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Abstract 

Kock, A. and I. Moerdijk, Every &endue comes from a local equivalence relation, Journal of 

Pure and Applied Algebra 82 (1992) 155-174. 

We first prove that, under suitable connectedness assumptions, the equivariant sheaves for a 

local equivalence relation on a space (or a locale) form an &endue topos. Our main result is 

that conversely, every &endue can be obtained in this way. 

Introduction 

An etendue is a topos 9 for which an object U E 5 exists such that U + 1 is epi 

and the slice topos Y/U is localic, that is, 9/U is equivalent to the category of 

sheaves on a locale. These etendue topoi were introduced by Grothendieck and 

Verdier [l, p. 478 ff.] in the context of foliations and local equivalence relations. 

It was suggested that for a suitable local equivalence relation r on a topological 

space, the category of r-invariant sheaves form an etendue topos. In this paper, 

we will consider the notion of a local equivalence relation r on a locale M. We will 

show that if r is locally simply connected (in an appropriate sense), then the 

category of r-invariant sheaves on M is a topos, and in fact an etendue. (We will 

also explain, in Example 2.3, how this result relates to a similar statement for 

local equivalence relations on topological spaces in [16].) 

Our main result is that every &endue can be obtained this way. Indeed, in 

Theorem 7.1 we will show that for any &endue 9, there exists a local equivalence 
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relation Y on some locale M for which there is an equivalence of topoi 

(*> Sh(M, r) = Y. 

Moreover, this local equivalence relation is locally simply connected in the sense 

referred to above. The construction of M and Y is based on the observation that 

&endue topoi in some sense ‘classify’ local equivalence relations: every locally 

connected geometric morphism from a topos of sheaves on a locale M into an 

ktendue 5 gives rise to a canonical local equivalence relation on M. Furthermore, 

essential use is made of the construction from [6] of a localic cover with 

contractible fibres of any given topos. 

For an &endue 9 with enough points, there exists a topological space with a 

local equivalence relation r for which there is an equivalence of form (*), but this 

space has to be obtained by a completely different construction, cf. [lo, 111; here 

the reader will also find a discussion of the relation between &endues, foliations, 

holonomy and monodromy. 

Our main result is a presentation theorem for &endues; we wish to point out 

that this result bears no relation to the type of presentation considered in [9]. 

1. Equivalence relations on locales 

Let X be a locale. By an equivalence relation on X we shall always mean a 

sublocale R c X x X satisfying the usual conditions of reflectivity, symmetry, and 

transitivity, and in addition having the property that the two projection maps 

d,,,d, : RsX (1.1) 

are open maps. This implies that the coequalizer nR : X+ X/R of d, and d, is 

also an open map [14]. Note that, unlike the case of topological spaces, R need 

not coincide with the kernel pair of 7~~, cf. [S]. Since R is reflexive and transitive, 

there is a (truncated) simplicial complex of locales 

Rx,R~RRX. (1.2) 

By applying the functor sh(-), we obtain a similar diagram of topoi and geometric 

morphisms. We write sh(X; R) for the associated descent topos. So the objects of 

sh(X; R) are sheaves E on X equipped with ‘descent data’ 0, : d,: E-+ d F E 

satisfying a unit and cocycle condition. (This construction will be discussed in 

greater generality in Section 3.) Equivalently, 8 can be given in the form of an 

action by R on E, or of a transport on E along R, i.e. a map R X, E- E 

satisfying usual associativity and unit laws. The localic reflection of this topos 

sh(X; R) is (the topos of sheaves on) the quotient locale X/R. 

In the context of topological spaces, it is well known that sh(X; R) coincides 

with sh(X/R) in case the map d,, : R + X has ‘enough local sections’ (cf. [l, p. 
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4801). In fact, it is enough to require d,, to be an open map; the argument also 

works for locales: 

Proposition 1.1. For any equivalence relation R on a locale X (with d,, and d, 

open), the map sh(X; R)+ sh(XIR) is an equivalence of topoi. 

Proof. It is enough to show that the topos sh(X; R) is generated by subobjects of 

the terminal object 1. Such subobjects are R-saturated open sublocales of X, i.e. 

sublocales of the form d,d,‘(U) c X, where I/ c X is any open sublocale. Such 

R-saturated sublocales carry a unique action by R, hence are objects of sh(X; R). 
Now consider an arbitrary object E of sh(X; R), given as an &tale map p : E+ X 
with an action 0 : R X, E - E. Let s : W+ E be any section of E+ X over an 

open W c X. We wish to show that W is covered by opens W, c W with the 

property that SI ,,,, : Wi+ E can be extended to an R-equivariant section 

s”, : d,d,;‘(W,)+ E. (1.3) 

Thus each such section Fj is a map in the topos sh(X; R) from a subobject of 1 

into E. All these sections gi, for all possible sections s : W+ E, cover E since 

p : E+ X is a local homeomorphism. So this indeed shows that sh(X; R) is 

generated by subobjects of 1. 

To construct these local extensions s”, from the given section s : W+ E, consider 

first the pullback dF(EI,) = El, X, R of El,,,- W along d,: RI, = R fl (W x 

W)+ W, as in 

a%v) > El, 
P’ I I I’ (1.4) 

RI, =Rn(WxW+ W 

The map p’ in this diagram has two sections induced by s : W-t E, namely 

s, = 0(id, sd,,) : RI,+ R xw E+ E , s, = sd, . 

(In point-set notion, dF(EI,) = {(x, y, e) I (x, y) E R, x,y E W, e Ep-‘(y)}, and 

sr(x> Y) = e((x, Y), s(x))> Q(X, Y) = S(Y).) Th ese two sections agree on the diag- 

onal n : W+ RI,. Since p’ is &tale, it follows that they must agree on a 

neighbourhood N of the diagonal. We may assume that this neighbourhood is of 

the form 

N= U RI,, = U R n (w, x w,> > I I 
for some open cover W = U, Wj. By definition of s, and s2, this means that each 

restriction s( r,,, : Wj-+ E is (RI,,)-equivariant. It follows that slw, can be extended 

to the R-saturation d,d,T’(W,) of W,. Indeed, let P be the kernel pair of 
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d, : d,‘(W,)--+ d,d,‘(IV;), as in the diagram 

(1.5) 

Since d 1 : R-+X is an open surjection by assumption, this diagram is a coequal- 

izer, cf. [7]; furthermore, since s],,,,, is (R 1 ,)-equivariant, the cocycle condition for 

the action 8 by R on E implies that the map s , : d,‘( Wi)+ E, given in point-set 

terms by s,(x, Y) = O((x, Y), s(x)), satisfies the identity s, r, = s, nZ. Thus s, 

factors through the coequalizer (1.5), to give the desired section 

s”, : d,d,‘(W,)+ E. 0 

An equivalence relation R on a locale X, as above, is said to be connected 

(respectively locally connected) if d,, and d, are connected (respectively locally 

connected) maps of locales, i.e. if the corresponding geometric morphisms 

d,,,d, : sh(R)+ sh(X) are connected, respectively locally connected. 

Proposition 1.2. If d,,,d, are connected (respectively locally connected) maps, the 

quotient map X-+ XIR is a connected (respectively locally connected) map. 

Proof. For the locally connected case, if d,,,d, : RZ X are locally connected, 

then by [15] so is the geometric morphism sh(X)*sh(X; R), and hence by 

Proposition 1.1, X--+ X/R is a locally connected map. For the connected case, 

assume that d,,,d, : R Z. X are connected. Again by Proposition 1.1, it suffices to 

see that sh(X) + sh(X; R) is a connected geometric morphism. Consider two 

R-equivariant sheaves (E, 0) and (F, p), and a map 4 : E-+ F in sh(X). We must 

prove that 4 is R-equivariant, i.e. a map in sh(X; R). Consider the two maps 

a,/3 : d;E+dXF d escribed, in point-set notation, for (x, y) E R and e E E,, by 

4(x, y), e) = ((x, y), P((Y, x), +(e((x, Y), e)))) 7 

PG Y), e) = ((K Y), 4(e)) . 

Thus p = dR(4), and since dS is full and faithful, (Y = d,y(a’) for a unique map 

(Y’ : E-+ F in sh(X). By the unit-condition for the actions 8 and p, we have 

a*(a) = A:‘( ,8), w h ere n : X--+ R is the diagonal. Hence CY’ = A*d,ya’ = A*a = 

A*@ = 4, and thus, applying dd, cx = p. This identity expresses that 4 is an 

R-equivariant map. This proves the proposition. 0 

As a consequence, we obtain the following: 

Proposition 1.3. Let R be a connected equivalence relation on a locale X. Then for 

any sheaf E on X, there is at most one action by R on E. 

(If there is such an action, we call E an R-invariant sheaf.) 
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Proof. Let 0 and 0’ be two R-actions on E. Since the forgetful functor 

sh(X; R)+ sh(X) is full and faithful, the identity map on E in sh(X) must also be 

an R-equivariant map (E, O)+(E, O’), thus 13 = 0’. 0 

2. Local equivalence relations and sheaves 

For a locale M, consider for each open U G M the set E,(U) of equivalence 

relations R on U, as defined in Section 1. For open sublocales V c U c M there is 

an evident restriction map E,,,,(U) + E,,,(V), making E, into a presheaf on M. By 

definition [l, p. 4851, a local equivalence relation on M is a global section of the 

associated sheaf EM. An equivalence relation R on any locale U gives rise to a 

local equivalence relation L(R) on U. Let r be a local equivalence relation on M. 

An equivalence relation R on an open U C M will be called a chart for r if L(R) 

agrees with the restriction of r to U; if V C U, then (V, RI,) is also a chart for r; 

we call it a subchart of (U, R). An atlas for r is a family { ( Ui, R;)} of charts for r 

such that the U,‘s cover M. A family {(I/,, R,)} will be an atlas for some local 

equivalence relation iff for any two indices i and j, U, n U, is covered by open W 

such that Rilw = R,I,. An atlas is a refinement of another if each chart of the 

former is a subchart of some chart of the latter. 

By our conventions in Section 1, it follows that any local equivalence relation r 

has an atlas consisting of charts (U, R) for which R =Z U are open maps. 

Furthermore, r is said to be locally connected if any atlas for r can be refined by 

an atlas consisting of connected and locally connected charts, i.e. charts (U, R) 

for which R=z U are connected and locally connected maps. Such an atlas will be 

called a connected atlas for r. 

Following [l], we now define, for a local equivalence relation r on a locale M 

and a sheaf F on M, the notion of an r-transport on F. Consider for an open 

U C M the set TF(U) of pairs (R, f3), where R is an equivalence relation on U and 

8 : R X, (FI,)+(FI,) is an action by R on FI, (as in Section 1). With the 

obvious restrictions maps T, (U) + T,(V) for opens V C U C M, this gives a 

presheaf T, on M, with a projection map 7~ : TF+ E,. Passing to the associated 

sheaves, we obtain a map i; : _FF + EM. An r-transport on the sheaf F is by 

definition a global section t of T, such that G(t) = r. A sheaf equipped with an 

r-transport is called an r-invariant sheaf, or an r-sheaf. Such an r-transport is thus 

given by an open cover U U, = M, equivalence relations R, on U,, and actions 0, 

of R, on F],<, all locally compatible on intersections U, n U,. As before, we call 

011 = C(U,, R,, 0,)) an atlas for t, and each of its members a chart for t. 

Any atlas or chart for t has an evident underlying atlas or chart for r. We note 

that if @ is an atlas for t with underlying atlas % for r, and Tis another atlas for r 

which refines %I, then 021 can be refined by an atlas p for t which has the given Y 

as underlying atlas for r. It follows that for two sheaves with r-transport (F, t) 

and (F’, t’), there exists atlases for t and t’ with identical underlying atlas for r. It 
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also follows that if r is locally connected, any atlas for t can be refined by an atlas 

whose underlying atlas for Y is connected. 

In this paper, we shall only consider local equivalence relations r which are 

locally connected. For such an r, it follows readily from Proposition 1.2 that for a 

given sheaf F on M, there is at most one r-transport t on F. Thus (the existence 

of) an r-transport on F is a property, rather than an additional structure. For a 

locally connected r, we therefore define the category sh(M, r) to be the full 

subcategory of sh(M) consisting of sheaves on M which admit an r-transport 

(necessarily unique). 

Remark 2.1. The property of being an r-sheaf on X is a local property. More 

explicitly, if q : Y-+ X is an &tale map (a local homeomorphism), then any local 

equivalence relation r on X induces, in an evident way, a local equivalence 

relation on Y, which we denote q#r; if r is locally connected, then so is q#r; and 

conversely, provided q is surjective. In this case, it is clear that if E E sh(X), then 

E is an r-sheaf iff q”E is an q#r-sheaf. 

Remark 2.2. More generally, for an arbitrary local equivalence relation r on a 

locale M and two sheaves with r-transport (F, t) and (F’, t’), there is a straight- 

forward definition of transport-preserving map F+ F’, so that one obtains a 

category sh(M, r). Using the remarks in Section 1, one can easily show that in 

case r is locally connected, any sheaf map F + F’ is transport-preserving, so that 

for such r, the fact that the forgetful functor sh(M, r)-sh(M) is full and faithful 

is a result, rather than a definition. 

Example 2.3. For any locale M, there is a ‘maximal’ local equivalence relation 

rmax on M, given by the single chart (U, R), where U = M and R = M x M. If M 

is a locally connected locale, then r,,, is also locally connected. The category 

sh(M, rmax ) is exactly the category of locally constant sheaves on M. This category 

is not in general a Grothendieck topos. For example [3, p. 3141 when M is the 

Hawaiian earring, sh(M, rmax) is not closed under infinite sums; on the other 

hand, if sh(M, rma,) is a Grothendieck topos, it must have infinite sums, and these 

sums must be preserved by the forgetful functor, cf. lot. cit., Theorem 6; cf. also 

[lo]. The fact that sh(M, rlllilx) is not a Grothendieck topos disproves Theorem 

4.14 in [16]. 

Example 2.4. Let r be a (locally connected) local equivalence relation on a locale 

M. For any locale T, there is a sheaf T”’ on M of germs of r-invariant maps 

M-+ T. A typical section of T”’ over an open UcM is a maps: U+Twhich 

has the property that U is covered by r-charts (Ui, R,) such that each restriction 

s(“, : U, --f T factors through the quotient map U, -+ R,IR,. This sheaf T”’ has 

r-transport, hence is an object of sh(M, r). When T is the Sierpinski space, T”’ is 

a subobject classifier for sh(M, r), and sh(M, r) is an elementary topos. This is 

discussed more fully in [lo]. 
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3. Simplicial topoi and descent 

Recall that a simplicial topos is a simplicial object %. in the category of 

(Grothendieck) topoi, except that the simplicial identities are required to hold 

only up to coherent isomorphisms. Thus a simplicial topos consists of a sequence 

of topoi %n (n 2 0), and for each nondecreasing function (Y : [n] + [m] (where 

[n]={O,l,..., n}) a geometric morphism 

furthermore, for each such (Y : [n] - [m] and p : [m] - [k], there is given an 

isomorphism O_,P : %(a), qP)f a(m), and these 8’s are required to satisfy 

suitable coherence conditions. (Thus, a simplicial topos is a homomorphism of 

bicategories from the category Aop into the bicategory of Grothendieck topoi.) 

We adopt the standard notation from simplicial sets; for example, we write 

d, : E,t-+ gn-, for %(a,), where aj : [n - l]-+ [n] is the strictly increasing function 

which omits j (for 0 5 j 5 n). 

For each simplicial topos %. one can construct a universal augmentation 9(%.), 

as in 

The category 9( %‘.) can be explicitly described in various equivalent ways; e.g. as 

the category of descent objects: thus an object of a(%.) is a pair (8, p) where 8 is 

an object of 8” and p : d$E+ d: E is an isomorphism satisfying the appropriate 

unit and cocycle conditions (cf. [15, section 31); the arrows in 9(%.) between two 

such objects (E, p) and (E’, p’) are arrows E-+ E’ in %(;, which are compatible 

with the ‘descent data’ p and p’. It follows from the general existence theorem for 

colimits of Grothendieck topoi ([E, Section 2) and [12]) that B(%.) is a 

Grothendieck topos, and is the colimit of the diagram %.. The augmentation 

geometric morphism a : %,, + 9( %.) has as its inverse image the forgetful functor 

a” : 9(g.)-+ Y$, so that a”(E, p) = E. 

The following is part of [15, Theorem 3.61: 

Lemma 3.1. For a simplicial topos 8., if all the face maps d, : %,, - E,,_ , are open 

(respectively locally connected, or atomic), then so is the augmentation 

a : ‘i,, -9(%). 0 

In particular, if X. is a simphcial locale, we obtain a simplicial topos sh(X.) by 

constructing the topos of sheaves sh(X,,) on each locale X,,, and hence a descent 

topos 9(sh(X.)), and Lemma 3.1 gives the following: 

Lemma 3.2. For a simplicial locale X. in which all the face maps d, : X,, + X,, _ , 
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are ttale, the augmentation sh(X,,) + 9(sh(X.)) is an atomic geometric morphism, 

and 9(sh(X.)) is an &endue. 

Proof. Since the d, are &tale, the induced geometric morphisms 

dj : sh(X,)-+ sh(X,_ ,) are atomic. By Lemma 3.1, the augmentation 

sh(X,) + 9(sh(X.)), w IC h’ h is evidently surjective, must also be atomic. Since this 

augmentation is also clearly a localic geometric morphism, it must be a slice, and 

thus 9(sh(X.)) is an &endue. 0 

A map of simplicial topoi f : 9. + 8. is given by geometric morphisms 

f,, : S,,, + g,, for each n 2 0, together with, for each (Y : [n]+ [ml, an isomorphism 

and these isomorphisms are required to be compatible with the isomorphisms Oa,P 

for %. and 9.. Such a map f : 9. + ‘8. induces a geometric morphism 

9(f) : 9(9.)- !B(%.) between descent topoi, which is compatible with the 

augmentations in the sense that the square 

commutes up to canonical isomorphism. Later we will use the following lemma 

concerning connected geometric morphisms (these are morphisms whose inverse 

image functor is full and faithful). 

Lemma 3.3. Let f : 9. -+ 8. be a map of simplicial topoi. Zf f;, is connected and f, 

is surjective, then the induced geometric morphism 9(f) : 9(9.)-+ 9(%.) is again 

connected. 

Proof. Consider two objects (E, II) and (E’, F’) in 9(%.). We wish to show 

that arrows (E, p)+ (E’, p’) in 9(%.) correspond bijectively to arrows 

wf)*(E> P)_ Wf)“(C P’) in 9(9.). Since f ,y is full and faithful by assump- 

tion, it evidently suffices to show that for an arrow (Y : E-+ E’ in Ce,,,, LY is 

compatible with descent data p : d,T E+ d FE and p’ : d,TE’+ d F E’ (in %,) iff 

f,:(a) is compatible with the induced descent data (in 9,) 

on f:(E) and (similarly) f F(p’) on f ,T (E’). But this readily follows by the 

assumption that f F : %, + 9, is a faithful functor. 0 
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Recall that by the existence theorem for colimits [12, 151, already used in the 

construction of descent topoi a(%.), the pushout topos 6% U, 5%’ of any two 

geometric morphisms f : d-+ 53 and g : d + % between Grothendieck topoi 

exists, 

and can be constructed simply as follows: the objects of 93 U, %f are triples 

(B, C, u), where B is an object of the topos 3 and C one of %, while u : f*(B) -+ 
g*(C) is an isomorphism in the topos &. An arrow (B, C, u) + (B’, C’, u’) in the 

pushout topos B U, 92 is given by a pair of arrows p : B+ B’ in B and 

y : C+ C’ in % such that u’of*(P) = g*(y)ou in &. In the square (3.3), the 

inverse images U* and u* of the indicated geometric morphisms are the evident 

forgetful functors. 

One can easily verify that for a pushout square, U* is full and faithful whenever 

g* is; in other words, we have the following: 

Lemma 3.4. The pushout of a connected geometric morphism along any other 
geometric morphism is again connected (‘connectedness is preserved under co-base- 
change’). 0 

Slightly more involved is the following lemma: 

Lemma 3.5. Let f : 9. -+ %. be a map of simplicial topoi, with induced geometric 
morphism 9(f) : 9(4.)+ 9( ZZ.). If f, : 9, + %, is connected and fi : .F2 -+ & is 

surjective, then the square (3.2) is a pushout. 

Proof. Let us write 9 for the pushout topos. Then the objects of B are of the 

form 

(F, P, E, u) > (3.4) 

where F is an object of sU with descent data p : d,: F+ d: F, while E is an object 

of Z$ and u : F+ f (7 E is an isomorphism. This gives an arrow f Fd,y E + f Fd F E in 

5,: the broken arrow in the following diagram 

f;d,TE=dd,*f;E=ddfF 
1 
1 I P 

f;d;E=d;ffE=d;F 
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Since fr is full and faithful by assumption, this arrow comes from a unique arrow 

(T : d,: E+ d: E. This arrow (T satisfies the cocycle condition in & because in F2, 

the map p, and hence also f;(c), does, while fl : i$+ F2 is faithful by 

assumption. The arrow (T also satisfies the unit condition in %(, for a similar 

reason, since fK : go + 9,, is again faithful (in fact fo : %,,p 9(, is a retract of 

f, : 8, + 9,) so f. is connected since f, is). This shows that from an object (3.4) in 

the pushout 9, one can construct an object in 9(%.). 

Conversely, any object (E, u) in 9(g.) gives an object (F, /_L, E, u) in the 

pushout, where F = f d E and p is defined as 

and u : F-, f RE is defined to be the identity. 

These constructions establish a suitable equivalence of categories 9(%.) z P’, 

proving the lemma. 0 

4. The topos defined by an atlas 

This section is of auxiliary character. It defines a topos sh(M, “II) out of an atlas 

011 for a local equivalence relation r on the locale M, and sh(M, “II) in general will 

depend on the choice of 011 (and even, in the most general case, on some further 

choice of a ‘hypercovering’). 

For any atlas Q = {(U,, R,)},,, for a local equivalence relation, we construct a 

simplicial locale U. (a hypercovering of M, in fact): the locale U,, of vertices is the 

disjoint sum 

LI u, 3 (4.1) 
IEl 

while the space 17, of 1-simplices is defined as 

(4.2) 

where Kj , is an index set for some open covering U,,, of U, fl U, by sublocales on 

which R, and Rj agree. The simplicial operators 

U’U I- 0 (4.3) 

are defined in the obvious way (if we assume, as we may, that K,, = {*}, a 

one-point set, and that U,,,,* = U,). We now define U. as the coskeleton of the 

truncated simplicial locale (4.3). 

U. = Cosk(U, =z U,,) . (4.4) 
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Thus, U, is a coproduct with an index set whose typical element is given by data 

((i,, i,, i2), (k,), k,, k2)) with the i’s in I, and k, E KiC ,,,, etc., and the summand 

corresponding to this index is 

Ui,,i,kz ” U!&,, ” U,&, ’ 

The simplicial locale U. has an evident augmentation a to M given by the 

inclusions 17, + M (i E I). All maps in the diagram 

-U,~UU,zU,,-M 

are &tale, so U. is a simplicial sheaf on M. 

(4.5) 

Lemma 4.1. The descent topos 9(sh(U.)) is equivalent to the topos sh(M) of 

sheaves on M, by an equivalence compatible with the augmentations (3.1) and 
(4.5). 

Proof. We view U. as a simplicial sheaf on M. Since U, -+ U,, x U,, is surjective 

and U. is defined as a coskeleton, U. is clearly a hypercover of M (i.e. an internal 

contractible simplicial set inside sh(M)). By standard theory of simplicial covering 

spaces [5, Appendix] applied in sh(M), an object of 9(sh(U.)) can be identified 

with a covering projection into U.. But by contractibility of U., each such is a 

trivial covering projection, i.e. it corresponds to a sheaf of M. This proves the 

lemma. 0 

The sum of the equivalence relations R, defines an equivalence relation R,, on 

the sum U,, (cf. (4.1)); similarly, the sum of the equivalence relations 

RilU,,i = R,IU,,I 

defines an equivalence relation R, on the sum U, (cf. (4.2)), and on U,, etc. By 

the evident compatibilities, we get a morphism of simplicial locales 

q, : U,,+ U,,lR,, (n = 0, 1,2,. .) 

and hence a morphism of their respective descent topoi; we denote the descent 

topos for the simplicial topos (sh(U,,/R,,)),, by sh(M, U.). All this 

the following diagram (utilizing Lemma 4.1 for the descent of 

column) : 

Ill iii 

is depicted in 

the left-hand 

sh(U, >- sh(U,/R, > 

11 11 
sh(U,J- SW UJR,, > (4.6) 

I I 
sh(M) - sh(M, U.) 
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Lemma 4.2. For any open atlas 021 and choice of hypercovering U. the topos 

sh(M ,U.) is an &endue. 

Proof. If (IV, R) is an open chart, and V G W is an open sublocale, then one 

obtains an inclusion of an open sublocale VI(RI,)+ W/R. In the right-hand 

column of (4.6) each map U,,IR, + UPgP,IR,,_, is a sum of such inclusions, hence 

is &tale. By Lemma 3.2, the descent topos sh(M, U.) is an etendue. 0 

The situation simplifies considerably for the case where r is an (open and) 

locally connected local equivalence relation. If 021 is a connected atlas for r, we 

may choose the U,,k so small that the charts (Ulj,, R,) are all connected (and 

open, locally connected, of course). If this is the case, we say that the hypercover- 

ing U. is connected; then the geometric morphisms 

sh(U,,)-sh(U,,/R,,) (n = 0, 1) 

are connected geometric morphisms. Consequently, we have by Lemmas 3.5 and 

3.4, the following lemma: 

Lemma 4.3. For a connected atlas %! and any connected hypercovering U. 

associated to it. 

sh(U,,V sh(u,,/R,,) 

I I 
sh(W ~ B sh(M, U.) 

(4.7) 

is a push-out, and the geometric morphism rr : sh(M)+sh(M, U.) is again 

connected. 0 

(The geometric morphism r is also locally connected.) 

Thus, sh(M, U.) may be identified, via rr*, with a full subcategory of sh(M), 

and since the remaining parts of the diagram (4.7) do not depend on the choice of 

U., it follows that sh(M, U.) only depends on the atlas “II itself, not on the choice 

of hypercovering U., as long as U. is taken to be connected. Therefore, we may 

write sh(M, “u) for sh(M, U.). It is an etendue, by Lemma 4.2. The objects of 

sh(M, %) we call %-sheaves. 

We already observed that for Y locally connected, sh(M, r) is a full subcategory 

of sh(M), so we may compare it with the sh(M, Ou )‘s. It is clear from Proposition 

1.1 that if the structure of r-sheaf on a sheaf E is given by an atlas %, then 

E E sh(M, 021); and conversely, every %-sheaf is an r-sheaf, so that sh(M, r) is the 

union of all the subcategories sh(M, “u) as Ou ranges over the connected atlases 

for r. This union is actually a filtered one; for, any two connected atlases for r 
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have a common refinement, and it is easy to see that if Ou’ refines %, then 

sh(M, “II) c sh(M, 021’). 

5. Simply connected maps and &endues 

Let f : Y+ X be a map of locales. We shall call f simply connected if 

(i) f is connected (i.e. f* : sh(X)-+ sh(Y) is full and faithful), 

(ii) for every sheaf E on Y, if there exists an open cover U U, = Y of Y and 

sheaves D, on X such that El,, sf*(D,)l,, then there exists a sheaf D on X such 

that E Gff”(D). 

Condition (ii) expresses that if a sheaf E on Y is locally in the image off*, then 

it is in the image off* (up to isomorphism). (The conditions together express the 

intuitive idea that f is a map with simply connected fibers, in a very weak way, but 

sufficient for our purposes in this paper. Surely for a general theory of simply 

connected maps, one should use a stronger notion, which is stable under 

pullback.) 

Examples. (a) The unique map Y + 1 is simply connected iff every locally 

constant sheaf on the locale Y is constant. In particular. if a path-connected 

topological space T is simply connected in the usual sense (defined in terms of 

paths), then the unique map T-+ 1 is simply connected. 

(b) If T- B is a locally connected map of topological spaces with connected 

and simply connected fibers (in the usual topological sense), then as a map of 

locales, f is simply connected in the sense just defined. (This is not trivial; a 

detailed proof is given in [lo, Lemma 3.21 and [ll].) 

(c) The standard argument that a locally constant sheaf on the (localic) unit 

interval I is constant will (when applied internally in sh(X)) show that the 

projection X x I+ X is simply connected, for every locale X. 

(d) Let Y be a connected and locally connected locale, and suppose that the 

restriction map Yn+ Y”” 1s a stable surjection (here n is the standard 2-simplex, 

and an is its boundary). Then example (c) and [6, Lemma 3.41 show that the map 

Y+ 1 is simply connected. 

(e) The previous example can be relativized: A connected and locally con- 

nected map of locales f : Y- X is simply connected, in the sense defined above, 

whenever (Yn)x+(Y”n)x is a stable surjection. (Here, for any locale A, (Y”)x 

denotes the relative exponential ‘of maps A+ Y which become constant when 

composed with f : Y-+ X’, i.e. the locale defined by the pull-back diagram 

WA> x-y A 

1 1 r* 

X -X A 
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where the map X+XA is the exponential adjoint of the projection map 

Xx A+A.) 
The notion of simply connected map given here is related to local equivalence 

relations in the following way. For any open map f : Y+ X, its kernel pair 

Ker( f) = Y xX Y & Y x Y defines an equivalence relation on Y. The induced 

local equivalence relation on Y, given by the atlas consisting of the single chart 

(Y, Ker( f)), is called the local kernel pair off, and denoted Lker( f). If the map f 

is locally connected, then so is this local equivalence relation on Y, and we have a 

category sh(Y; Lker( f)), together with an evident factorization of f* : sh(X)* 

sh(Y) through the forgetful functor sh( Y; Lker( f)) + sh( Y). 

The following is now obvious from the definition, and from Proposition 1.1. 

Lemma 5.1. A locally connected map f : Y* X is simply connected iff f * induces 
an equivalence of categories sh(X) = sh( Y; Lker( f )). 0 

An equivalence relation R on a locale X is said to be simply connected if the 

quotient map X+ X/R is a simply connected map. (If d,,,d, : R+ X are locally 

connected, it can be shown that X-X/R is simply connected whenever d,,,dl 
are; but we will neither use nor prove this here.) Moreover, an atlas for a local 

equivalence relation is called simply connected if all its charts are; and a local 

equivalence relation r is called locally simply connected if every atlas for r can be 

refined by a simply connected atlas (this implies that r is locally connected). 

Lemma 5.2. Let r be a locally connected local equivalence relation on the locale 
M, and let 011 be a simply connected atlas for r. Then the inclusion functor 
sh(M, %)+sh(M, r) is an equivalence of categories. 

Proof. The inclusion functor is a functor between full subcategories of sh(M), 

hence is full and faithful. To see that it is essentially surjective, consider a sheaf E 
on M with r-transport. We have to show that there exists an atlas for this 

r-transport with underlying r-atlas the given atlas “El. By the uniqueness of 

transport, this means that we have to show that for any chart (U, R) of Du, the 

restricted sheaf El, is isomorphic to r*(D) for some sheaf D on U/R (where r is 

the quotient map U+ U/R). Since E has r-transport, there exists an atlas Vfor r, 
whose charts (V,, R,) act on El,,, so for the given I/, there exists a covering U V, 

of U such that for each index i there exist a sheaf D, on V,/R, with El, z nF(D,), 
where rr, : V, + V,IR, is the quotient map. Let pj : V,-+ U and v, : V,IR,+ UIR be 

the inclusions, so that V, TT, = q_q. Then D, ^1 VT v;.+(D,), so El, s n;* v,* (v,,D,) Z 

p,* rr*(v,.+D,) z rr”(v,,,,Di)lV,. Thus El,,, is in the image of n”, up to isomorphism. 

Since by assumption the quotient map r : U+ U/R is simply connected, it 

follows that E(, is isomorphic to Z-:“(D) for some sheaf D on U/R, as required. 

This lemma, together with Lemma 4.2, yields the following theorem: 
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Theorem 5.3. Let r be a local equivalence relation on a locale M. If r is locally 
simply connected, then sh(M, r) is an &endue topos. 0 

6. Maps from locales into Ctendues 

Let 5 be a fixed Ctendue topos. In this section, we will show how for any locale 

M, a locally connected geometric morphism a : sh(M)+ F gives rise to a local 

equivalence relation on M. Recall that for locally connected a, the inverse image 

functor a* has a left adjoint a! : sh(M)-+ 9. 

Lemma 6.1. The locale M has a basis of open sublocales U c M with the property 
that .Yia!U is a localic topos. 

Proof. Let G be an object of 3 for which 3/G is a localic topos, and construct 

the locale B by the pull-back 

sh(B) -----+.TlG 

4 1 1 P 

Then, by construction of B, the topos sh(B) is equivalent over sh(M) to 

sh(M)/a*(G). And q is induced by an &tale map (a local homeomorphism) of 

locales, also denoted q : B+ M. The required basis for M consists of those open 

U C M over which q has a section. Indeed, let s : U- B be a section of q. This 

section can be viewed as a map s : U + a*(G) in sh(M), and hence corresponds 

by adjunction to a map s^ : a,(U) + G in 3. But then the topos Y/a!(U) = 

(F/G) /s1 is localic since F/G is. 0 

By the lemma, any open U c M in this basis for M gives rise to a locale a,(U) 
and a map F” : U+ a,(U), for which there is an equivalence of topoi under 

sh(U), as in 

WJ-J) A sh(a,U) = 3/a!(U) 

Notice that by construction, sl/ is a connected and locally connected map of 

locales. Thus, since connected locally connected maps are stable under pullback, 

R u := Ker(E,)C U x U 
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is a connected and locally connected equivalence relation on U. We shall prove 

the following: 

Lemma 6.2. The charts (U, R,), for all open U C M for which F/a!(U) is localic, 
form an atlas for a local equivalence relation on M. 

We will call this local equivalence relation the local kernel of a, and denote it by 

Lker(a). (This is compatible with the similar notation used in Section 5.) Clearly 

Lker(a) is locally connected. 

Proof. For two such open V c U C M, it is enough to show that Lker(e,)(, = 

Lker( +). Consider the diagram 

EV I I FU 

a,V----+a,U 
a#(‘) 

obtained from the inclusion i : V C U. Since F/a,V--+ F-la! U is a map of slice 

topoi over 5, the corresponding map of locales a,V+ a, U is etale. Thus 

Lker( .sU) 1 v = Lker( eUi) (since i is an open inclusion) 

= Lker(a,(i)e,) 

= Lker(e,) , 

where the latter equality holds by the following lemma. 

Lemma 6.3. Let f : Y+ X and e : X-+ B be maps of locales, where e is Ptale. 
Then Lker( f) = Lker(ef ). 

Proof. Consider an open U c X such that el, is a homeomorphism U z e(U). 
Then 

Ker( f)lr-lu = Ker( f I, -bu) 

= Ker(eflrmlU) (since el, is an embedding) 

= Ker(ef)lr-Iv . 

Since this holds for all such U, Ker( f) and Ker(ef) agree on an open cover of Y. 

Hence Lker( f) = Lker(ef). q 

This construction of the local equivalence relation Lker(a) on M from the 
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locally connected geometric morphism a : sh(M)--+ 5 enjoys various naturality 

properties. We single out the following. Recall the #-construction of Section 2 for 

lifting a local equivalence back along an Ctale map. Then the following holds: 

Lemma 6.4. For a pull-back square 

sh(M) 7 9- 

where a (and hence b) are locally connected geometric morphisms and p is an .&tale 
map between ttendues, we have q#(Lker(a)) = Lker(b). 

Proof. Let V C N be an open sublocale of N, so small that ql,, is a homeomorph- 

ism Vz q(V), and moreover so small that both %!/b!V and T/a!( q(V)) are localic 

topoi. (Note that this property is inherited by smaller open sublocales.) Then 

there is an induced map b,(V) + a,( q(V)) which is etale (in fact a homeomor- 

phism) since p is. The result follows from Lemma 6.3. 0 

Remark 6.5 (which we shall not use). If r is a local equivalence relation on a 

locale M, and 011 is a connected atlas for r, then there is an induced geometric 

morphism a : sh(M)+ sh(M, “II), as in Section 4. The local equivalence relation 

Lker(a) is in general larger than r. It coincides with r if r has an atlas consisting of 

charts (U, R) with the property that R is the kernel pair of U+ U/R. 

7. The main theorem 

We now prove the result announced in the title of the paper: 

Theorem 7.1. For every &endue 9, there exists a locale M and a locally simply 
connected local equivalence relation r on M for which there exists an equivalence of 
topoi sh(M, r) = T. 

In the proof, we shall use the following construction from [6]: for any topos 8, 

there exists a locale X = X, in $5 such that X is (internally) contractible and 

locally contractible, and moreover such that the topos %[X] of g-internal sheaves 

on X is (externally) localic. In particular, this locale X has (internally in %) a 

basis, containing X itself, and consisting of open U C X which are connected and 

locally connected, and ‘simply connected’ in the sense that Un + Uan is a stable 

surjection of locales in $5 (cf. Example (d) in Section 5 for notation). Moreover, 

these properties of the internal locale X are stable under pull-back along an 
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arbitrary geometric morphism f : 9 + 8’. In the special case where f : S+ 8 is 

such that both 9 and 9[f”(X,)] are localic, then s[ f “(X,)] + 9 corresponds 

to an (external) map of locales b : B+ A, and the stable internal properties of X 

just listed can be rephrased as follows: b is an open surjection, and B has a basis, 

containing B itself, which consists of open sublocales CT C B with the property 

that each restriction b) u : U + b(U) satisfies the conditions for the map f : T+ X 

in Example (e) in Section 5; in particular, each such restriction is a simply 

connected map. 

For the proof of the theorem, consider for the given &endue .!Y such a locale 

X = X, in Y. Since 9[X,T] is localic, there is a locale M and a geometric 

morphism a : sh(M) + 9 for which sh(M) = Y[X,,], over 9. Moreover, a is a 

connected and locally connected geometric morphism, since X,, is a connected 

and locally connected locale in 9. 

Now let G be an object with full support in Y for which F/G is a localic topos 

(such a G exists since 9 is an etendue). Thus there is a locale A and an Ctale 

surjection p : sh(A) -+ !Y such that 9-/G = sh(A), over 9. It follows that the 

pull-back of p along a : sh(M) -+ 3 is again &tale. Hence this pull-back is a localic 

topos, say sh(B) as in 

sh( B) --!L WA) 

4 
I I 

P 

WM) -5 

(7.1) 

The local equivalence relation Y on M in the statement of the theorem will be 

Lker(a), as constructed in Section 6. A comparison of the pushout squares in the 

following two lemmas will now prove the equivalence of topoi sh(M, r) = 9 

asserted in the theorem. 

Lemma 7.2. The pull-back square (7.1) of topoi is also a pushout square. 

Proof. The maps p and q are &ale surjections, hence descent maps [7, 131. In 

other words, sh(M) is obtained by descent from the simplicial topos of sheaves on 

the simplicial locale 

B. = (. . . B%,BX,B~BX~BSB), 

and 9 is similarly obtained from the simplicial topos 

sh(A.) = (...sh(A) ~,~sh(A)ssh(A)) . 

Moreover, all the components of the simplicial map sh(B.)-+sh(A.) are pull- 
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backs of the map a : sh(M) * .Y-, hence are connected and locally connected. The 

lemma thus follows from Lemma 3.5. 0 

Lemma 7.3. With A, B, etc. as above, there is a pushout square of topoi 

sh( B) h sh( A) 
4 
I 1 

sh(M) - sh(M, Lker(a)) 

Proof. Note first that by the properties of the [6]-construction listed above, the 

map b : B+ A is connected, locally connected, and simply connected. Hence by 

Lemma 5.1, the map b : B -A induces an equivalence of categories sh(A) = 

sh(B, Lker(b)). In particular, the latter is a topos. Write 9 for the pushout of 

sh(B)+ sh(B, Lker(b)) and q : sh(B)+ sh(M). By the explicit description of 

pushouts of topoi given in Section 3, 9 is the category of triples (F, F’, a), where 

F’ is a Lker(b)-sheaf on B, F is a sheaf on M, and (T is an isomorphism 

q*(F) z F’ of sheaves on B. In other words, 9 is (equivalent to) the category of 

sheaves F on M such that q*(F) is an Lker(b)-sheaf. But, by Lemma 6.4, 

Lker(b) = q#Lker(a), so by Remark 2.1, we conclude that the pushout 8 is 

equivalent to the category sh(M, Lker(a)). This proves the lemma. 0 

Note that we have proved that sh(M, Lker(a)) is a topos without invoking 

Theorem 5.3 and the (as yet unproved) fact that Lker(a) is locally simply 

connected, as we asserted in the theorem. To prove this fact, it suffices to show 

that Lker(b) is locally simply connected, since q : B- M is &ale and Lker(b) = 

q#Lker(a). But as explained above, the properties of the [6]-construction imply 

that B has a basis of open sublocales U c B for which U+ b(U) is a connected, 

locally connected, and simply connected map, so that Ker(b] u) is a simply 

connected (and locally connected) equivalence relation on U. Since the collection 

of these U c B form a basis for B, the local equivalence relation Lker(b) must be 

locally simply connected. 

This completes the proof of the theorem. 0 
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