CONTINUOUS YONEDA REPRESENTATION OF A SMALL CATEGORY

Anders Kock

October, 1966

CONTINUOUS YONEDA REPRESENTATION OF A SMALL CATEGORY

by Anders Kock

1. Introduction.

The well-known full and faithful embedding of a small category $\underline{\underline{A}}^{\text{app}}$ into the category $\underline{\underline{S}}^{\text{app}}$ of contravariant functors from $\underline{\underline{A}}$ to $\underline{\underline{S}}$ (the category of sets) is left continuous (preserves inverse limits), but in general not right continuous. Also, the embedding functor is dense in the sense of Ulmer [7], or, equivalently, adequate in the sense of Isbell [3]; but it is not in general codense. In Section 2 we define a "codensity monad" for any functor from a small category to a left complete category. The word "monad" means "triple" as defined by Eilenberg and Moore [2]. In particular, the Yoneda embedding defines a codensity monad $\underline{\underline{T}}$ on $\underline{\underline{S}}^{\underline{\underline{A}}\text{app}}$. We study the universal generator [2]

for T in Section 3, and prove that the Yoneda embedding followed by F gives a full and faithful embedding which is as well left as right continuous. (Corollary 3.2; this is what we refer to in the headline.) In Section 4 we show that the monad which Isbells adjoint conjugation functors ([3], * and +)

$$(1) \qquad \qquad \S^{\underline{A}^{\text{opp}}} \xrightarrow{+} (\S^{\underline{A}})^{\text{opp}} \xrightarrow{*} \S^{\underline{A}^{\text{opp}}}$$

determine is precisely the codensity monad T. Finally, in Section 5 we define generalized (direct and inverse) limit functors and show that the duality functors (1) as well as codensity monads and density comonads come in that way. Also, if $J: \underline{C} \to \underline{D}$ is a functor

between small categories, the obvious functor

$$\underline{D} \longrightarrow \mathcal{S}\underline{C}^{\text{opp}}$$

is a generalized limit.

If A and B are objects in a category \underline{A} , we denote hom(A,B) by $\underline{A}(A,B)$. This is assumed to be a set throughout. If $F: \underline{A} \to \underline{B}$ is a functor whose inverse limit exists ("left root"), we denote this limit by $\varprojlim (F)$. Similarly $\varinjlim (F)$ for direct limit. A category \underline{B} is called left complete if all functors from small categories to \underline{B} have inverse limits. Similarly for right complete and direct limits.

Denote the identity morphism of an object B by $I_{\rm B}$.

2. Codensity monads

We recall Lawvere's definition [6] of a comma category. Given functors F,G with common codomain

$$\underline{A}_0 \xrightarrow{F} \underline{B} \xleftarrow{G} \underline{A}_1$$
.

Then the comma category [F,G] has as objects triples (A_0,b,A_1) , where A_i is an object in \underline{A}_i and b is a morphism in \underline{B} :

$$FA_0 \xrightarrow{b} GA_1$$
.

A morphism from (A_0,b,A_1) to $(A_0^!,b^!,A_1^!)$ is a pair (a_0,a_1) where $a_i\colon A_i \longrightarrow A_i^!$ in \underline{A}_i such that the diagram

commutes. There are obvious functors

(1)
$$[F,G] \xrightarrow{\partial_0} \underline{A}_0, \quad [F,G] \xrightarrow{\partial_1} \underline{A}_1.$$

In the important special case, where \underline{A}_0 is the category 1 (the one-morphism category), the functor F determines and is determined by an object $B \in \underline{B}$. In that case [F,G] will be denoted $[\in_B,G]$. Similarly, if $\underline{A}_1 = 1$ and G determines and is determined by $B \in \underline{B}$, we denote [F,G] by $[F,\in_B]$.

Now, let \mathcal{B} be a left complete category, and let \underline{A} be small. We shall assign to a functor $G\colon \underline{A} \longrightarrow \mathcal{B}$ a monad $T_G\colon \mathcal{C} \longrightarrow \mathcal{B}$ on $\mathcal{C}3$. Given an object $B \in \mathcal{C}3$. Put

(2)
$$T_{G}(B) = \underline{\lim}([\epsilon_{B}, G] \xrightarrow{\partial_{1}} \underline{A} \xrightarrow{G} B).$$

One easily sees that T_G is a covariant functor. If (B,b,A) is an object in $[\in_B,G]$, (i.e. $B \xrightarrow{b} GA$ a morphism in G), denote by $t_{(B,b,A)}$ (or short, but not precise, by t_b) the canonical projection

(3)
$$t_{(B,b,A)}: T_G(B) = \underline{\lim}([\epsilon_B,G] \xrightarrow{\partial_1} \underline{A} \xrightarrow{G} G) \longrightarrow GA.$$

We define a functor transformation $\eta: I_{\widehat{G}} \to T_G$ by

$$t_{(B,b,A)} \circ \mathscr{O}_B = b.$$

Finally, define a functor transformation $\mu: (T_G)^2 \longrightarrow T_G$ by

(5)
$$t_{(B,b,A)} ^{\circ}/B = t_{(T_G(B), t_{(N,b,A)}, A)}$$

(in the short notation $t_b \circ \mu_B = t_b$).

It is now easy to check that (2), (4), and (5) together determine a monad on \mathcal{B} (monad meaning triple, [2]). Ulmer's definition [6] of codensity of the functor G can be stated: \mathcal{N} is an equivalence. We therefore call (T_G, \mathcal{N}, μ) the <u>codensity monad</u> for $G: \underline{A} \longrightarrow \mathcal{B}$. The same monad (or rather its dual) appear in Tierney's work and is called <u>model cotriple</u>.

3. A right continuous embedding

Recall [2] that a monad (T, γ, μ) on a category $\mathcal B$ has a universal generator

$$\mathcal{B} \xrightarrow{\overline{F}} \mathcal{B}^{T} \xrightarrow{\overline{U}} \mathcal{B}$$

where F is left adjoint to U. The objects of $\mathscr{A}^{\mathbb{T}}$ are morphisms $T(B) \xrightarrow{\xi} B$ with

(2)
$$\xi \circ T(\xi) = \xi \circ \mu_B$$
 and $\xi \circ \eta_B = I_B$.

The morphisms are commutative diagrams

(3)
$$\begin{array}{ccc}
T(B) & \xrightarrow{T(b)} & T(B^{\dagger}) \\
\xi & & & & & \\
B & \xrightarrow{b} & B^{\dagger} & ;
\end{array}$$

and F and U are defined by $F(B) = (T^2(B) \xrightarrow{\mu} T(B); U(TB \xrightarrow{\xi} B) = B.$

<u>Theorem 3.1.</u> Let $y: \underline{A} \longrightarrow \mathcal{O}$ be a full and faithful embedding of a small category into a left complete category. Let (T, γ, \mathcal{H}) be its codensity monad, and (F, u) (as in (1)) its universal generator. Then the functor $F \circ y$ is a full and faithful right continuous embedding.

Proof. Using the definition (2.2) of T_y , one easily gets $T_y(yA) \cong yA$ by means of $\mathcal{N}_{(yA)}$; the inverse for $\mathcal{N}_{(yA)}$ is $t_{(yA,I_{yA},A)}$ also μ_{yA} is an isomorphism. So it follows immediately from the definition of F and \mathcal{B}^T that $F \circ y$ is full and faithful; it is equivalent to the functor y' which sends A to the object $TyA \xrightarrow{t_{(IyA)}} yA$ in \mathcal{B}^T . We now prove right continuity of y'. Let $R: D \to A$ be a functor with a direct limit A_∞ in A. Let the morphisms in the limit diagram be denoted

$$R(D) = A_D \xrightarrow{i_D} A_{\infty}.$$

Let a transformation f from y's R to a constant functor (x,ξ) be given, i.e. a family of morphisms in \mathcal{Q}^T

$$y'A_{D} \xrightarrow{f_{D}} (X,\xi),$$

where $TX \xrightarrow{\xi} X$ is an object in \mathcal{G}^T . We are required to produce a morphism

$$f_{\infty}: y'A_{\infty} \to (X, \xi).$$

Let us first produce a morphism α in \mathcal{O}

$$\alpha: yA_{\infty} \to TX = \underline{\lim}([\epsilon_X, y] \xrightarrow{\partial_1} \underline{A} \xrightarrow{y} \mathcal{B}),$$

Put

(4)
$$t_{(X,g,A)} \circ \alpha \circ y (i_D) = g \circ Uf_D : yA_D \longrightarrow yA;$$

 \propto is determined by this, since yA_{∞} is the direct limit of the yA_{D} 's in the subcategory \underline{A}_{\cdot}

We see that

(5)
$$\xi \circ \alpha \circ y(i_D) = Uf_D;$$

for $U(f_D)$ can be described as $\xi \circ TU(f_D) \circ \eta_D$, so to see (5) it suffices to show

or

$$t_g \circ d \circ y(i_D) = t_g \circ TU(f_D) \circ \mathcal{O}_D$$

for all g: $X \rightarrow yA$. But this follows easily from (4) and the definition of the transformation γ ; so (5) is proved. Next we prove commutativity of

(6)
$$\begin{array}{c|c} Ty(A_{\infty}) & \overline{T(\xi^{\omega})} & TX \\ \hline t_{1}_{(A_{\infty})} & & & \downarrow \xi \\ \hline y(A_{\infty}) & \overline{\xi^{\omega}} & X \end{array}.$$

Precede the diagram by $\mathcal{V}_{y(A_{\infty})} = (t_{I_{(A_{\infty})}})^{-1}$; we then have to prove $\xi \circ \alpha = \xi \circ T(\xi \alpha) \circ \mathcal{V}_{yA_{\infty}}$. This follows easily, using naturality of \mathcal{V} ,

and the equations

$$\xi \cdot T\xi = \xi \circ \mu;$$
 $\mu \circ \gamma_{TX} = I_{TX}.$

Commutativity of (6) is proved, and therefore the diagram is a morphism f_∞ in \mathcal{B}^T from $y^!A_\infty$ to (X,ξ) . We have

$$f_{\infty} \circ y^{\dagger}(i_{\underline{D}}) = f_{\underline{D}};$$

for U is faithful [2], and acting with U on (7) gives (5) since $U(f_{\infty}) = \xi \circ \alpha$.

Finally, f_{∞} is the unique morphism satisfying (7). For Uf_{∞} must satisfy

(8)
$$U(f_{\infty}) \circ y(i_{D}) = U(f_{D}),$$

and hence $\text{TU} f_{\infty}$ satisfy (the right hand equality sign in)

$$t_{g} \circ TU(f_{\infty}) \circ \gamma(i_{D}) = t_{g} \circ TU(f_{\infty}) \circ Ty(i_{D}) \circ \gamma(A_{D})$$

$$= t_{g} \circ TU(f_{D}) \circ \gamma(A_{D})$$

$$= t_{g} \circ TU(f_{D}) \circ \gamma(A_{D})$$

for all $g: X \longrightarrow yA$ and all $D \in \underline{D}$. Since $\gamma_{y(A_{\infty})}$ is an isomorphism and the morphism in (9) ends up in an object in $y(\underline{A})$, we can use the direct limit property of A_{∞} to get that $t_g \cdot TU(f_{\infty})$ is the only morphism in \mathcal{O} which satisfies (9) for all $D \in \underline{D}$. Using next the inverse limit property of TX, we get that $TU(f_{\infty})$ is the only morphism in \mathcal{O} which satisfy (9) for all g and g.

Since t_{I} is an isomorphism, there is at most one morphism φ in $\mathfrak B$ with $T\varphi=TU(f_\infty)$ and $\varphi\circ t_{I}=\xi\circ T\varphi$. This proves the uniqueness of f_∞ , and therefore the theorem.

<u>Corollary 3.2</u>. Let $y: \underline{A} \to \mathbb{S}^{\frac{A}{D}}$ be the Yoneda embedding for the small category \underline{A} . Let (T,γ,μ) be its codensity monad, and (F,U) (as in (1)) its universal generator. Then the functor $F \circ y$ is a full and faithful left and right continuous embedding.

<u>Proof.</u> The preceding theorem gives everything except left continuity. Now every U appearing in a universal generator (1) reflects and preserves inverse limits, i.e. if R: $\underline{D} \rightarrow \mathcal{C}^T$ is any functor, then $\underline{\lim}(U \circ R)$ exists iff $\underline{\lim}(R)$ exists, and

$$U \lim(R) = \lim(U \circ R)$$
.

Using this and the fact that Uoy' equals the left continuous y, we get left continuity of y'. But Foy is equivalent to y'.

4. The conjugation monad

Isbell, in [3], defined the conjugate of a set valued functor $\underline{A}^{\text{opp}}$. In the case where \underline{A} is small, the conjugation procedure gives (covariant) functors + and * so that the diagrams

commute. Here y° is the (full and faithful) co-Yoneda embedding functor $A \curvearrowright \underline{A}(A,-)$. The definition of + and * is as follows. Let $F \in \underline{\mathbb{S}}^{\underline{A}^{opp}}$. Then $F^+ \in (\underline{\mathbb{S}}^{\underline{A}})^{opp}$ is the functor

$$A \sim S \stackrel{A}{=}^{opp} (F, yA)$$
.

Let $G \in (S \xrightarrow{A})^{\text{opp}}$. Then $G^* \in S \xrightarrow{A}^{\text{opp}}$ is the functor $A \curvearrowright (S \xrightarrow{A})^{\text{opp}} (y^*A,G)$.

Lambek [5] noticed that + is left adjoint to *. So they give rise to a monad (T', γ', μ') on $\mathcal{S}^{\underline{A}^{\mathrm{opp}}}$.

Theorem 4.1. The monad on QA coming from the conjugation functors equals the codensity monad for y.

<u>Proof.</u> We denote as in the preceding sections the codensity monad for y by (T, γ, μ) . We first prove T = T', i.e. that T'F can be used as the inverse limit of $([\epsilon_F, y] \xrightarrow{\partial 1} \underline{A} \xrightarrow{y} \overset{\circ}{\subseteq} \underline{A}^{\text{opp}})$. Let $(F, g, A') \in [\epsilon_F, y]$, i.e. $g: F \longrightarrow yA'$. Define

by letting $t_{(F,g,A^!)}$ (A) be the map

$$(\mathcal{G}^{\underline{A}})^{\mathrm{opp}}(y^{\bullet}(A), F+) = T^{\dagger}F(A) \longrightarrow yA^{\dagger}(A) = \underline{A}(A, A^{\dagger})$$

sending \mathcal{T} on the left hand side to \mathcal{T}_{A} , (g). (Notice that since $\mathcal{T} \in ((\S^{\underline{A}})^{\text{opp}})$ (y°(A),F⁺), \mathcal{T}_{A} , as a set mapping goes from F⁺(A') to y°(A)(A') = \underline{A} (A,A').) In other words

(2)
$$t_{(F,g,A^{!})}(A)(\mathcal{T}) = \mathcal{T}_{A^{!}}(g) \in \underline{A}(A,A^{!})$$

or short $t_g(\mathcal{T}) = \mathcal{T}_{A^!}(g)$ for $g \colon F \to yA^!$ and $\mathcal{T} \colon y \cdot (A) \to F^*$. We leave it for the reader to check that $t_{(F,g,A^!)}$ is a morphism in $\mathcal{S}^{A^{\mathrm{opp}}}$. Next we have to prove a universal property for TF and t_g . Let $R \in \mathcal{S}^{A^{\mathrm{opp}}}$ be given together with a transformation k from the functor constant R to the functor $([\epsilon_F,y] \xrightarrow{\partial_1} \underline{A} \xrightarrow{y} \mathcal{S}^{A^{\mathrm{opp}}})$. We define a morphism $u \colon R \to T'F$ in $\mathcal{S}^{A^{\mathrm{opp}}}$ by the formula

$$u_{A}(r)(A')(g) = k_{(F,g,A')}(A)(r)$$

or short $u(r)(g) = k_g(r)$ for $r \in R(A)$, $g \in F^+(A!)$. One easily checks that

(3)
$$k_g = t_g \circ u \quad \text{for } g = (F, g, A^{\dagger}) \in [\epsilon_F, y],$$

and that u is a morphism in $\mathbb{S}^{\underline{A}^{\mathrm{opp}}}$. Also, u is the unique morphism satisfying (3) for all g; for if v also satisfies (3), then by (2)

$$k_g(r) = t_g(v(r)) = (v(r))_{A'}(g)$$
.

Hence $T^{1}F = TF$.

The $\mathcal{N}^!$ is given on $x \in F(A)$, $g \in F^+(A^!)$ by $\mathcal{N}^!(x)(g) = g(x)$. Hence

$$t_g(\mathcal{O}^1(x)) = g(x)$$

and so $\gamma = \gamma^i$. Just as obvious is $\mu = \mu^i$. The theorem is proved.

5. Generalized limits

It is well-known (see e.g. [1]) that if \underline{A} is a small category and \underline{E} a right complete category, and $\underline{J}: \underline{A} \longrightarrow \underline{B}$ is any functor, then the induced functor

$$\underline{\mathbf{E}}^{\mathbf{J}} \colon \underline{\mathbf{E}}^{\underline{\mathbf{B}}} \to \underline{\mathbf{E}}^{\underline{\mathbf{A}}}$$

has a left adjoint S_j . Similarly, if \underline{E} is left complete, \underline{E}^J has a right adjoint S_j^I . Note that if \underline{B} is not small, then $\underline{E}^{\underline{B}}$ is in general a category whose hom classes are proper classes. We shall use the notation $\lim_{}^{(J)}(F)$ for the value of S_J at $F \in \underline{E}^{\underline{A}}$. Similarly we use $\lim_{}^{(J)}(F)$ for $S_J^I(F)$. If \underline{B} is the category 1, then $\lim_{}^{(J)}(F)$ is $\lim_{}^{(J)}(F)$ and $\lim_{}^{(J)}(F) = \lim_{}^{(J)}(F)$. For this reason we call $\lim_{}^{(J)}(F)$ a generalized inverse limit. Many functors arise that way, e.g. the conjugation functors + and * in Section +, and the codensity monad.

Theorem 5.1. The conjugation functor + equals $\lim_{y \to 0} (y^{\cdot})$.

<u>Proof.</u> We have to show that + has a certain universal property. First we have to produce a transformation $+ \cdot y \xrightarrow{\mathcal{T}} y^{\cdot}$; but (4.1) commutes up to equivalence, so take that equivalence as \mathcal{T} . Next, if $G': \mathcal{S} \xrightarrow{A}^{\text{opp}} (\mathcal{S} \xrightarrow{A})^{\text{opp}}$ is a functor and $\mathcal{T}': G' \circ y \rightarrow y^{\cdot}$ a transformation, we have to find a unique transformation $\varphi: G' \rightarrow +$ so that

$$\mathcal{T}_{A}^{!} = \mathcal{T}_{A} \circ \mathcal{O}_{yA}.$$

The morphism \oint_F for $F \in \underbrace{SA}^{opp}$ is constructed as follows. It is as a set mapping $F^+A \longrightarrow G^+FA$, given by

$$\varphi_{F}(A)(g) = \lambda^{-1}(G'F \xrightarrow{G'g} G'yA \xrightarrow{\mathcal{T}_{A}} y^{\circ}A),$$

where λ is the Yoneda isomorphism

(2)
$$X(A) \longrightarrow (\widehat{S}^{\underline{A}})^{\text{opp}}(X, y^*A)$$

 $(X \in (\mathcal{O}^{\underline{A}})^{\mathrm{opp}})$. It is easy to check that \mathcal{P}_F is a morphism in

 $(\mathcal{G}^{\underline{A}})^{\mathrm{opp}}$, and that (1) holds. It is natural in F. If another such transformation satisfying (1), we would by naturality have commutativity of the two diagrams in $(\Im \frac{A}{-})^{opp}$

(3)
$$G'F \xrightarrow{\varphi_{F}} F^{+}$$

$$G't \downarrow t^{+}$$

$$G'yA \xrightarrow{\varphi_{Y}A} (yA)^{+}$$

for any t. Use the contravariant functor: evaluation at Again, by the isomorphism (2), if $\varphi_{\mathrm{F}} \neq \psi_{\mathrm{F}}$ there would be a such that

$$\phi_{F}(A) \circ t^{+}(A) \neq \psi_{F}(A) \circ t^{+}(A),$$

contradicting the commutativity of (3). This proves the theorem.

The proofs of the following theorems will be omitted since they are similar to the preceding one: checking a universal property,

Theorem 5.2. The conjugation functor * equals $\lim_{y \to 0} (y)$.

<u>Theorem 5.3</u>. Let y: $\underline{A} \rightarrow \mathcal{O}_{3}$ be any functor, with \underline{A} small and \mathcal{B} left complete. Then

$$\underline{\lim}^{(y)}(y):\mathcal{O}_{3}\to\mathcal{O}_{3}$$

is the codensity monad for y.

<u>Theorem 5.4.</u> Let J: $\underline{A} \longrightarrow \underline{B}$ be any functor between small categories. Then the composite functor

$$\underline{B} \xrightarrow{\lambda} \underline{\mathbb{S}}_{B \text{obb}} \xrightarrow{\mathbb{S}_{1}} \underline{\mathbb{S}}_{\nabla}$$

equals

$$\underset{\underline{\text{lim}}^{(J)}(y_{\underline{A}})}{\underline{\text{lim}}^{(J)}(y_{\underline{A}})}$$

$$(y_{\underline{A}} \text{ the Yoneda embedding } \underline{A} \to \S^{\underline{A}} \text{opp}).$$

(Proofs of the two last theorems were given in [4].) It seems plausible that a combination of the theorems in this section will give another way of proving the connection between the codensity monad for the Yoneda embedding and the duality monad,

REFERENCES

- [1] M. Andre, Categories of functors and adjoint functors, mimeographed, Geneva 1964.
- [2] S. Eilenberg and J.C.Moore, Adjoint functors and triples, Ill. Journal of Math. 9 (1965), 381 398.
- [3] J. Isbell, Adequate subcategories, Ill. Journal of Math. 4 (1960), 541-552.
- [4] A. Kock, Some properties of generalized limits, mimeographed, ETH, Zürich, 1966.
- [5] J. Lambek, Completion of categories, mimeographed, ETH, Zürich, 1966.
- [6] F.W.Lawvere, The category of categories as a foundation for mathematics, Proceedings of the La Jolla conference on categorical algebra, Springer Verlag, 1966.
- [7] F. Ulmer, Dense subcategories of functor categories, to appear in Journal of Algebra.

University of Aarhus, Denmark October, 1966.