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1, Introduction.

The well-known full and faithful embedding of a small category
A into the category géapp of contravariant functors from A to
§ (the category of sets) is left continuous (preserves inverse
limits), but in general not right continuous. Also, the embedding
functor is dense in the sense of Ulmer [7], or, equivalently, ade-
quate in the sense of Isbell [3]; but it is not in general codense.
In Section 2 we define a "codensity monad" for any functor from a
small category to a left complete category. The word “monad" means
"triple" as defined by Eilenberg and Moore [2]. In particular, the

S Aapp

Yoneda embedding defines a codensity monad T on . We study

the universal generator [2]
opp opp T 5 AOPD
i S N i, W NS -

(F left adjoint to U, UF=T)

for T in Seétion 3, and prove that the Yoneda embedding followed
by F gives a full and faithful embédding which is as well left
as right continuous. (Corollary 3.2; this is what we refer to in
the headline.) In Section Y4 we show that the monad which Isbells
adjoint conjugation functors ([3], 2 -smd +)

opp s A OPP . 2 AOPD
(1) g4 . (ghH ———> 5
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determine is precisely the codensity monad T. Finally, in Section §
we define generalized (direct and inverse) limit functors and show
that the duality functors (1) as well as codensity monads and den-

sity comonads come in that way. Also, if J: C—>D is a functor



between small categories, the obvious functor

opp
D-—9§§

is a generalized limit,

" If A and B are objects in a category A, we denote
hom(A,B) by A(A,B). This is assumed to be a set throughout. If
F: A—B is a functor whose inverse limit exists ("left root"),
we denote this limit by %y@(F). Similarly lim (F) for direct
limit, A category B 1is called left complete if all functors from
small categories to B have inverse limits, Similarly for right
complete and direct limits,

-

Denote the identity morphism of an object B by ig.

2. Codensity monads
' We recall Lawvere's definition [6] “of a comma category. Given
functors F,G with common codomain

F G

d——+ B4y

Then the comma category [F,G] has as objects triples (4,,b,4,),
where Ai is an object in gi and b 1is a'mbrphism in B:

b
| FA,——>GA, .
A morphism from (Ao,b,A1) to (Aé,b',A{) is a pgir (ag,a4)
where a;: A;—>AJl in A; such that the diagram

b
FAO--——-—-——a»GA1

Faol ‘1Ga1
FA! ———> GA!

a Bb* 1

" commutes, There are obvious functors

| ol D5 -
D F,0l—2sa,  [F,6] s,



In the important special case, where AO is the category 1 (the
one-morphism category), the functor F determines and is determined
by an object Be€B. In that case [F,G] will be denoted [eg,G].
similarly, iF _41 =1 and G determines and is determined by
BeB, we demote [F,G] by [F,¢5].

Now, let 0d be a left complete catégory, and let A Dbe small.

We shall assign to a functor G: A— (B a monad TG: Fo—s0 on 02

Given an object Be (3 Put

(2) Te(B) = lim([€q,G] -Bj——aA L,

One easily sees that T, 1is a covariant functor. If (B,b,4) is
an object in [e5,G], (i.e. B—2>GA a morphism in ), denote
by t,(B,b,A) (or short, but not precise, by t;) the canonical
- projection ‘ 0

. ¢ Bt | 1 G,
(3) ts,p,0)° To® —%1m([€B,G] —> A —>0d)—=CA,

Wedefine a functor transformation nzz I%“—-?TG by

()+) t(B,b,A) & ‘P?B = b.

Finally, define a functor transformation M: (I,)%—T, by

(5) t (8,0, %8 = t(TG(B)it(N,b,A)’A)

(in the short notation t,° 4 = ttb) .
It is now easy to check that (2), (%), and (5) together deter-
mine a monad on @ (monad meaning triple, [2]). Ulmer's definition

[6] of codensity of the functor G can be stated: 47 is an equi-

valence, We therefore call (TG’”Z’/U”) the codensity monad for
G: A—> (., The same monad (or rather its dual) appear in Tierney's

work and is called model cotriple.




3. & right continuous embedding

Recall [2] that a monad (T,%,/) on a category (3 has a

universal generator

(1) B - — B

where F 1is left adjoint to U, The objects of CBT are morphisms

}a
T(B)—~—2-> B with

(2) E°T(E) = Sopp  and oy = I,
The morphisms are commutative diagrams

T(B) —=P) | 1(gn)

(3) gl lg»_

B—p—>B'

(G

and F and U are defined by F(B) = (T°(B)—4sT(B); U(TB-=»B) =B.

Theorem 3.1, Let 1y Ajf—>d3 be a full and faithful embedding

—_——— I I L&

of a small category into a left complete category. Let (T,?gfé be
its codensity monad, and (F,u) (as in (1)) its universal generator.
Then the functor Fey is a full and faithful right continuous em-
bedding.

Preof yy one easily gets
Ty(YA)f;'yA by means of '7(yA); the inverse for /7(YA)IS tbﬂJ§A#D

also A ‘
definition of F and CBT that Foy ‘is full and faithfulj it is -

is an isomorphism., So it follows immediately from the

equivalent to the functor y' which sends A to the object

TyA ’t( ),'yA in CBT. We now prove right continuity of y'. Let
IyA

R: D—4A De a functor with a direct limit A, in A. Let the
morphisms in the limit diagram be denoted

ip
R(D) = Ay — 254,



5.

Let a transformation f from y'>R to a constant functor YE(X g)
9

be given, i.e., a family of morphisms in @*

Y'AD fD >(X,8),

where TX -§¥+X is an object in 03T. We are required to produce
a morphism

£ 2 Y'AD'Z;—-—-%(X,E),

Q0

Let us first produce a morphism &« in @

s YA~ TX = lim([e, v] 21,4 V.3

t ko TX = Lin([ey v] 5 & L),
Put
(W) t(x,g,A)"““‘y (ip) = g=Ufp: yAp—>yA;
ol 1is determined by this, since yA., is thedirect limitof the vAp 's
in the subcategory A.
We see that

(5) - » guocoy(iD) = Ufp;
for U(fp) can be described as g"TU(fD)”"[D? so to see (5) it

suffices to show

Aoy(ip) = TUE)m,
or

tyodey(ip) = o TU(L )7y,

for all g: X-—>yA. But this follows easily from (4) and the defi-
nition of the transformation %3 so (5) is proved. Next we prove
commutativity of |

Ty(As) W X
(6) R l lg

Y(Aw)h > X .

v go%‘
. ] » . -1,

Precede the diagram by -/Zy(Aw) = (tl (A‘)) ; we then have to prove
Eadd =€ e T(i—,o()o/?ona, This follows easily, using naturality of s



and the eduations
E-TE = £/ SYrx = Ioxe
Commutativity of (6) is proved, and therefore the diagram is a

morphism f,, in ®T  from vy'Ap to (X,E). We have
(7) Toge y'(ip) = fp3
for U is faithful [2], and acting with U on (7) gives (5) since
U(f,) = =4,

Finally, f,, is the unique morphism satisfying (7). For Uf,
must satisfy

(8) Ulfey(ip) = U(f),

and hence TU £f,, satisfy (the right hand equality sign in)

£ 2 TU (£a0) Ty (1)o7 a)

tgﬂ TU(fD)"?y(AD)

for all g: X*‘QyA and all DeD., Sinée (?y(Aw) is an isomorphism

o tgoTU(fm)"rfy(A%)oy(iD)

i

and the morphism in (9) ends up in an object in y(4), we can use
the direct limit property of A.. to get that tgvTU(ﬂw) is the
only morphism in @3 which satiéfies (9) for all De€D. Using next
the inverse limit property of TX; we get that TU(f,) 1is the only
morphism in @3 which satisfy (9) for all g and D,

Since tI( ) is an isomorphism, there is at most one morphism
A _
¢ in @B with T = TU(f.) and AﬂOtI(A \ = £ «T9. This proves
the uniqueness of f,,, and therefore the theorem.

opp
Corollary 3.2. Let y: A-—a%?é be the Yoneda embedding for

the small category A. Let (T,%,4) be its codensity monad, and
(F,U) (as in (1)) its universal generator. Then the functor Fey

is a full and faithful left and right continuous embedding.



tinuity. Now every U appearing in a universal generator (1)
. o x A T .
reflects and preserves inverse limits, i,e. if R: D—@ is any

functor, then 1im(UeR) exists iff 1im(R) exists, and

U 1im(R) = 1im(UeR),

Using this and the fact that U-y' equals the left continuous Vs

4

we get left contimuity of y'. But Fey is equivalent to y'.

4, The conjugation monad
Isbell, in [3], defined the conjugate of a set valued functor

,A_OPP————»g. In the case where A 1is small, the conjugatiom procedure

gives (covariant) functors + and * so that the diagrams

n A

e (g 4P
commute. Here y° is the (full and falthful) co'—Yoheda"err:lbedding
functor A~sA(A,-). The definition of + and ¥ Ai_'s as follows.
Let Fe 88 T, Then F'e (287 55 the functor

opp
A~a§a (F,yA).

opp opp
Let Ge(S$2) " . Then grxe A is the functor

5 ODp
A~ (88 (yoa,@),

Lambek [5] noticed that + 1is left adjoint to *. So they give

. Opp
rise to a monad (T',4',4') on CF

 APPP | .
Theorem 4.1, The monad on g4  coming from tihe conjugation

functors equals the codensity monad fo_r Ve



8.

o

roof. We denote as in the preceding sections the codensity
monad for y by (T77”%)' We first prove T =T', i.,e. that T'F

s 91 y , CA°PP
can be used as the inverse limit of ([EF,y]——~a»é —Sy D= )
Let (F,g,A') € [ép,y], i.e. g: F—syA'., Define

° 1

by letting t(p , ,4y(AJ  be the map

989
(E5)PP(y-(a),F+) =T'F(A)—> yA' (&) = A(A,A")

sending T on the left hand side to fA.(g). (Notice that since

e il i, TP + ; " +

Te((@=) Ny (W,F), Tyr as a set mapping goes from F (A')

to y (A)(A') = A(A,A").) 1In other words

(2) (g an) W@ = T, () €aa,a)

or short té(?) = T)((g) for g: F—yA' and T: y°(A)—F*, We

leave it for the reader to check that t ' is a morphism in
ACDPP (F,g,A") -

S-' . Next we have to prove a universal property for TF and tg.

ACPDP : :
Let Réééi— be given together with a transformation k “from

_ 2 _ - 7OPP
the functor constant R to the functor ([EF,y] LN A-—X~9ésé ).
5 AOPD ’
We define a morphism u: R— T'F in é?é by the formula

up (T AR = kp g pey (W) €r)

or short u(r) (g) = kg(r) for reR(4), g(EF+(A’). One easily checks
that

(3) k, = t,eu  for g=(F,g,A") ¢ [epsy],

. : . 2OPP .
and that u 1is a morphism in ég-ﬂ . Also, u is the unique mor-

phism satisfying (3) for all g; for if v also satisfies (3), then
by (2) | '
kg(r) ;vtg(v(r)),= (v(r)&ﬂg).
Hence T!'F = TF, : '
The ' is given on x €F(A), geFT(A') by 7' () () =g(x).
Hence
tgG?’(x)) = g(x)

and so v =", Just as obvious is M =p. The theorem is proved.



5. Generalized limits

It is well-known (see e.g, [1]) that if A is a small category
and E a right complete category, and J: A—>B is any functor,
then the induced functor

gl: g8 b

has a left adjoint Sj. Similarly, if E is left complete, EJ

has a right adjoint S!. Note that if B is not small, then EE
is in general a category whose hom classes are proper classes.
We shall use the notation %igFJ)(F) for the value of S; at

F EEA, Similarly we use %ip(J)(F) for Si(F). If B is the
category 1, then l;g(J)(F) is lig(F)- and %}g(J)(F):=%ig(F).
For this reason we call %iQ(J)(F) a generalized inverse limit,
Many functors arise that way, e.g.thecenjugation functors + and *
in Section %, and the codensity monad.

.1. The conjugation functor -k.eQualswu%iy(y>(y‘).

g;ggg, We have to show that + has a certain universal pro-
perty. First we have to produce a transformation +ny-$§9y°; but
(%,1) commutes up to equivalence, so ﬁake that equivalence as 7,
Next, if G's S}AOPE——% (SA)OPP is a functor and ¢': Gley—y°

a transformation, we have to find a unique transformation ¢: G'—+

so that
o G g
(1 Th = T da
- ; '@AOPP 3
The morphism A?F for, F&-o= is constructed as follows. It is-

as a set mapping FfA——>G'FA, given by
- . o
Ge) () =27 F LB gryn A yeny,
where A 1is the Yoneda isomorphism

, : opp
2) X(8)— (88 T (x,y n)

o A OPDP '
X e -(g.é) ). It is easy to check that 791? is a morphism in



(§2)°PP ang that (1) holds. It is natural in F. If ¥ were

another such transformation satisfying (1), we would by naturality
: A OPD

have commutativity of the two diagrams in (f?“)

fﬁ‘ &
'Y =renp

(3) e
G't £
v +
TyA
for any t. Use the contravariant functor: evaluation at A.
Again, by the isomorphism (2), if ¢, § ¥, there would be a t
such that '

0 +
Pr(8)ot™(8) + Jp(a)ot™(4),
contradicting the commutativity of (3)., This proves the theorem,

The proofs of the following theorems will be omitted since

they are similar to the preceding one: checking a universal property.

oo o i geton fms e

and @ left complete. Then
%im(y)(y): &B—03

is the codensity monad for y.

__—.—..::::_——

gories, Then the composite functor

y opp £J _ ,0pp
5 B, e g g

equals.
(J)(y )
——e
TOPP)
(yA the Yoneda embedding .A-*5
(Proofs of the two last theorems were given in [H].) it seems
plausible that a combination of the theorems in this section will

give another way of proving the connection between the codensity

monad for the Yoneda embedding and the duality mon=sd.
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