LINEAR ALGEBRA AND PROJECTIVE GEOMETRY

IN THE ZARISKI TOPOS

Anders Kock

The aim of this note is threefold: (i) logic, (ii) lin-

ear algebra, (iii) geometry. More precisely:

(i) We illustrate the technique of working with ele-
ments in a regular category (when dealing with

1St order statements).

(ii) Using this we give a notion of field object in a
regular category E such that the basic linear
algebra is valid; the central basic theorem being

that for any m xn-matrix

row rank = column rank

= rank in terms of subdeterminants.

The example of such kind of field object (the axi-
oms are given in (2.1) and (2.2) below) which we
had in mind, is the affine line in the Zareski to-
pos ("the universal local ring", according to Ha-
kim [4], IITI §3).

(iii) Finally, assuming that E is an elementary topos
equipped with a field object R of the kind de-
fined by (2.1) - (2.2), one can construct the Grass-
mann manifolds G(r,n) of "r-planes in n-space".
For fixed n, these fit together to form a certain
combinatorial structure, a "geometric lattice" or
a "synthetic geometry". We prove this fact only for
the case n = 3, in which case G(1,3) and G(2,3)
should be thought of as the "set of points" and the
"set of lines" in a "projective plane". We show that

G(1,3) and G(2,3), with an obvious incidence re-



lation, form a structure which satisfies the ax-
ioms for a projective plane ("through two differ-
ent points, there is a unique line; two different
lines intersect in a unique point". (Again "satis-
fying" some ordinary 1St order statements like
these is meant in the sense of "working with ele-
ments in a regular category", or "Kripke-Joyal se-

mantics".)

We do not here pursue the line further into higher di-
mensions. To do this in a coordinate free way would require
consideration of exterior algebras. This should cause no
difficulties, except that the exterior algebra on an R-mo-
dule need not exist at all in E, unless one assumes exist-
ence of a natural number object in E. Of course, for R-mo-
dules locally isomorphic to Rn, the exterior algebra does
exist and has locally a canonical basis. But then we are real-
ly just back working with matrices and determinants again.

We end up by a section (Section 4) where we use that the
Zariski ringed topos satisfies our field axiom, together with
the universal property which the Zariski ringed topos has a-
mong local ringed toposes (Hakim), to give a topos-theoretic
framework to the ﬂbertragungsprinzip of E. Study [13]: "to
transfer statements about abstract spherical geometry to
statements about the geometry of oriented lines in Euclidean
3-space" (by considering the ring of dual numbers).

Section 1 contains the logic by means of examples. It is
roughly ‘the content of a lecture [8] given at the Aarhus Cate-
gory Open House, May 73. W. Mitchell, Osius, Mulvey and Bena-
on and his students have dealt more systematically and con-
ceptually with language and interpretation for toposes. The

conceptual way of formulation the above would be to pass to

the topos sh(E) of sheaves on E (with respect to the "pre-



canonical" topology, [10]). Instead of (informal) "state-
ments" (as considered in Section 1 here), one would con-
struct "conceptual" objects in sh(E). For formal computa-
tions (e.g. matrix-multiplication) I think, however, that
it is an advantage not to conceptualize everything, but
rather consider actual elements (or matrices of elements)
in "external" rings (like hom(X,R)).

Section 2 contains the linear algebra. I have not been
able to determine its exact relationship with Heyting's "in-
tuitonistic linear algebra" [5], partly because Heyting's
groundfield R 1is not assumed commutative, partly because
he works with a separate "apartheid" relation w, where we
work just with negation of equality.

Section 3 constructs the Grassmannians, in particular
the projective plane. For the special case of the Zariski
topos, I think that the constructed objects are the same as
those "classically" considered (in Demazure-Gabriel, say,
[2] p. 9).

Sections 2-4 were the content of a lecture given at

Giornate di Logica Categorical, Firenze, May 74.



1. Kripke-Joyal semantics.

We do not attempt to describe a formal language L(E),
and a complete interpretation of it. Rather we explain what
are the principles behind the concrete interpretation of the
concrete notions below (for more examples of this kind, see
[91).

Let B be an object in E. Suppose that we have al-
ready interpreted a certain statement ¢ about arrows end-
ing in E; that is, for every X€ |E| and every b: X » B
we assume that we know what we mean by saying that ¢ holds
for b, denoted ¢(b). Then the statement ¢ is inter-

preted by saying that for X and b: X = B arbitrary

o) (b) iff for every arrow o which ends
in X, if ¢(o.b) holds, then
the domain of o is the initial

object.

In more succinct form: =9 holds for b if it is univers-

ally the case that ¢ does not hold for b. Or:

Interpreting o: Y+>X as a passage from "time X" to
the "later time Y", ¢ holds for b ("defined at time
X", b: X - B) iff for all later times Y, ¢ does not
hold for b at time Y (unless Y = ().

This is Kripke's semantics for negation. Implication
and universal quantification are interpreted the analogous

way, i.e. by introducing a universally quantified parameter-

shift o (or "passage to later time"). (See illustration
below in connection with linear independence, or [9]).

In Kripke's original semantics, validity of conjunc-
tions, disjunctions and existential quantifications are de-

cided "at the spot", that is, no o 1is required. This was



pointed out to be inadequate for disjunction and existential
qualification) for many mathematical purposes by Joyal (pri-
vate communication). For instance in topology, existence of
cross sections (in fiber bundles, or sheaves, say) is a rare

thing compared to existence-locally of cross-sections. So the

slogan was formed "existence means local existence". Similar-
ly for disjunction. To be precise, suppose that we have al-

ready interpreted the statements ¢ and ®, both being

1
statements about arrows ending in B (as before). Then the
statement ¢, vy, is interpreted by saying that for X and

b: X » B arbitrary

(wIthz)(b) iff there exists a jointly epic
pair of maps ending in X,
(B,: X, » X, B,: X, > B)
such that
¢, holds for B8, .b and

®, holds for 82 .b.

Similarly for n-fold disjunctions. (We also use the term
cover for a finite jointly epic family). For an illustration
of the analogous "local" interpretation of existential quan-

tification, see the example below.

Such interpretations of statements ¢ are not very use-
ful, unless they define subfunctors of representable functors;

this means that if we have

Y b
-> >

Z X B

and ¢ holds for b, then also ¢ holds for vy .b. So
our interpretations of more composite statements should

define subfunctors provided the constituent statements do.



This is automatically so for negation and universal quanti-
fication (provided the initial object is strict, and is pre-
served by pull-back). For existential quantification and dis-
junction, one has to require certain exactness properties of
the category E, for instance that jointly epi families are
preserved by pull-back.

A final remark concerning the method of interpretation.
For this, we have to assume that in E every epic is regu-
lar, that is, is coequalizer of its kernel pair (or, alter-
natively, that the interpretation of existential statements
are changed by replacing localization by an arbitrary epic
by localization by a regular epic). Under these conditions,

we can augment the principle

Existence means local existence

by

Unique existence implies global existence.

We illustrate this by an example.

Example. Let M be a ring-object in E (not necessa-
rily commutative). Let m: X > M be a map in E (an "ele-

ment of M defined over X"). Then by definition, m satis-
fies the existential statement: "there exists a right inverse

for m" if there exists some epic B: Y + X and an element

n: Y - M such that in the ring homE(Y,M)
(B.m) *n = e

where e 1is the neutral element in the ring homE(Y,M).
So "locally" (namely "on" Y), m has a right inverse. Now,

in a commutative ring, inverses are unique. So assume M is



a commutative ring object. Let Pyrb, be the kernel pair
of B. Consider the (non-commutative) diagram (m,8 and n

as above)

, ety . 8
Z -—> —> X
2
m
n
M
We shall prove that n factors across g. Since n is in-
verse to g.m in hom(Y,M)
* py -1 is inverse to p; - B .M i=1,2
in hom(Z,M). Now p,-B.m=p .g.m, since B8 coequal-
izes p,sp,- SO p, .n and p,.n an inverse for the
same element in the ring hom(Zz,M). This ringwas, however,
commutative, whence p .n =p, 6 .n. So n factors across
the coequalizer B
n=gg.n'
where n': X - M. To prove that n' is an inverse for m

in hom(X,M), it suffices (since B 1is epic) to see that
B .n' is inverse to R .m. But this is so. So m has a
"global" inverse n'.

This means in particular that for a commutative ring
object M in E, one does not have to distinguish between
the "Kripke-Joyal" interpretation of "m is invertible",
and the "isolated" interpretation: "m 1is invertible in the

ring hom(X,M)" ("Isolated", because here we ignore the



rest of the category E when deciding the validity).
For non-commutative rings, this is not so; in particu-

lar, for the matrix rings we consider in the next paragraph.



2. Linear algebra

In the following two sections, E denotes a fixed el-
ementary topos. (Actually, for Section 2, only the exactness
properties are needed, and in fact the whole thing could be
carried out in an arbitrary regular category with well-be-
haved coproducts and initial object, provided the word 'epic'
is understood to mean 'regular epic'.)

Let R be a commutative ring object in E. We say

that it is a field object provided for each n = 1,2,...

n n

(2.1) - (/“\(ai=0)) implies \v/ (ai is invertible)
i=1 i=1

and

(2.2) - (1=0).

Note that (2.1), according to §1, means the following:
Assume that & resesay are maps X > R (with same domain
X), having the property that for all o: ¥ -~ X (with Y=0),

u.al,...,a.an are not all 0; then there exists a jointly
epic family

B.: X, - X (i=1,...,n)
such that, for each i = 1,...,n, Bi .ai is an invertible
element in the ring hom(Xi,R).

Similarly, (2.2) means that the zero- and the one-ele-
ment in the ring hom(X,R) are different for arbitrary
XEE (X=0¢).

The axiom (2.1) for n = 1 1is what Mulvey [11] calls

a "ring of fractions". The effect of having the axiom for

all n is to build a little boolean logic (one of de Morgan's
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laws) into R. The axioms (2.1) and (2.2) together imply
that R is a local ring in the sense of Hakim [4] (cf. also
Mulvey [111]).

If § < SR is the Zariski topos ( R the category of
small commutative rings (models, [2]), then the forgetful
functor R: 0{ —>8 is in 5 , and it is a commutative
ring object canonically. It satisfies (2.1) and (2.2). This
comes from the fact that if A 1is a commutative ring, and
al,...,an are elements in A such that for every ring ho-
momorphism £f: A - B, the a,'s are not all sent to 0

1

(unless B is the zero ring), then the ai's generate the
unit ideal in A (Proof: take B = A/(al,...,an)). So the
family A - A[a11] (i=1,...,n) form a covering for the
zariski topology ([31, IV.6.3), and on A[a;1], a; 1is in-
vertible.)

Returning to the general situation, let M€ |E| be a

module object over a commutative ring object R. An n-tuple

of elements
(2.3) v,: X > M i=1,...,n

(all having the same domain X) 1is said to form a (linearly)

Independent set (note the capital I) provided they satisfy

(in the sense of §1)

V(b eewpt ) (BEy nv; =0 = (£, = ... =t =0)).

In elementary terms, this means: given arbitrary a: ¥ - X

and ti: Y +R (i=1,...,n), such that, in hom(Y,M)

Ity ‘(d.Xi) = 0;
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then t. = ... =t = 0. This condition is stronger than:

1 n

"Vire..yv, form an independent set in the hom(X,R)-module
hom(X,M)"; the extra strength is that for every oa: Y > X,

the o -v; are independent in hom(Y,M). Or, in suggestive

terms: v -4V~ are Independent iff they are universally

| B
independent.
Let r be an integer, 0 <r <n. We say that the n-

tuple (2.3) has Rank >r, if there exists a jointly epic

. . n n . _
family BH. XH + X uiE(r), where (r) is the set of sub
sets of {1,...,n} consisting of r elements) such that
for each H, the family (consisting of r elements in
hom (X, M)

BH - Vi (k € H)

is independent.

We do not talk about the Rank of (2.3) being equal to
r unless r = n.

We are mainly going to be concerned with the R-modules
M = Rk (k an integer). An element v: X -~ Rk can be iden-
tified with a k-tuple \FE X>R (i=1,...,k) of elements
in R. An element A: X - R may be identified with an

mxn matrix of elements a X » R (a matrix with elements

ij°f

from the ring hom(X,R)), and this in turn may be identi-
fied with an m-tuple r.: X > R? ("the m~tuple of rows")
or with an n-tuple: gj: X - R" ("the n-tuple of columns").

Consider such a matrix A: X » R™. We say that its

determinant-Rank is >r, provided there exists a jointly

epic family

m n
{Bug® *¥gx X| He (), Ke(r)},
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such that for each H,K, the r Xr submatrix A, picked
out of A by means of H and K has the property that
BHK - Byg has invertible determinant (the determinant of the
r Xr-matrix BHK 'éHK over the ring hom(XHK,R) is comput-
ed as usual).

The reader will easily see that this is precisely the
interpretation according to §1 of the statement: "at least
one of the r xr submatrices of A has invertible determi-

nant" (this being formally a disjunction with (?) x(?)

terms). A similar remark holds for the other Rank-definition.

Remark. Note that both rank notions are local in the
sense that if the domain X of the set (Xl""'zn) of el-

ements in (2.3) (respectively the domain of the matrix

A: X ~» R™) can be covered by a finite family {Yj: Xj > X|
j €J}, such that, for each Jj, (Yj I ARERRAS .Xn) has
Rank >r (respectively Y5 .A has determinant-Rank >r),
then (Xl,...,Xn) (respectively A) has Rank (respectively

determinant-Rank) >r.

We shall see now that the field axioms (2.1) and (2.2)

are precisely what is needed to prove

Theorem 2.1. For any matrix A: X - R )

row-Rank (A) >r & determinant-Rank (A) >r & column-Rank (A) >r.

(Here of course row-Rank(A) >r means that the m-tuple of
rows I,: X > Rn (i=1,...,m) has Rank >r; similarly for

column Rank).



Proof. We sketch the proof of the first bi-impldcation;
the second then follows by transposing. We start with the
easy part (which does not use the axioms (2.1) - (2.2)).

Assume det.-Rank(A) >r. So we have a jointly epic fam-
ily {XHK jﬁﬂg X} as above. We shall first prove that for
each H,K, the r rows with index from H in the mxn-

matrix B .A form an Independent set. So let a: Y + X

HK
and tl,...,tr: Y + R be so that

HK

r t,* (a.B ,.x. ) =0
j.€H * HR =35
i
in hom(Y,Rn). Since the r xn matrix in hom(Y,X) con-
sisting of the rows a .8 . Ia (j, € H) has an invertible
HK * =Ji i

r xr subdeterminant (the columns with index from K), we
conclude, by standard linear algebra over a commutative ring
(namely hom(Y,R)), that the ti‘s are all 0.

This proves that B8, .A has row-rank >r; since this

HK

holds for arbitrary HK and the B form a finite covering,

HK
we conclude by the remark above that A has row-rank >r.
The converse implication uses (2.1) and (2.2) (in fact,
even for n=m=1, we need (2.2) for "{all} Independent =
ﬂ(a11==0)" and (2.1) for "ﬂ(a11==0) = a,, invertible").

So let us assume (2.1) and (2.2), and that the m XxXn-matrix

A: X » R
(with ij'th entry denoted ajyt X - R) has row-Rank >r.
So X can be covered by {BH: XH > XIIIE(?)} such that

the m xn-matrix - A has the r rows with index from

By

H Independent. By the remark above, it suffices to prove

that for each H, the mxn-matrix . A has determinant-

P
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Rank >r . For simplicity, let us prove this for

H={1,...,r}<s{1,...,m}. For this H, the r first rows
of BH .A are linearly Independent. In particular the set
consisting of the first row alone, BH .x,, 1is an indepen-

dent set. Suppose that a: Y > XH is so that

(2.4) o .BH .alj =0 for j =1,...,n

Consider the 1-element t in the ring hom(Y,R). Then
t-a.B r. =0 in hom(Y,Rn),

by (2.4), so by independence of {a - By .}, t=0. so
in hom(Y,R), 1 =0, whence Y = ¢ by Axiom (2.2). This

proves that the BH 'a11""'BH .a, satisfy the statement

n

n
- (/\ By .alj = 0)
=1

(in the sense of §1). By Axiom (2.1), we therefore conclude

that they also satisfy the statement
n
;!q (BH .a1j is invertible)

'Y .
So XH can be covered by {XHj ——19>XH| j=14...,n} such

that Yj «By-a,. is invertible, for each j = 1,...,n.

H
Again by the remark, it suffices to prove that, for each

j=1,...,n the matrix

Yj'BH'=A-—

has determinant-Rank >r . For simplicity, let us do the

case j = 1. By construction of the Yy the element



is invertible in hom(X,. ,R). Now it is clear that perform-

H1
ing admissible row-operations on a matrix does not change its
subdeterminants (except for sign), and thus does not change
the determinant-Rank, either. (Admissible row-operations:
interchanging rows; adding a multiple of one row to another).
Also, admissible row operations do not change row rank, be-
cause every admissible operation has an inverse admissible
operation. So we can use admissible row operations on the
matrix v, .BH A to sweep the first column by the invert-

ible element vy, .8, .a,, toget 0's everywhere in this

H
column except in the top. The considerations now start over
again with the (m-1) X (n-1)-matrix of row-rank r -1 which
we get by deleting first row and first column in Y, .BH . A.
We continue this way n-1 times, each time passing to a
finer covering. On each part Bv of the ultimate covering,
we have that the matrix Bv .A Dby suitable admissible row-
operations (depending on v) can be brought to a form where

a certain r xr submatrix (depending on v) 1is immediately

seen to be invertible (for the "lexicographically first" of

the v's, B,.A is transformed to the form
r
et ey
»
* (3
r *
T
m < O * .
0
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with invertible elements in the places marked *. The upper
left r xr matrix here has invertible determinant (the prod-
uct of the *-marked elements).)

By the remark, this implies that determinant-Rank (A) >r.

This proves the theorem.

From ncw on, we of course say that the Rank of an m xXn-
matrix A: X ~ R™ s >r if in one (and therefore in each)
of the three Rank-concepts (row, column, determinant), the
Rank is 2>r.

Many other statements of the character "Independent =
invertible" can now be proved using Theorem 1 as well as
standard determinant theory (Cramers rule). As an illustra-
tion (which we shall need), we prove (still assuming (2.1)

and (2.2) for R):

Theorem 2.2. Let A: X > an be an mXn matrix with
Independent rows (respectively columns). Then, locally, A
has a right inverse (respectively left inverse).

Stated more elementary, there exists an epic map
B: ¥ - X and an n xm-matrix B: Y - R™ such that
(B-A) B is the identity mxm matrix (respectively, such

that B - (B.A) is the identity n xn matrix).

Proof. Given A, an mxn matrix over the ring

hom(X,R). To find B such that

(2.5)

=
I
i
=

(identity matrix)

amounts to solving m®> linear equations with nm unknowns

(namely the entries bji of B). The coefficient matrix for

this system is
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[l

.
(2.6) l ; (m copies of A).

By Theorem 2.1, the determinant-Rank of A is m, so X
can be covered by a finite family BH: X, 7 X Uie(;)) such

that B, .A has the mxm submatrix corresponding to H

H
(that is, obtained by omitting the n-m columns with index
not in H), invertible (its determinant dH being invertible).
On a given of the X.'s, one obtains an m? xm? submatrix
of (2.6) by omitting the "same" n-m columns from each of

the A's (strictly, from each of the B...A); and this sub-

H

matrix has invertible determinant, namely dg. Therefore one

obtains by Cramers rule explicitly a solution to the system

(2.5) (with A replaced by By .A). Then

B: _[_r[; Xy —» X
HE( )
m

constructed out of the BH'S, and the solutions obtained on
each XH give the desired local solution. - The proof for
the case of Independent columns is similar.

We shall need the following standard fact about linear
equations over a commutative ring A. It is probably well-
known. For A a field, it is the familiar statement that an
inhomogeneous system of linear equations has a solution if the
rank of the total matrix of the system is no larger than the

rank of the coefficient matrix.

Proposition 2.3. Let B be an pXq matrix (p >q)

on A, and assume that B has an invertible g xgq sub-
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determinant. Let b be a x 1 matrix such that the

ol

px(g+1) matrix (B,b) = has all its (g+1) x (qg+ 1)

[l o2

subdeterminants equal to 0. Then b can be written as a

linear combination of the columns 91""’§q of B.

Proqf. Assume for instance that the first g rows of
B have invertible determinant deA. We may think of B
as the coefficient matrix and é as the total matrix of a
system of p linear equations with g wunknowns. The first
q equations have a unique solution (tl,...,tq) given by
Cramers rule:

(2.7) d-ty = |blybl,eesb’ye bl

the Db' being put on the 3Jj'th place instead of gﬁ. (We

denote by b' the part of b consisting of first gq en-
tries; similarly for gj). We have to check that these ti
also satisfy the remaining p-9g equations. Consider for
instance the r'th equation

(2.8) t. b +t_ Db +...+t_"b = Db
1 r: 2 r2 q rq r

(where gr - (brl’br ,...,br )s b = (b1"‘°’bq))' To see

q
that (2.8) holds, replace tj by the expression for it ob-

2

tained from (2.7); we then get that (2.8) is equivalent to

(2.9)

Il ~1.Q

1 |BYsByseeesbsenusbl| sb g =d b =0

) 0

j'th place

The left hand side here can be examined: it is the expan-
sion of a certain (g+ 1) x (g+1) subdeterminant of é,

along its last row hence is 0 by assumption. So the equa-
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tion (2.9) and thus (2.8) holds.

If Vire--ey, are elements X - M, where M 1is an
R-module (here R can be any commutative ring object), we
say that an element w: X > M belongs to Span(vl,...,zm),
provided there exists an epic B: X' —» X and an m-tuple
ti: X' >R (i=1,...,m), such that, in hom(X',M)

£ty c (B.v;) = B.w.

In general, Span(zl,...,zm) will be larger than the

hom (X, R) =submodule span(gl,...,gm) of hom(X,M) generated
by the v.. (If the set Vv, ,...,¥, is Independent, it will
not be larger, because of the principle "unique existence

implies global existence".)

I
P

We now apply this for the case M Let

A: x » (RP
and

B: X » (Rn)q

be two matrices with same domain X, of size pxn and

g xn, respectively. We say B <A if each row of the B-
matrix belongs to the Span of the set of rows of the matrix
A. This defines a preorder-relation < on the set of ma-
trices with n columns having X as domain. If q: Y » X
is arbitrary and B <A, then also o.B<oa-.A. If A has a
p xp sSubmatrix X -» RPP  which has invertible determinant,
and B <3, then the coefficients ¢, used to display the

jk

rows of B as linear combinations of the rows of A are

unique, hence globally defined, tjk: X » R, by "unique
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implies global”. Using this principle once more, we see that
it is even enough to assume that A has determinant-Rank p
to get the coefficients tjk globally defined, tjk: X + R,

Combining this observation with Proposition 2.3 (trans-
posed), we get (by considering the ring hom(X,R)):

Proposition 2.4. Let A: X > (RMP be a pXn matrix

of determinant-Rank p. If B: X » (Rn)q is a g xn-matrix
such that all (p+1) x (p+ 1) subdeterminants of the
(p+9g) xn matrix {%} are zero, then each of the rows of

B is a linear combination of the rows in é (with coeffi-

cients from hom(X,R)), and, in particular, B <A.

If both A and B in the above Propostiton are p Xn-
matrices of determinant-Rank p, then the coefficients used
to write the rows of B as linear combinations of the rows
of A forma pxp matrix C over hom(X,R) with B=C*A.
The determinant of C, by product rule for determinants, is
necessarily invertible, so that C itself is invertible. So
for such matrices A and B, B<A is equivalent to A and

B being congruent modulo the general linear group GL(p)

over homn(X,R).

Returning now to the case where R satisfies (2.1) and

(2.2), we have

Proposition 2.5. Let A and B be matrices X » rOP

of size pxn, and both having Rank p. If

mod GL (p)),

J
>
n
It

then the 2p xn matrix {=} has Rank >p+ 1.

=)l
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Proof. The conclusion says that the statement

\V4 {H has invertible determinant}
H

holds, where H runs over the set of (p+1) x(p+1) sub-

matrices of {

(I (=

}. To prove this conclusion, by (2.1) it is

enough to see

(2.10) - (/\ {det(H) = 0})
H

with H as before. So let oa: Y » X be such that
det(a.H) = 0 for all H. This implies, by Proposition 2.4
that «o.B <a.A, and, by the remarks after this Proposition,

it even implies that

3
fi
"
Q
w

mod GL(p)

in hom(Y,R). Since (A = B mod GL(p)) was assumed, we

conclude Y = (. This proves (2.10)



3. The Grassmannians.

So far, definitions and theorems have been valid in any
regular category E with well-behaved coproducts, because
we have been dealing with properties of elements (elements
in the various hom-sets). This was the algebraic, or formal,
side. To get the geometric objects, we need more about the
topos structure of E, namely "representability of first
order predicates".

It is standard knowledge that, in an elementary topos,
any first order statement ¢ about elements X -+B in an
object B can be represented by a sub-object B'>— B
(this means, X -»B factors through B' if and only if it
satisfies ¢). (See e.g. Mulvey [11] or, for a very precise
form, Coste [1]). We call B' the extension of .

To get the Grassmannians, however, we need more than
"carving out subobjects by means of statements"; we also need
the formation of quotients under equivalence relations. The
construction which follows, is step for step identical to the
usual one for E =8 .

Let R be a commutative ring object in E. We let
Y(m,n) > (Rn)m denote the extension of the statement "A
is an m xn-matrix of determinant-Rank m". In other words,

a map

A: x » (RH™

factors through Y(m,n) if and only if the mxn matrix A
(with entries from hom(X,R)) has determinant-Rank m. The
object Y(m,m) »>— R™ is denoted GL(m). It is a group
object under matrix multiplication, and it acts on Y(m,n)

on the left, again by matrix multiplication:
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act: GL(m) xY¥(m,n) » ¥Y(m,n).

Out of this action is constructed a relation

<act,proj2>
(3.1) GL(m) x ¥ (m,n) > > Y(m,n) x¥(m,n)

The fact that this map is monic is seen as follows. If

(3.2) <C.

1’é>: X > GL(m) xY (m,n) i=1,2

is given, then X can be covered by ) ieces X such
m p

H
. . Bu a
that on the piece XH’ the matrix XH > X > Y(m,n)

has the mxm submatrix indexed by H invertible. From
this easily follows that, over the ring hom(XH,R),

ByC: * ByA = BLC, - ByA 1implies B, .C, =8

. .C,. Since the

H

BH's are joint epic, we conclude that c, -

[fg

=C,"A im-
plies C = C,.

Since GL(m) is a group object and (3.1) is monic, (3.1)
actually describes an equivalence-relation on the object
Y(m,n). (It is in fact the extension of the previously dis-
cussed relation "congruence mod(ﬂ;@nﬁ” as it appears in
Proposition 2.5.)

We can also represent the relation < between matrices

with same number of columns, as it appears in Proposition

2.4. This gives a subobject
©>——> (R x (rRMHP

having the property that <B,A>: X - rR™ x R"P  factors through
(:) if and only if each of the rows in B belongs to Span
of the set of rows of A. We consider the intersection of

this (:) with Y(q,n) x¥(p,n). This gives a subobject
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(3.3) (g)>——9 Y(g,n) xY(p,n).

It equals ¢ if g>p. If g=p=m, it equals the equi-
valence relation (3.1). Finally, we remark that the relation
(3.3) is saturated under the action of GL(g) and GL(p).

More precisely, we have that if

B: X > Y(q,n), A: X » Y(p,n)
and

C: X » GL(q) , D: X » GL(p),
then

B<a iff C*B<D-A .

We can now describe the objects of our main concern here,
the Grassmannians. We denote by G(m,n) the guotient object
of Y(m,n) under the equivalence relation (3.1) (congruence
mod GL(m) ) . Because of the stability which we just noted, the

relation (E} gives rise to a relation

(3.5) (§)>——+ G(g,n) xG(p,n).

It has the property that <a,a'>: X > G(q,n) xG(p,n) factors
through (é) if and only if for some (or equivalently, for

every) commutative diagram of the form

A
I
e

v

X! - Y (q,n)xY (p,n)

RS

x V
<a,a'> G(q,n)xG(p,n)
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<A,A'> factors through (g)»——)Y(q,n)><Y(p,n).

The objects G(q,n) (for fixed n) together with the
relations (g) form a certain combinatorial structure in
the topos E, "projective (n-1)-space of the ringed topos
E,R". I believe that, without further assumptions on R,
not much of synthetic or combinatorial projective geometry
holds for this (unless you introduce a separate "apartheid
relation" w). However, in case R satisfies the axioms
(2.1) and (2.2), then some synthetic geometry does work. We
illustrate this by considering the projective plane G(1,3),
G(2,3). We assume throughout from now that R satisfies
(2.1) and (2.2). We denote G(1,3) by ® ("the object of
points), G(2,3) by L ("the object of lines"), and the re-
lation (3) > G(1,3) xG(2,3) is of course called 'inci-

dence' (or 'lies on', or 'passes through').

Theorem 3.1. Through two different points passes a u-

nique 1line.

E;ooﬁ. We must prove that if two elements a ja,: X > P

satisfy the statement

then also

(3.6) Alg: a <t Aa, <t (2 in 1)

is satisfied.
We first construct (for instance by pull-back) a commu-

tative diagram
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<a,,a,>
X' B > ¥ (1,3)x¥(1,3) c R¥*xR3¥ = (R?)?
B
‘(f N
e __._..._.>
X <a ,a,> G(1,3)xG(1,3)
Since -—1(a1 = a2) holds, we conclude that
1 (a, = a, mod GL(1)).

By Proposition 2.5, the 2 x3 matrix

a
Foa |
{a

X' —— 5 (RY)?2
has Rank >2, hence has Rank 2, thus defines
[
X' ——— Y(2,3).

Clearly (a, £%') A(a, <2') holds, which proves the con-
clusion (3.6) in so far as existence is concerned. Uniqueness

is seen as follows. If a: ¥ > X, &: Y » G(2,3)

1l - 2 -
then, on Y' = ¥ xX', one has (omitting some greek letters)
X
L - El <
% (51} <2

with both 2% and &' elements of Y(2,3). But we remarked
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that (§)>——9 Y(2,3) xY¥(2,3) was the same relation as con-

gruence mod GL(2).

a_ ), then

Notation. If a,,a,: X > P satisfy ---.(a1 :

the theorem guarantees the existence of a unique element
2: X > L with a, <& and a, <&. We denote this & by

[alaz].

Theorem 3.2. Two different lines pass through a unique

point.

Proof. We must prove that if two elements £ ,%,: X > L

satisfy the statement

(= 4,),
then also

(3.7) Jla: a<f A axti (a in P).

We first construct (for instance by pull-back) a commu-

tative diagram

<A_,A_ >
X' = BT >Y (2,3)%xY(2,3) € (R?)2x(R?)?
X <2, 8,5 > G(2,3)xG(2,3)
Since ﬁ(%l = 22) holds, we conclude
-~ (A, =A, mod GL(2)).
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By Proposition 2.5, the 4 x3 matrix

[13>
i
~
il
N
—

has Rank >3, hence Rank 3. Consider the element t

t= (t,,t,,t,,t,): X' > R

where t; is (-1)% times the 3 %3 subdeterminant of A
obtained by omitting the i'th row. Then

(3.7) t*A=0

as (1 x3)-matrices in hom(X',R) (the fact that the k'th

entry, k=1,...,3, 1is 0 in this matrix, is seen by add-
ing the k'th column of A to the right of A to obtain
4 x4 matrix with 0 determinant; expanding this determin-
ant along its last column gives (3.7)). Also, since the de-
terminant-Rank of A is 3, the 1x4 matrix t has Rank

1. By (3.7), we have

=

(3.8) (b, k) A, = -(t, -t) A

Since Rank(t) = 1, we have that X' is covered by two
pieces X; and X;, such that on X;, (t1'tz) has Rank 1
and on X; (ta,tu) has Rank 1. Al locally has a right
inverse B, by Theorem 2.2; multiplying (3.8) on the right
by B we get that on X;, (tl,tz) is locally of form

—(t3’tl+) ‘é

A * B, so that also (ta’tu) has Rank 1 on X'.

1

So we conclude that (tl,tz) (as well as (ta,tu)) has

Rank 1 (on the whole of X'). The point to be constructed
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"on the intersection of the two lines" can now be taken to

be represented by the 1 x3-matrix a = (tl,tz) 'él which
has Rank 1 because (t,,t,) has Rank 1, and A, Rank 2).
Clearly a<A,, and, by (3.8), a<A,. This proves the ex-
istence. To prove uniqueness amounts to proving that any two
Rank 1-solutions t' and t" to (3.7) must be congruent

mod GL(1). Consider a B: X" » X' such that the top 3 x3
submatrix has invertible determinant. On this X", the bot-
tom row of A can be written as a linear combination

of the three first rows r ,r, ,r (essentially by Cramers

3

rule) ;

3
) —_
(3.8)) 2 tjx; +r, =0

Suppose we have (tl,...,tq) satisfying (3.7). This means

e B
ﬁ-

n

)

(3.9)

Multiply (3.8,) by t, and subtract it from (3.9). This

yields

3

- ) .

R T R

i=1
Since the r ,r,6r, 6 are Independent on X", this implies
that
(3.10) ti = tu' ti i=1,2,3

Thus, on X", the solution (tl,...,tq) is proportional to
(tl, ;,t;,1) with tq as factor. If (tl"°"tu) has Rank

1, it follows from (3.10) that t, is invertible, (and u-
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nique). So X can be covered by (four) pieces X" on each
of which Rank 1 solutions to (3.7) are proportional. The
uniqueness statement in the theorem now follows, since the
relation < between 1 x4 matrices of Rank 1 is equi-
valent to "= mod GL(1)2 as we have observed. - Note that
the simpler argument "if there were two distinct intersec-
tion points, the two lines %, and 2%, would be equal by

Theorem 3.1" does not work, since we may well have points

a ,a which are distinct, but not "universally distinct:

1772

Notation. If £,,% X > L satisfy =(&, = 2,), then

5 *
the theorem guarantees the existence of a unique element

a: X >P with ac<? and a<£%,. We denote this a by

1 -2

p,oNe,.

The following theorem shows that the relation +=1(a =Db)
satisfies Heytings Axiom II e [6] for the apartheid relation
w3 for projective geometry over a field in the category of
sets, the statement is empty (belongs to logic). For the

more general situation here, this is not so.

Theorem 3.3. Let a and b: X > P be given, and

assume =1{a=b). For any c¢: X > P,

~(a=c) v a(b=c)

holds.

Proof. Let a be represented by



L]
X' >Y(1,3) € R®
B l
X > P
a
with a = (al,az,aa), and similarly for b and c¢ (we
may choose the same X'). The conclusion to be proved is

now equivalent to proving a certain statement about the ma-

trix
al a2 a3
D= b1 b2 b3
c, c, c,
namely
(3.11) \\///(det(H) is invertible)
H

where H runs over the set of those 2x2 submatrices of

D which contain two elements from the c-row. Now ¢: X' -+ R’
has rank 1, so X' can be covered by three pieces Xi
i=1,2,3, such that on Xi, cy is invertible. It is clear-
ly enough to prove the conclusion (3.11) on each of the three

pieces. Let us consider the first, where cy is invertible.

By (2.1), it is enough to prove

(3.12) ~ (/\ aetm = 0)
H

where H runs over the same set of six 2 X2 submatrices as



w 32 m

in (3.11). If a: Y > X{ is so that these six determinants
0 in hom(Y,R), we have here
a,c, =c,a, a,c, = c,a,

blc2 = c1b2 b1c3 = clb3

From this follows that the two last columns in the 2 x3

matrix {%} are proportional to the first (with factors
c, 'c:1 and c, -c:1, respectively. Since ~1(a = b mod
GL(1)) was assumed, we conclude that Y = (. This proves

(3.12) and thus the theorem.

We can now prove

Theorem 3.4. (Pappos' Theorem) Let & and &' be

lines such that —1(£1 = 22). Let A,B,C be points on &,
and A',B',C' points on ¢'. Assume that for U and V
any two of these six points we have = (U = V). Then

= ([aa'] = [B'c)), ~([a'B] = [cc']) and = ([BB'] = [C'A]),

and there is a unique line m such that

[AA*] n[B'C] <m

[a'BINn[cCc'] <m

[BB'] n[C'Al <m

are
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Proof. Some preparations are necessary before the prob-
lem is reduced to linear algebra. Let Q = 2 Nn4&' denote the
point Q: X - P where & and &' intersect (X being the
common domain of A,B,C,A',B',C': X +>¥P and £2,%': X - 1).
Denote by a the statement =—1(Q = A), by b the statement
-+(Q =B),..., by c¢' the statement =(Q = C'). Since

=1 (A

B) we have by Theorem 3.3 that

Similarly, we get the other factors in the conjunction

(3.13) (avb) A (ave) A (bve) A (a'vb'") A (a've') A (b'vec').

Now A distributes over Vv in intuitionistic logic; so it

is easy to see that (3.13) implies

(ana') v (bab') v (cac").

So the domain X can be covered by three pieces Xi’ sO
that, on the first, for instance, aaa' holds. Let us con-
sider this piece and prove the theorem there. This is enough
since the conclusion is of local nature. So we can assume
“(Q=23) A(Q=24'). Let g,a and a' be 1 x3-matrices
representing Q,A and A', respectively, all with domain

X'. The matrix

(3.14) < a a a

has Rank 3. To see this, note first that = (Q = A) im-
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plies that the two first row form a 2 x3 matrix of Rank 2,
thus is a representative in Y(2,3) of &. Similarly, the
first and third row yield a representative of &'. Since
(2 = 2') these two 2 x3 matrices of Rank 2 are (uni-
versally) non-congruent mod GL(2). Thus, placing them on
top of each other yields a 4 x 3-matrix of Rank 3, by
Proposition 2.5. This 4 x3 matrix is just (3.14) with the
q row repeated. Therefore (most easily using row-Rank),
(3.14) has Rank 3.

Since now this matrix is invertible, we can express all
elements in hom(X',R3?) uniquely as linear combinations of
the three rows in (3.14). These new coordinates are, respec-

tively:

Q (11010)
A : (0,1,0)
A': (0,0,1)

B : (8118210)

»

Since = (A = B), the Rank of

is 2, by Proposition 2.5, and therefore B, is invertible.
Thus we may replace the representative (81,82,0) of B by

the simpler {1,B8,0} for suitable g. Similarly for B',C

and C'
B : (11810)
B': (1,0,8'")
C : (1,v,0)

c': (1,0,v")
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To see that =1 ([AA'] = [B'C]) it suffices (by the easy con-

verse of Proposition 2.5) to see that the matrix

has Rank 3, which is obvious. The other non-equalities in
the statement of the theorem are proved similarly. The three
intersection points mentioned in the theorem can now each be
found by a procedure similar to the solution of (3.7). The

three solutions thus found are written into the rows of the

matrix
0 -y R
(3.15) -y -8y By'-vy"
B' BB'-By' B'y!

The line m is uniquely determined by the rows of this ma-
trix; to see this, we have to verify that the determinant is
0 and that the Rank is > 2. It is easy to compute the de-
terminant. To verify'the Rank~condition, we use Theorem 3.3

to conclude

S (C=0Q) v (B =0

Covering X' by two pieces as usual, we get on the piece
where - (C = Q) that Yy is invertible; the upper left

2 x2 matrix has determinant -y?, which is invertible on
this piece. On the piece where = (B' = Q), B' is invert-

ible. The matrix obtained by omitting middle row and middle



column has determinant
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_B|21

which is

piece. So the Rank of (3.15) is > 2.

invertible on this
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4. On a transfer principle in geometry.

E. Study [13] found around 1900 a remarkable principle
for transferring statements about spherical geometry into
statements about the 4-dimensional manifold of lines in Eu-
clidean 3-space. It rests on a change-of-rings from the reals
IR to the ring of dual numbers IR [e] over IR (g2 = 0):

a point on the "unit sphere" relative to IR [e] may be in-
terpreted as an oriented line as follows: If a+eb has norm
1 (with a and b in IR?3), then |[la|]l =1 and a-b = 0;
to this vector in (IR [e¢])?® is associated the oriented line
whose direction is a and whose momentum around the origin
is b. If one takes the projective plane instead of the unit
sphere, the correspondence is between IR [e]-points in the
projective plane, and unoriented lines in space. What corre-

sponds to lines in the projective plane are then line-stacks

in the space-of-lines: a line stack being the set of all those
lines which intersect a given line (the axis of the stack) at
right angles.

As an example of how statements of spherical geometry
transfers to statements about line-geometry, Klein [7] gives
the example how the theorem: "The altitudes of a spherical
triangle intersect" interpreted over IR [eg] by the Study
principle yields the theorem: "If all angles of a hexagon in
space are right, then the three lines which occur as comman
perpendiculars (or orthogonal transversals) for the three
pairs of opposite sides of the hexagon, have a common ortho-
gonal transversal". (This, however, involves a metric on the
sphere. Below we give an example which does not).

It seems natural to seek the "generic" true statements

of, say, spherical geometry (that is, statements which hold
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for "the sphere" over every commutative ring), in the topos
§§R of functors from the category of commutative rings R
(with some size liminationf'into the category SS of sets.
The "sphere" object here is the functor which associates to
a ring A the set of (al,az,as) €A?® with Zai = 1. How-
ever, the geometric objects become better when one passes to
the Zariski-topos f) E<g@ . This topos (denoted ¢4p in
Hakim [4], ME in [2]) has a ring-object R which satis-

fies (2.1) and (2.2). Further, Hakim proved that R 1is a

local ring-object: for every a: X » R, the statement
(a is invertible) v (1-a 1is invertible)

holds, and further, that QS,R) is universal with this
property: given any local-ringed topos (X,A), there is a

unique (up to isomorphism) geometric morphism
f: X - z)

such that £*(R) ~A. (See [4], III.(3.10)). In particular,
every statement, which holds for R 1in g} , and whose syn-
tactic form is so that its validity is preserved by inverse-
image functors of geometric morphisms, hold for any local-
ringed topos. These 'transferable' statements ¢ can be
described as follows (let us assume they are statements in
the language of the theory of commutative rings). First, we
describe the "strongly transferable statements". These are
built from equations by means of conjunction, disjunction
and existential quantification. If w(xl,...,Xn) and

w(xl,...,Xn) are such strongly transferable statements, then

(@(Xll---lxn) = q)(xll°°°lxn))

* see footﬂafe P. 42.
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is a transferable statement (predicate)™*. For instance, the
property of being a local ring is transferable, because A

being a local ring is expressed by
(3b: a*b=1 v 3db(1-a) -b =1).

The properties (2.1) and (2.2) are not transferable, because
they in > describe the notion of field; if these state-
ments were transferable, it would follow from the universal
property of (E),R) that every local ring was a field. Like-
wise, Theorem 3.1, 3.2 and 3.3 are not transferable because

they have the form
(4.1) —(a=b) = (32: a<f A Db<y)

Nevertheless, we would like to transfer them, in particular
(to get the Study-type examples), to transfer them along the

inverse image part of that

(3.2) £: & »~ 3,

where f*(R) = IR[e] (IR[e] being a local ring). This is
achieved, essentially, by introduction of a transferable

awb (a is apart from b) to replace the antecedent =1(a=Db)
in (4.1). More precisely, if R 1is any commutative ring ob-

ject, we may, for given

x =25 G(1,3) x 23 6(1,3)

write awb to mean that for some (or equivalently, for any)

** more precise description can be found in the work of
Reyes [12], and Lawvere [10].



matrix representatives a and b of a and b

a b
X' —>Y(1,3) X' — Y (1,3),

the determinant-Rank of the 2 x3 matrix {%} is 2. If

R satisfies (2.1) and (2.2), this is, by Proposition 2.5,
equivalent to =(a = b mod GL(1)), so awb « =(a=b),

in this case. - Similarly for lines: fw?!' if two represent-
ing 2 x3 matrices A and A' when put on top of each other
yields a 4 x3 matrix of determinant-Rank 3. Again, if
(2.1) and (2.2) holds, f2wl' & =1 (2=2'). In particular,
Pappos' Theorem 3.4 may be rewritten, writing xwy every-
where instead of - (x=y). Then it is transferable. More

precisely, let
f: ’X+y

be any geometric morphism between elementary toposes, and
let R be a commutative ring object in lj . Because of the
exactness of the functor f*: 14 —+9E , the whole construc-
tion of G(p,n) and (:) commutes with f£f*, i.e. if
G(p,n)R denotes the Grassmannian constructed out of R in
3/, and G(p,n)f*(R) the Grassmannian constructed out of
f¥(R) in % (in both cases using the recipe of Section 3),

then
£* (G(p,n)g) = G(p,n) ex (R) *

Also the incidence relation (:) + G(gq,n) xG(p,n) as well

as the apartheid-relation w =+ G(p,n) xG(p,n) (described
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above for the case p=1,2, n=3), are preserved in the
same sense.

In the local-ringed topos (§3,H{[e]), if G(1,3) is
interpreted as the set of lines in Euclidean 3-space, the
relation w -+ G(1,3) xG(1,3) is interpreted as "pairs of
non-parallel lines"; the relation G(2,3) xG(2,3) is inter-
preted as "pairs of line stacks with non-parallel axes".
Finally, incidence < between lines and line-stacks is
interpreted just as the relation of a line belonging to a
line stack. This is the "Study interpretation".

We can now transfer Pappos' Theorem to a theorem about
line geometry, by applying the £: éS -+g5 with £%(R) =
IR [e], and the Study interpretation. (Of course, this appli-
cation of the transfer principle is no different or deeper
than the ones known to Study; the difference in viewpoint is
that here it is actually a theorem about something (project-
ive plane in ;5 } which is transferred). To state it in

manageable form, by the transversal of two non-parallel lines,

we mean the unique line intersecting both of them at right

angles.

4.1. Let two line stacks* L and L' be given
with non-parallel axes. Let a,b,c be lines of L, and

a'b'c' 1lines of L'. All these six lines are assumed to be
mutually non-parallel. Then the transversal of a,a' is not

parallel to the transversal of b',c; 1let the transversal

of these two transversals be denoted L . Similarly 11 is
constructed out of (a',bjc,c') and {, out of (b,b';c',a).
Then there is a unique line m intersecting 21,22 and

2, at right angles.

* Recall that a line stack with axis m (m a line) was
defined as the set of lines intersecting m at right
angles.
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Footnote to p. 38:

The size limitation occurring in [4] is: (R is the category
of finitely presentable rings. In [2], it is a much larger
category. It is ® = category of finitely presented rings
which gives E) the universal property described.
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