunction for a -I yA, obtaining 

The right-hand factor here is an identity 2-cell by the triangular equation for b -I r yB, 
and the left-hand one is an identity 2-cell by assumption. So the mate of 4 is (the 
appropriate) identity 2-cell, so 4 is the mate of that identity 2-cell, hence is the 
canonical 2-cell forf: 0 

3. Monad theoretic aspects 

Up till now, we have not been utilizing the data m : T 2 =E- T or the equations T2, T3 
for it. But we did note that T3 (together with TO,Tl) implies that, for any C, 
mc : T 2 C + TC is a reflection left adjoint for yTC, thus provides TC with structure of 

T-algebra. 
We now prove the “dual” T3* of Axiom T3. 

Proposition 3.1. We have, for any C E V, 

mc * mTc * T& = id. (8) 

Proof. As for T3 in Fig. 3, one sees that the domain- and the codomain-l-cells of the 
2-cell in (8) is mc. Let us view it as a 2-cell 

T2C 
T(id) 

+T2C 

TC id * TC 

By the recognition lemma, to see that it is an identity 2-cell (which is the canonical 
2-cell for the identity map of TC), it suffices that its precomposition with yTc is an 



53 A. Kock / Journal of Pure and Applied Algebra IO4 (1995) 41-59 

identity 2-cell. But 

mc*mrc* TLc* yTc = mc*mTc*yT2c*&= mc”&= id, 

the first equation by 2-naturality of y with respect to &, and the other two equations 
by Tl and T2. This proves the proposition. IJ 

As a corollary, we have 

Theorem 3.2. For any KZ-doctrine T = (T, y, m, A), we have T(yc)i cO me-l r yTC. 

Proof. We observed in Proposition 1.2 that mci,yTC follows from TO, Tl and T3. 
And T(yc)-i,,mc follows in exactly the same way from TO, Tl and T3*( = (8)). (In 
particular, the back adjunction for T( yc) -I mc is mTC * T(&).) 0 

Since mc is a left adjoint, it follows from Proposition 2.5, applied withf= m,, that 
the canonical 2-cell for mc 

T3C 
7%) 

* T2C 

I mc 
PC 

kf 
T2C m, * TC 

is invertible. More generally, if a : TA 
that the canonical 2-cell for a 

T2A 
?a 

* TA 

(9) 

. A is a T-algebra structure, a is left adjoint, so 

is invertible. These canonical isomorphisms pc and CI satisfy the coherence conditions 
pc * yrzC = id, a *y,, = id, which in fact characterize them, by the recognition 
Lemma 2.6 for canonical 2-cells. Also, a * T( yA) = id holds. For, (7) implies that 

CI = U* TU* TmA*~TAA (11) 

so that 

a * T(yA) = a * Ta * Tm, * &A *T(yJ 

= a* Tu* TmA* TZ(y,)*IA 

using naturality of I with respect to yA, TO, and (5). 
Finally, if (A, a), (B, b) are T-algebras, andf: A + B a homomorphism, the relevant 

square from TA to B commutes up to isomorphism, namely up to the canonical 2-cell 
forf, by the very definition of the homomorphism notion. 
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These isomorphisms are all coherent with each other; this easily follows because 
they are all constructed as mates of identity 2-cells (and because “paste of mates is 
mate of paste”). In particular T, y, m, p is a pseudomonad (monad-up-to-coherent- 
isomorphisms p). (In fact, by our normalization concerning y, the isomorphisms 
involving y are identities.) Also, T-algebras in our sense are pseudo-algebras for this 
pseudo-monad, meaning that a : TA + A is associative-up-to-isomorphism ~1, coher- 
ent with the associativity isomorphism ,U for m. Finally, homomorphismsfin our sense 
are pseudo-homomorphisms in the pseudo-monad theoretic sense, meaning that they 
commute with structures up to coherent isomorphisms. Thus we have a functor 
(commuting with evident forgetful functors) 

T-Ah ---f ( T, Y, m, P)-Alg, - (12) 

sending (A, a) to (A, a), where T-Alg denotes the category of T-algebras and homomor- 
phisms in our sense (Definitions= and 2.4), whereas ( T, y, m, p)-Alg is the category of 
pseudo-algebras and pseudo-homomorphisms in the pseudo-monad theoretic sense. 

We have been a little vague about what the coherence conditions are for the 
structure elements in the latter category; the reason being that we shall only need a few 
of them is order to conclude that (12) is actually an isomorphism of categories: 

Proposition 3.3. Let (A, a, M) be a pseudo-algebra (meaning that a : TA + A and that 
c1 is a 2-cell us in (lo), satisfying the coherence conditions a * T(y,) = a * YTA = id). 
Then (A, a) is a T-algebra, and LX is the canonical 2-cell us constructed in (11). If (A, a, a), 
(B, b, j?) are pseudo-algebras, and (f; 4) is a pseudo-homomorphism (meaning that 
f: A -+ B and that q5 is an invertible 2-cell b * Tf * f * a, satisfying the coherence 
condition $I * yA = id), then f is a T-algebra homomorphism, and I$ is the canonical 2-cell 

for it. 

Proof. The statement about homomorphisms is immediate from the Recognition 
Lemma. To prove that a pseudo-algebra (A, a, a) has u-i r yA, we prove that the 2-cell 
Tu * AA will serve as a front adjunction. The one triangle equation is Tu * AA * yA = id, 
which follows from Tl. The other one, namely a * Tu * & = id, we prove by calculat- 
ing the horizontal composite 

TA 

TY.4 

u,,- 
YTA 

in two ways, by the fundamental exchange law for *- and .-composites in a 
2-category. On the one hand, we may calculate it as 

(tl*YTA).(a* Tu*;~A) = U* Tu*JA (13) 
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by the coherence condition for c(. On the other hand, we may calculate it as 

(a*m,*l,).(a* Ty,) = a*Ty, = id, (14) 

by T2 and the coherence condition for a. This proves a * Ta * iA = id, and thus the 
proposition. 

We summarize part of the conclusion more succinctly in 

Corollary 3.4. Let A be an object of 59. The following data are equivalent: (1) 
a rejection left adjoint a : TA + Afor y_,,; (2) a (T, y, m, p)-pseudo algebra structure (a, c() 

on A. (In particular, CI is uniquely determined by a.) 

We shall now address the problem: which objects A can carry an algebra structure 
for a given KZ-doctrine? The question is meaningful since such a structure is unique 
up to isomorphism. The answer is partly modelled on the list of equivalent conditions 
in [9]; I am indebted to Peter Johnstone for indicating to me the proof of the 
implication from (2) to (1). This proof depends on splitting idempotent 2-cells in the 
ambient 2-category. Such splittings are only determined up to isomorphism, and we 
have to make an assumption about how such splittings may be chosen; this is a price 
we have to pay for our insisting on the normalized algebra structures a, i.e. for insisting 
that a*y, is equal to the identity on A, (rather than just isomorphic to it, with an 
isomorphism satisfying certain coherence conditions, cf. [26]). 

So consider a choice of splitting of idempotent 2-cells in a 2-category (idempotency 
and splitting with respect to the vertical composition. ; let us denote the chosen 
splitting of an idempotent 2-cell CI by a’.a”. We say that the choice is natural if 
(a *f)’ = a’*f for any l-cell f and idempotent 2-cell a (composable with f), (and 
similarly forf* CI, although we shall not need this), and if a’ = a for any identity 2-cell 
a. (The similar equations for the a” then follow). We can now state the following result. 

Theorem 3.5. Let (T, y, m, 2) be a KZ-doctrine on a 2-category V, and A an object of V. 

Assume that W admits a natural splitting of idempotent 2-cells. Then the following 

conditions are equivalent: 

(1) there exists a reflection left adjoint for yA; 
(2) there exists a retraction for yA; 
(3) A is a retract of some object T (D); 

(4) A is a retract of some object satisfying (l)-(3). 

Proof. The implications going down are trivial. Also, a retract of a retract is a retract, 
so (4) implies (3) is clear. To see that (3) implies (2), let A be a retract of T(D) by virtue 
of i,p with p * i = id.,,. Then 

p*mD*Ti*yA=p*mD*yrD*i=p*i=id, 

the second equality sign by TO. This shows there exists a retraction for y,_, , proving (2). 
Finally, assume (2). Let a be a retraction for yA and define the 2-cell q : id,(,) 3 yA * a 
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as T(a) * AA. In other words, rl is constructed as in Proposition 2.2. As in there, one of 
the triangle equations for adjointness holds, the other (i.e. (5)) one may not. However, 
by an observation of Pare, quoted in [23, Ch. IV.l, Exercise 41, the fact that one 
triangle equation does hold implies that the other triangle 2-cell, in our case 
a * T(a) * jlA, is at least an idempotent, which, when split, yields an adjoint pair, with 
the same right adjoint, and with left adjoint that l-cell through which the splitting of 
the idempotent 2-cell passes. In this way yA is proved to have a left adjoint. The fact 
that it is a reflection left adjoint comes from the naturality assumption for splitting of 
idempotents, together with the fact that the idempotent 2-cell in question a * T(a) * IzA 
becomes an identity 2-cell when *-composed on the right with yA, by Tl. This proves 
that yR has a reflection left adjoint, so the condition (1) holds. This proves the 
Theorem. 0 

4. Comonad theoretic aspects 

A recurrent theme in relation to the various cocompletion processes that occur in 
the literature is the question: when is it the case that the colimit (or sup-) formation 
a : TA + A (which is left adjoint to yA : A + TA) itself has a left adjoint? 

For instance, if TA is the ideal completion of the poset A (so TA = set of lower, 
upwards filtering, subsets of A, and a supremum formation for such, cf. e.g. [lS]), a left 
adjoint for a, i : A + TA exists iff A is a continuous poset (in the sense of continuous 
lattice theory, cf. e.g. [24]), with i (x) being the set of elements way-below x E A. See 
also [lo]. 

Our Theorem 3.2 gives a general sufficient condition for existence of such a left 
adjoint. 

For the case of a KZ-doctrine T = (T, y, m, 1) on the category of posets, ( T, y, m) is 
of course not just a pseudo-monad, but a genuine monad, and the isomorphism of 
categories following from Proposition 3.3 in this case becomes a genuine monadicity 
theorem: the category of T-cocomplete posets is monadic over posets, by the monad 

( T, Y, ml. 
Whenever we have a monad T on a category %‘, we get a comonad T’ on the 

category qT of T-algebras, simply as the composition F 0 U, where U : 2TT + V is the 
forgetful functor and F: % + gT its left adjoint. 

Bart Jacobs raised the question of the coalgebras for the comonads arising from the 
various cocompletion monads on Posets, and found (private communication) that 
they are exactly those cocomplete posets (for the relevant notion of cocomplete) where 
the supremum formation has itself a left adjoint. We shall in the following prove and 
extend this result. 

Let T = ( T, y, m, 2) be a KZ-doctrine on a 2-category %?. Let T-Alg be the 2-category 
of T-algebras and their homomorphisms, as defined in Section Ehere is a faithful, 
locally full-and-faithful forgetful 2-functor U : T-A& + 59. There is also a 2-functor 
F : Gf 3 T-A& which is pseudo left adjoint to U (in a sense which we shall not need to 
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make precise here; for the case where %? is Posets, it is an actual left adjoint), given by 

J’(C) = (TC, mc), 

W-1 = W-1. 

We know already by Proposition 1.2 that mc l lyTc so that (TC, mc) is indeed a 
T-algebra in our sense. The fact that Tf is a homomorphism follows since 
mD * T ‘f = Tf* mc, by naturality of m. 

Let G = F 0 U. We construct ex : GX + X for any X = (A, a) E T-a; it is simply 
a : TA + A, which, by being a left adjoint, is indeed a T-homomorphism, by Proposi- 
tion 2.5. Note that e is not natural except up to an isomorphism (which can be 
specified in terms of A). (In the Poset case, the naturality is strict, of course.) 

Also, we have a dx: GX + G2X; if X = &a), this is T( yA): TA + T ‘A, which is 
a homomorphism, being of form T(f); (it is even a left adjoint arrow, by Theorem 3.2); 
and dx is strictly natural since y is. And e is a strict two-sided unit for d. Finally, we 
shall provide a 2-cell px for any X = (A,a) E T-&J, 

G(ex) , 
G2X fl PX * GX 

eGX 

This is the same as a 2-cell 

W4 , 
T2A fi px TA 

, 
mA 

Since we have T(a)-lT(yA), mA+y TA, we may construct such px by taking the simple 
mate of the 2-cell AA : T(yA) 3 y,A. 

On T-A&, we therefore have data T’ = G = (G, e, d, p), which is like the data for 
a KZ-monad, except for the reversion of l- and 2-cells, and for the fact that e is not 
natural except up to isomorphism. For the case where the base category $9 has all its 
horn-categories posets instead of genuine categories, e.g. when $9 = Posets, e will be 
strictly (2-) natural, and also, in this case, the equations Tl-T3 (suitably dualized) 
vacuously hold. If we let (T-&)c”-OP denote T-4) with both l-cells and 2-cells 
reversed, we therefore have 

Theorem 4.1. Let the horn categories of the 2-category $9 be posets. Then for any 

KZ-doctrine T on 59, the data G = (G,e,d,p) described above, is a KZ-doctrine on 
(T-4 ) c=‘-Op. 

If we from the outset had developed the theory of KZ-doctrines with the naturality 
assumptions on y and m replaced by suitable pseudo-naturality (i.e. naturality-up-to- 
specified-coherent isomorphisms), we could presumably have had the theorem even 
without the restriction on the horn-categories of %‘. 
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An interesting feature of the theorem is that it immediately admits iteration. If we 
thus apply it to the KZ-doctrine T’ = G on (T-4)c”+p, we get a KZ-monad T” on 
the 2-category of coalgebras for T’ = G, etc. This iterative feature should provide 
a conceptual frame for the question of iterated adjoints in the context of Yoneda 
structures, as studied by [29]. 

Note that, under the restriction posed on the horn categories,. the notion of 
T-algebra, G-coalgebra, etc., are synonymous with the (strict) monad theoretic notions 
with the same names. 

As a corollary of Theorem 4.1, we derive Bart Jacobs’ result, namely the equivalence 
of the (1) and (2) in 

Theorem 4.2. Let the horn categories of 59 be posets. Let T = ( T, y, m) be a KZ-doctrine 

on ‘%? (i.e. a monad with T(yc) I yTc for all C E 9.) Then the following conditions on 

a T-algebra (A, a) are equivalent 

(1) there exists a left adjoint i for a: TA + A 

(2) there exists a G-costructure 1 on (A,a) E T-Alg 

(3) there exists a T-homomorphism 1: A + TA with a 0 4 = id. 

Proof. By Theorem 4.1, G is a KZ-doctrine on (T-Alg )cO-Op, so Corollary 3.4 applies. 
But with X = (A, a), a left adjoint for X + GX in (T-A1g)CO-OP is the same as left adjoint 
for a : TA + A in T-Alg . Thus (1) and (2) are equivalent. Clearly (2) implies (3), since 
this means just that wegive up the requirement of co-associativity for the costructure 
4. To prove (3) 3 (l), note that from standard monad theory, precomposition with 
yA yields an isomorphism (for B = (B, b) any algebra) 

Horn,,,,, (TA, B) --, Hom,(A, B), - 

which, since T is a 2-monad, in the present case is an order isomorphism. To prove 
i-1 _,a, it suffices to prove A* a < id. Since both things to be compared here are 
T-homomorphisms TA + TA it suffices to prove the inequalities after precomposi- 
tion with yA, i.e. to prove 4 I yA. This follows by precomposing the adjunction 
inequality idTA I ya * a by 4 and utilizing a * i = id. This proves the adjointness and 
hence the theorem. 0 
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