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FORMAL MANIFOLDS AND SYNTHETIC THEORY OF JET BUNDLES

by Anders KOCK

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XXI-3 (1980)

In the present Note, we aim to set up a framework in which the the-

ory of jets can be treated from the viewpoint of synthetic differential geom-

etry, in the sense of several of the articles of [21]. The advantage the

synthetic viewpoint has here is that jets become representable : a k-jet at
x is not an equivalence class of maps, but is a map, defined on what we
shall call the k-monad around x, Nk (x ).

The content of sections 3 - 5 on groupoids is essentially due to C.

Ehresmann and his followers, like P. Libermann, Kumpera, .... Ehresmann’ s

observation that the jet-notion naturally leads to «differentiable categories »
and in particular  differentiable groupoids &#x3E;&#x3E; ( = category- and groupoid-

objects in the category of smooth manifolds) forced him to become a cat-

egory theorist and provided a certain completion of the Lie -Klein programme
that types of geometries are distinguished by their Lie-groups or better their

L ie -grnupoids,
In Section 4, we give some ideas on how sheaves naturally occur

in the synthetic setting ; Section 6 contains scattered remarks on possible

applications of synthetic jet theory.

1. FORMAL MANIFOLDS.

Let R be a ring object in a topos 6, in which we shall work as if

it were the category of sets. R is to be thought of as the numerical line.

For k &#x3E; 0 , n &#x3E; 0 natural numbers, we put

I any product of k + 1 or more

o f th e xi’s is 0 I .
It is an example of an infinitesimal object ; to give the general definition,
we need the notion of Weil algebra over R : this is a commutative R-alge-
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bra W whose underlying R-module is of the form R O Rh for some natural

number h , where (1,0) is the multiplicative unit, and every element

(0, v) ( v E Rh) is nilpotent. The spectrum j W of the Veil algebra W
is the object «( set») [W, R] of R-algebra maps W- R . Objects of form

j W are called infinitesimal; j W has a canonical element called 0 , cor-

responding to the canonical map « projection to the first factor» :

To get Dk(n) above as a jW, take

where I is the ideal generated by all products of k +I or more of the X!s.
There is a canonical map a : W - RjW exponential adjoint of the

evaluation map

We shall assume that R is of «line type » in a strong sense ( cf.

[121, strengthening the line type notion of Lawvere and the author [9] ),

namely we shall assume that a is invertible. This implies in particular:
For any map f: Dk(n)- R there is a unique polynomium 95 with coef-

ficients from R , in n variables and of total degree  k , such that

The heuristics is that

and in fact, derivation of functions can be defined in such a way that (1.2)

can be proved ( provided R contains the rational numbers ) ; see [10] .
We note the following consequence of binomial expansion:

We consider the object

It is a subobject of Rn containing 0 . From (1.3) follows that it is stable
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under addition.

(It is easy to see that Doo (n) = ( Doc)n where Doo C R is the « sent»

of nilpotent elements ; see [10] .)

Strengthening the definition from [13] slightly, we say that a map
P - Q is étale if for any infinitesimal object K and any commutative

square

there is a unique diagonal fill-in K - P . In particular, a monic map P - Q
is 6tale if whenever K - Q maps 0 into P then the whole map factors

across P .

DEFINITION 1.1..An object M is called a formal n-dimensional manifold
if for each x f M there exists an 6tale subobject ? - M containing x and
isomorphic to Doo (n ) ( i, e. there exists a bijective map Doo (n ) - M ).

We shall see that such a subobject V is unique if it exists ; it will

be called the monad or oo·monad around x , and denoted M(x).
To prove the uniqueness, assume that also m’ -+ M is 6tale, con-

tains x and is isomorphic to Doo (n). It suffices by symmetry to prove

11 C M’. Choose a bijection 0 : Doo (n ) - V . We may in fact assume that

o(0) =x; for, if not, there is a unique v E Doo (n) with § (v ) = x. Then

replace 95 by the composite

which makes sense since, as we have observed, Doo (n) is stable under

addition.

It now suffices to prove, for each k , that o (Dk (n )) C M’ . But
o (0) = xEM’ ; thus, since ?’ is étale, oDk (n) factors through lll ’.

P ROPOSITION 1.2. For each n, Rn is a formal n-dimensional manifold.
The monad around v 6 Rn is v + Doo (n).
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P ROO F. Clearly adding v » gives a bijection from Doo (n) to v + Doo (n) ,
so it suffices to see that the latter subset is 6tale. Again, by a parallel-
translation argument, it suffices to see that Doc (n) C Rn is 6tale. It is

easy to see that each Weil algebra W’ is a quotient of a Weil algebra W of

form (1.1). By the line type assumption, RjW’ is a quotient of RjW . This
may be read: every jW’ is contained in some Dk (n) , and every map jW’ - R
extends to a map Dk (n)- R . From this follows that to test étaleness of

Doo (n) - Rn , it suffices to test the étaleness condition ( 1.5 ) for objects
K of form Dk (m). Now, a map f : Dk (m) - Rn is given by an n-tuple of

polynomials in m variables (like in ( 1.2 ) ). To say f (0) E Doo (n) is to

say that the constant terms of these polynomials are nilpotent. The argu-
m ents of f range over Dk (m) , so are also nilpotent. But putting nilpotent
elements as arguments in a polynomial with nilpotent constant term yields
a nilpotent value. Thus f factors across Doo (n). This proves the pro-

position.

Keeping track of the degrees involved in the latter argument im-

mediately yields also the following proposition which will be useful later on.

PROPOSITION 1.3. If f: Dk(n) - R"t maps 0 to 0, then it factors through

Dk(mJC Rm .

Formal manifolds have several stability properties. Thus, if P and

Q are formal manifolds of dimension p and q , respectively, P X Q is a

formal manifold of dimension p +q ; the monad around (x, y) is M(x ) X M (y)
which is isomorphic to Doo (p) XDoo (q) = Doo (p + q).

Slightly less trivial is

P ROPOSITIO N 1.4. I f M is a formal manifold of dimension n, then its tan-

gent bundle M 
D is a formal manifold of dimension 2n.

P ROO F. If t: D - M belongs to MD, it factors through the monad M(t (0)).
Thus, MD is covered by {M (x)Dlx c M} . However 11(x ) - M 6tale im-

plies M (x )D-MD etale. But clearly

the last isomorphism by the line type assumption. So MD is covered by
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6tale subobjects isomorphic to Doo (n ) X Rn , which however, as a product
of two n-dimensional formal manifolds is a 2n -dimensional formal manifold.

The result now easily follows.

Evidently the result and proof generalize to MK for any K = Dn (m)
as well as to the jet bundles introduced later on.

A bijective map Doo (n )-M(x) onto the monad around x w ill be

called a frame ( or oo-frame ) at x if it maps 0 to x.

In order not to confuse the monad M(x) with the «k-monads» we

now introduce, we shall sometimes apply the notation Moo(x) instead of

m(x).
Let M be an n-dimensional formal manifold. The k-monad around

x E M, denoted mk (x) , is defined as the image of

where 95 is a frame. It is an easy consequence of Proposition 1.3 that this

image does not depend on the choice of frame 0 . A map Dk(n ) - M which
can be written as a composite (1.6) for suitable oo-frame 0 around x is

called a k-frame around x . If we add to our assumptions the following (non-
coherent) axiom about R (for any natural number p ):

(1.7) An injective linear RP - RP is necessarily bijective.

then one c an prove that any injective Dk (n ) - M is in fact a k-frame. ( U se

inverse function theorem, [10] , Theorem 5.6.) Two k-frames around x dif-

fer by a 0-preserving bijective Dk(n) - Dk(n).
From etaleness of Moo(x ) CM and Proposition 1 .3 follows :

(1.8) any map Dh (p) - M with 0 l- x and h  k factors through

Mk (x)-
Also, let us note that if N is also a formal manifold, then

(1.9) any map f: Mk (x)- N factors through Mk(f(x)).
It is not surprising that formal manifolds share with Rn all the

good infinitesimal properties of the latter. Thus, they are infinitesimally
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linear, satisfy the ("Wraith-requirement (Axiom 2 of [18] or [11] page

146) allowing one to define Lie bracket of vector fields, etc...

2. JETS AND NEIGHBOURS.

In the following, M is a fixed n-dimensional formal manifold. Let

x E M. For any object P , a map Mk (x) - P is called a k-jet at x «of a

map from M to P ». Also if TT : E - M is an arbitrary map, a m ap g :Mk(x)- E
such that rr o g is the inclusion map mk (x) -+ M is called a k-jet at x

«of a section of rr ». We can in fact define a functor

which to 77: E-&#x3E;M associates the object JkE - M whose fibre over x is

the set of k-jets at x of sections of ?7 .

For each natural number k , we define a binary relation -k on M

by putting :

( w e say then : x and y are k-neighbours ).

P ROPOSITION 2.1. The relation - k is reflexive and symmetric. Also

P ROOF. Reflexivity is clear. To prove symmetry, we identify Moo (x) with
Doo(n ) via a frame at x , and utilize that Moo (x) = Moo (y) . Then x -kY
means that y is identified with a y E Dk(n). But y E Dk(n) C Doo(n) im-

plies

The third assertion follows similarly by also using ( 1.3 ).

We denote by Mk the set

It comes equipped with two projections Mk=M denoted pro jl and pro j2 ;
Mk is called the k’th neighborhood of the diagonal M - M X M ». (The ob-

ject Mk is in fact classical as a ringed space, Grothendieck/Malgrange,
cf. [16] ; it has also been considered synthetically by Joyal. )
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Consider the functor Ik : E/M - E/M which to an object y : G -M

associates the upper composite in the diagram below, in which the square
is formed as a pullback :

PROPOSITION 2.2. The functor Ik: E/M - E/M is left adjoint to jk.

P ROOF. Let rr : E , M be arbitrary. An element in either of the hom-sets

( writing G for y : G - M , etc...)

hom E/M (Ik(G), E) and hom E/M (G, ,J k E)
consists of a law which to each x c M with x-k y , each g c G over x and
each y c M associates an element in E over y.

From Proposition 2.1 follows that we have a map

Consider the diagram

in which all squares are pullbacks, and where the middle horizontal com-

posite is I k (G) and the upper horizontal composite therefore I h (I k ( G)) .
The map (2.1) is compatible with the relevant projections, and hence in-

duces a map ( natural in G c E/M) :

By the adjointness of Proposition 2.2, this gives rise to a natural:
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natural in E E ff,/ M . We can describe this in direct terms as follows. An

element in the left hand s ide of ( 2.3 ), over x c M , is a section

An element in the left hand side over x is a section

To (7, the map (2.3) associates that section (2.4) which to yEMk(x). 

associates o lMh (y) : M h(y)- E, noting that Mh (y) C Mk+h (x). (Under
suitable assumptions on E , (2.3) can be shown to be injective, defining
the subset of Jk (Jh (E)) of «holonomous jets».)

Ve shall later need ((prolongation)): given a section E:M- E of

E , M , we get a section JkE:M- Jk E of JkE -+ M , namely

3. GROUPOIDS IN GENERAL.

Recall that a groupoid (-object) is a category (-object) in which

every arrow is invertible. Some of the present Section 3 deals with some

classical constructions/ properties of groupoids which make sense in any

sufficiently good category (say, a topos E ,but much weaker things will do).
If 0 is a groupoid with M as its «set» of objects, we employ the

notations a , B : O= M for source and target, respectively, and i: M -O

for the inclusion of the identity arrows.

Let G be a group (-object), and P - M a right G-torsor (principal

G-bundle ) over M . Recall (from [2] , or [15] page 25 ) the construction of

a groupoid P P’1 with M as its « sent » of objects : an arrow x - y (where

x, y E M ) is an equivalence class of pairs

modulo the equivalence relation

The equivalence c lass of ( q’, q) is denoted q’/ q .
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For a groupoid (D ( w ith M as its objects), a map t: D - O is cal-

led a vertical tangent if

and a deplacement [15] if further t(0) E O is an identity arrow x E M . So,
a deplacement looks like this :

We say t is a deplacement at x, in the groupoid 0 . They form a sub-vec-
tor space of the tangent space TxO .
P ROP O SIT IO N 3.1. The fo llo wing data are equivalent:

(i) for each x c M, a deplacement tx at x .

( ii ) a vector field 6 on (D, which is vertical and right-invariant.
(iii ) (ifO= P P-1 ) a G-right..invariant vector field 6 on P .

The right-invariance of (ii) means : for any composable pair 0, Y
of arrows :

Note that E(o,d and Vf are composable, since, by verticality of ç,

a (E (o, d) ) = a (o) . (In Remark 6.6, we look at these vector fields from
a more categorical viewpoint.)

The equivalence of these data is constructed as follows : Given ç
as in ( ii ), the deplacement t is obtained by restriction along i: M - (D :

Conversely, given a  deplacement field {tx I x f M } », construct £ by:

A lso, given 6 as in (ii), we construct

E( q, d); = that unique q’ so that

Conversely, given Z: P X D - P as in ( iii ), we construct e as in ( ii ) by:
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Generally, a D-deformation of a map f : X - Y is a map

We see that a deplacement field is a D-deformation of i: M -O , having
an a -verticality property.

We now assume that 46 satisfies the Wraith requirement (see [18],
or [11], page 146) so that Lie brackets of vector fields on 4Y can be form-

ed. This will automatically be so if O is a formal manifold.

P ROPOSITIO N 3.2. The Lie bracket (E, 711 of two vertical right invariant
vector fields 6 and 71 on (D is again vertical right invariant.

P ROO F. This is essentially trivial, since

is defined as the group-theoretic commutator of the infinitesimal transfor-

mations E(-, d’) and n (-, d’). Both of these preserve a , so that their

commutator does as well, proving verticality. Similarly, since they both are

right invariant, so is their commutator.

4. GROUPOIDS OF JETS.

Throughout this section, M is a fixed n-dimensional formal mani-

fold. Let k be a natural number. We associate to M a category CkM (mea-

ning category-object in E, of course ), whose objects are the elements of
M , and where an arrow from x to y is a map

This is the same thing by ( 1.9) as a k-jet at x of a map from M to itself.

The groupoid of invertible arrows of this category is denoted TTkM . Do-
main and codomain are denoted a , B . Thus, for the arrow f in (4.1 ),

Recall from [13] that we may formulate the étaleness notion (of

Section 1, say) as follows : a map f: N - M is 6tale if for any infinitesimal
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object X,

is a pullback (77 being evaluation at 0 c X &#x3E;&#x3E;).

P ROPOSITIO N 4.1. L et h : N - M be étale. Then N is an n-dimensional

formal manifold, and there is a full and faithful functor h ; II kN - II k M
sending the arrow g : mk (n1) - mk (n2 ) to the arrow

Furthermore, 9 is étale.

P ROO F. Choose a frame D 00 (n)- M around h (x) . On each

we get a unique lifting over N with 0 l- x . So we get a lifting of the whole

frame, whose image is an oo-monad around x , and is mapped bijectively

by h to the oo-monad around h (x) . A lso h maps the k-monad around x

bijectively to the k-monad around h (x) , whence (4.2) makes sense, and

also it makes clear that h is full and faithful. This latter can alternatively

be expressed:

is a pullback. But h étale implies h xh étale implies h étale (6talemaps

being stable under pullbacks, evidently).

R EMARK. If h is furthermore surjective, then h is « an equivalence » since

the functor h is surjective on objects. But since we cannot split surjec-
tions h is not an adjoint equivalence, in general.

We let G ( = Aut( Dk (n))) denote the group of 0-preservinginver-
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tible maps Dk (n) - Dk (n ).

Closely related to II k M is a certain right G-torsor over M ( = prin-
cipal fibre bundle with group G ), namely the k- frame bundle Fk M , whose
elements are k-frames 0: Dk (n) - M . The map 7r: Fk M - M is given by

TT ( o)=o (0) , and the right G-action is evident, since if ø is a k-frame

at x and y c G , the composite map o o y is likewise a k-frame at x.

The relationship between Fk M and Ft M is that IIkM arises as

(FkM)( FkM)-1, the latter being a case of the general construction of a

groupoid P P-1 from a torsor P , described in Section 3. For, if cpt o’ is a

k-frame at y and 0 is a k-frame at x, 95’/ 0 is identified with the arrow

x - y in 11 kM given as the composite

The following proposition, due to P. Libermann [15], Theorem 15.1,
is important, but in our context, the proof becomes almost trivial (namely
an exponential adjointness ).

PROPOSITION 4.2. There is a natural correspondence between elements

in the bundle Jk(TM) ( where TM = (MD- M) is the tangent bundle of
M ), and deplacements in rlkm.

P ROOF. An element h over x E M in Ik T M is a section of MD - M de-

fined over mk (x), thus, by exponential adjointness, gives a map

By exponential adjointness once more we get but since

and the set of those maps tk (X) - M which map bijectively to some mk(y)
is 6tale, all the values h (d) are elements of M kM- The passage from
A to h is again just by exponential adjointness.

As a corollary of Proposition 4.2 and Proposition 3.1, we get im-

m ediate ly :

COROLLARY 4.3. There is a natural correspondence between:
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(i)sectionsof jk TM -+ M;
(ii ) deplacement fields on the groupoid IIkM ;

(iii) vertical right invariant vector fields on the groupoid fl k M
(iv) right G-invariant vector fields on the frame bundle FkM.

In particular, since the set mentioned in ( iii ) has a natural Lie

algebra structure, by Proposition 3.2, we get a natural Lie algebra struc-

ture on the set of sections of Ik T M - M .

Classically one can say more, namely: the sheaf of ( germs of) sec-
tions of JkTM- M is a sheaf of Lie algebras (and similarly for the data

( ii )-( iv) in Corollary 4.3 ). We can make a similar statement. Consider the

full subcategory i : Et/M - C91M having as objects itale maps to M. Et/ M
is closed under finite limits in &#x26;IM . Now lil/M is a Grothendieck topos

and as such carries a canonical Grothendieck topology ( = site structure);
we equip Et/M with the induced Grothendieck topology and get for gene-
ral reasons [19] a geometric functor

It sends E - M to the functor

which is actually a sheaf.

PROPOSITION 4.4. The object i*(JkTM-M) carries the structure o f a
Lie algebra object.

P ROO F. Let h: N - M be étale. We must give the set hom E/M (N, Jk T M)E/M
a Lie algebra structure. An element of this set can be identified with a

section of the left hand column in the pullback diagram

However, P = Ik TN ; for, h * T M = T N , by,6taleness, and since h (again
by6taleness) maps mk( z) bijectively to Mk (h(z)), one easily concludes
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Jkh*TM=h*JkTM. Thus elements in hom (N,Jk TM) are identified

with global sections of P - N , i. e. of Jk TN - N . These carry a Lie al-
gebra structure (note that N is a formal manifold if M is).

5. G-STRUCTURES AND LIE EQUATIONS.

Throughout this section, M is a fixed n-dimensional formal mani-

fold. Let H be a subgroup of G = Aut(Dk (n)) . An H-structure on M is a

subset S of the frame-bundle Fk M which is stable under the right action

of H C G , and is a H-torsor ( = principal H-bundle ) over M . The ele-

ments of S are called the admissible frames for the H-structure.

EXAMPLES. 10 Let k = 1 . Then G is easily seen to be GL (n , R ) . Let

H - SL ( n, R) (matrices of determ inant 7 ). An H-structure on M amounts

to a (local) volume notion; the admissible frames are to be thought of as

the volume-preserving ones.

2o Let k = 1 . Let H be the subgroup of those linear Rn - Rn which

map the linear subspace

into itself. So H consists of n X n -matrices with 0 ’s in the lower left

(n-p) x p corner. An H-structure is a distribution on M .

The arrows of the groupoid 5S* can be identified with those ar-

rows ( «the admissible ones for the H -structure »)

which have the property that if y is an admissible frame at x , then q5 o y
is an admis sible frame at y . In particular, S S-1 is a subgroupoid of II k M .

Therefore, the deplacements of x in S S-1 form a sub-vector-space of the

deplacements of x in rkM . Now by Libermann’s bijection (Proposition
4.2), the deplacements of x in S S-1 correspond to a subset of jk TM ;
w e den ote it R ( S ) CJk T M . Thus, a section

belongs to R (S) iff, for every d c D,



241

is admissible (belongs to SS-1 ).

PROPOSITION 5.1. i*(R(S)) C i *JkTM is closed under the Lie bracket

o f Proposition 4.4.

P ROO F. Let h ; N - M be 6tale. The full and faithful functor h : IlkN 4IIkM
of Proposition 4.1 pulls the subgroupoid SS-1 C IIkM back to a subgroup-
oid of N , which comes from a unique H -structure I on N,

A ls o we have

(where it: jk TN - jk T M is the map displayed in the pullback diagram

(4.1)). Thus, liftings of h : N - M over R (S)-JkTM-M correspond

bijectively to cross-sections of

which by the bijection of Proposition 4.2 and Corollary 4.3 correspond to

vertical right-invariant vector fields on S2 C IIkN . These are stable

under Lie bracket, hence carry the desired structure.

A linear Lie equation o f order k on M, [15], is now a sub-vector

bundle R CJkTM, such that i *RC i*JkTM is stable under the Lie bra-
cket. The proposition just proved tells us that H-structures give rise to

such.

A solution ([ 14], page 6 ) of R is a vector field ç: M - MD such

that the k’th prolongation (cf. (2.5)) JkE:M-JkTM factors through
R C ¡k T M .

The geometric meaning of the solutions of R (S) C Jk TM , where
S is an H-structure on M , is that the infinitesimal transformations 6(-, d)
belonging to 6 preserve the H-structure S :

PROPOSITION 5.2. The vector field E is a solution of R(S) iff, for any
d E D, and any x f M,
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b elongs to S S’1.

P ROOF. To say that 6 is a solution means that

by the bijection of Proposition 4.2 ( twisted exponential adjointness ) gives
a map

with the property that any d goes to an admissible Mk (x) - M. But the va-
lue of ( 5.2 ) at any d c D is just ( 5.1 ).

6. SIX SCATTERED REMARKS.

R EMARK 6.1. Together with the notion of category-object C , it is known

to be useful to consider the notion of discrete opfibration over C ( = in-

temal diagram over C , see e, g. [8], 2.14 and 2.15). Such occur in abun-

dance in our context 5; (because they occur in Ehresmann’s context of

differentiable categories). Consider for example, for a formal manifold M,
the groupoid TT1 M. The tangent bundle T M - MD is a discrete opfibration
over it; the action MD XM II1 M - MD is given by

wliere t is a tangent vector at x ; the composite 0 ot makes sense because

t (0) = x so that t factors through m1 (x ). Note that we may replace III M
by the category C1 M , if we want. The example generalizes in several

other directions as well.

Also, note that we may interpret the process described as a process
which to any map M1 (x) -M1(y) ( taking x to y ) constructs a linear

map Tx M - Ty M ; and this process may, by calculating in coordinates

(choosing frames at x and y ) be seen to be invertible. So C1 M is iso-

morphic to the category of linear maps between the fibres of TM - M .

REMARK 6.2. We note that the jet categories CkM or Ilk M are actually
concrete categories (relative to our viewing &#x26; as the category of sets).

The forgetful functor TTkM-E is given by x l- Mk (x), for x c M an object
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of IIkM , i.e. an element of M . For, an arrow x - y in IIkM is a map

Mk(x)-Mk(y), in E. In this respect, our approach is more concrete

than Fhresmann’s.

REMARK 6.3. Classification (for each k, n, m ) of the equivalence clas-

ses of 0-preserving maps Dk (n) -Dk (m) modulo the equivalence relation

given by the evident action of the group Autk(n)x Autk(m) is to a cer-

tain extent what singularity theory is about, I believe. I hope to be able

to utilize/ substantiate this remark. It is related to remarks in my paper

« on algebraic theories of power series, Cahiers de Topo. et G eom. Dif.
XVI ( 1975 ).

REMARK 6.4. Differentiable groupoids are known to provide a good set-

ting for various connection notions, cf. [4] or [20]. The basic object

Qk(M, O) where O is a groupoid-object with M as its object of objects

( M a formal manifold) is in our context described as follows :

An element X in Qk (M , O) over x c M is a law which, to each y -kxl
a ssociate s an arrow fy in 4$ from y to x , and w ith fx - idx .
A cross-section of the natural map Qk(M, O) - M is a k’th order connec-

tion in

REMARK 6.5. Let 4J be as in the preceding remark. The k’th prolongation
of 46 (cf. [7, 14, 17] ), Jk O , is the category with M as its «set» of ob-

jects, and where an arrow x - y is a map

s: Mk(x ) -O with a o s = inclusion map Mk (x) - M ( so s is a k-jet
of a section of a : O- M ) and with (,8 os) (x) = y.

D enote B o s by s . If t: y - z is another arrow in Jk O the composite
t o s is that map Mk (x) -O which sends

the dot denoting the composition in the groupoid $ . Note that if we employ
this process to the obvious codiscrete groupoid with M as object set, we

arrive at Ck M .

REMARK 6.6. Since we work with category-objects in E, and @ is a topos,
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we have more freedom in performing genuine category theoretic construc-

tions than when working with «differentiable categories ». For instance, we

can form functor-categories. To illustrate this, we construct first the cat-

egory D whose set&#x3E;&#x3E; of objects is D , and where, besides the identity ar-

rows, there is exactly one arrow from 0 to each d :

( denote the arrow from 0 to d by d ; we require 0 = ido ).

Let 4$ be a differentiable groupoid with M as its set of objects.
A functor from D to O is then the same thing as a deplacement. (Compare

pictures (3.1) and (6.1). ) A functor

with ç (-, 0) = idq) can be seen to be the same thing as a vertical right
invariant vector field on 4Y . For, given a functor 6 , construct

Conversely, given a deplacement field 6 , construct the functor e by

By exponential adjointness (in the cartesian closed category of category-

objects in @ ), the 6 in (6.2 ) corresponds to a right-inverse functor to

the evaluation at 0 »-functor rr :

Recall that a vector field on N is a section of ND- N . Thus we see that
the notion of right-invariant (vertical) vector field on a groupoid 0 is a

2-dimensional lifting of the ordinary notion of vector fields on an object N .

Also, we immediately know that (D D is a groupoid ; so there is a

natural groupoid whose «set» of objects is the set of deplacement fields

on (D .

Clearly, since 46 is a groupoid, we may in (DD replace D by
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D - the groupoid obtained by inverting all arrows in D .

The groupoid D looks less ad hoc than the category D : it is the codis-

crete groupoid on D ( = precisely one arrow between any two objects ).
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