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An ancient problem

* Cake cutting

— Input: agents with different preferences for parts of
the cake

— Goal: divide the cake in a fair manner

 Mathematical formulations initiated by
Steinhaus, Banach, & Knaster (1948)

 Basic algorithm/protocol: cut-and-choose



Cake cutting




Cake cutting
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Cake cutting

e Cut-and-choose: Lisa cuts, Bart chooses first
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Allocations of goods *’ -
‘
* Indivisible goods

ROLLS||

* Agents with additive valuations for goods

r 90

* Goal: divide the goods fairly
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Allocation problems: some history

* Ancient Egypt:

— Land division around Nile (i.e., of the most fertile
land)

* Ancient Greece:
— Sponsorships in theatrical performances
* First references to cut-and-choose protocol

— Theogony (Hesiod, 8t century B.C.): run between
Prometheus and Zeus

— Bible: run between Abraham and Lot



Related implementations/tools

e http://www.spliddit.org

— Algorithms for various classes of problems
(allocations of goods, rent division, etc.)

— Ariel Procaccia

e http://www.nyu.edu/projects/adjustedwinner/

— Implementation of the “Adjusted Winner” algorithm
for two agents

— Steven Brams & Alan Taylor

e http://www.math.hmc.edu/~su/fairdivision/calc/
— Algorithms for allocating goods

— Francis Su


http://www.spliddit.org/
http://www.nyu.edu/projects/adjustedwinner/
https://www.math.hmc.edu/~su/fairdivision/calc/
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Structure of the lecture

Basic notions

Fairness vs. efficiency

EF1: a relaxed version of envy-freeness
More fairness notions

Fairness, knowledge, and social constraints



Basic notions



Formally ...

n agents

A set of goods G

Agent i has valuation v,(g) for good g
Valuations are additive, i.e.,

i® =)  wi®
g€

Allocation: a partition A=(A,, ..., A,,) of the goods
In G



What does “fairly” mean? §5>

 Fairness notions
— Envy freeness

— Proportionality



What does “fairly” mean? §5>

 Fairness notions

— Envy freeness: every agent prefers her own bundle to
the bundle of any other agent

V), 1, vi(A;) = Vi(A;)
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What does “fairly” mean? §5>

 Fairness notions

— Proportionality: every agent feels that she gets at
least 1/n-th of the goods

1
Vi, Vi (Al) = H Vi (G)



Proportionality: an example

GAN

$1200 $200 $300 $200 $100

@
A
$800 $500 $200 $300 $200

$800 $400 $400 $300 $100



Proportionality: an example

GAN

$1200 $200 $300 $200 $100

AiA

$800 $200 $300

‘ $800 400 [$400  $300 | $100
[ ]



What does “fairly” mean? §5>

 Fairness notions

— Envy freeness: every agent prefers her own bundle to
the bundle of any other agent

— Proportionality: every agent feels that she gets at
least 1/n-th of the goods
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* Theorem: EF implies Proportionality
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Properties

* Theorem: EF implies Proportionality

* Proof: Since agent i does not envy any other
agent, Vj #1,vi(A)) = vi(A]-)
Trivially, Vi(Aj) = Vi(A;j)

Summing all these n inequalities, we get
n

n-vi(A;) = Zvi(Aj) = v;(G)

=1

1
and, equivalently, vi(A;) = HVi(G)
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* Theorem: For 2 agents, Proportionality is
equivalent to EF



Properties

* Theorem: For 2 agents, Proportionality is
equivalent to EF

* Proof: Since v,(A;) 2 v,(G)/2, it must also be
v,(A,) £v,(G)/2,i.e., vi(A;) 2 v (A,).



Proportionality may not imply EF for
more than two agents
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Proportionality may not imply EF for
more than two agents
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Fairness vs. Efficiency
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A motivating example

goods

Te [ ]a
@ 50 $5 $12
FE -

F 2

allocation ({0 }, { /»ii' ﬁ% }is EF
allocation ({(_ @ },{ ‘é ¥ }isEF and, in a sense, better!

agents




Efficiency

* Economic efficiency

— Pareto-optimality

— Social welfare maximization
* Computational efficiency

— Polynomial-time computation
— Low query complexity



Efficiency

a property of allocations ]
* Economic efficiency L

— Pareto-optimality
— Social welfare maximization l a property of allocation }

algorithms/protocols

* Computational efficiency
— Polynomial-time computation
— Low query complexity



Warming up: Pareto-optimality vs
fairness

* Definition: an allocation A= (A, A,, ..., A ) is
called Pareto-optimal if there is no allocation B =
(B4, B,, ..., B,) such that vi(B,) > v,(A;) for every
agentiand v.(B.) > v,(A;) for some agent i’

* Informally: there is no allocation in which all
agents are at least as happy and some agent is
strictly happier



Envy-freeness vs. Pareto-optimality
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Envy-freeness vs. Pareto-optimality

goods
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* Observation: In a Pareto-optimal allocation, agent
@ does not get @ and agent 5. does not get °

An envy-free allocation that is
not Pareto-optimal
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Envy-freeness vs. Pareto-optimality
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Envy-freeness vs. Pareto-optimality
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Envy-freeness vs. Pareto-optimality

- Theorem: Consider an allocation instance with 2
agents that has at least one EF allocation. Then,

there is an EF allocation that is simultaneously
PO.
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- Theorem: Consider an allocation instance with 2
agents that has at least one EF allocation. Then,
there is an EF allocation that is simultaneously
PO.

- Proof. Sort the EF allocations in lexicographic

order of agents’ valuations. The first allocation in
this order is clearly PO.



Envy-freeness vs. Pareto-optimality

- Theorem: Consider an allocation instance with 2

agents that has at least one EF allocation. Then,
there is an EF allocation that is simultaneously
PO.

- Proof. Sort the EF allocations in lexicographic
order of agents’ valuations. The first allocation in
this order is clearly PO.

- Question: What about 3-agent instances?

- Question: What about Proportionality vs PO?

« See Bouveret & Lemaitre (2016)



Social welfare

* Social welfare is a measure of global value of an
allocation A= (A, ..., A))

e Utilitarian social welfare of an allocation A:

— the total value of the agents for the goods allocated

totheminA, i.e., uSW(A) = Z vi(Aj)
iEN

* Egalitarian social welfare: eSW(A) = min v;(A;)
1

* Nash social welfare: nSW(A) = 1_[ vi(Aj)
iEN
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 SW-maximizing allocations?
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SW-maximizing allocations?
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An example
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Price of fairness

* Price of fairness (in general)

— how far from its maximum value can the social
welfare of the best fair allocation be?

* More specifically:
— Which definition of social welfare to use?
— Which fairness notion to use?

* Answer:
— Any combination of them



Price of fairness

* How large the social welfare of a fair allocation
can be?

— C., Kaklamanis, Kanellopoulos, and Kyropoulou (2012)
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Price of fairness

* How large the social welfare of a fair allocation
can be?

— C., Kaklamanis, Kanellopoulos, and Kyropoulou (2012)
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EF, proportional, etc.}

ir allocation

wrt uSW, eSW,
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Optimal allocation




PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-
agent instances is 3/2 (tight bound)



PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-

agent instances is at least 3/2.
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PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-

agent instances is at least 3/2.
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PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-

agent instances is at least 3/2.
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* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-
agent instances is at least 3/2.

PoP & uSW for 2 agents
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PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-

agent instances is at least 3/2.
goods
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PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-
agent instances is at most 3/2.



PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-
agent instances is at most 3/2.

* Proof: If the uSW-maximizing allocation is
proportional, then PoP=1.



PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-

agent instances is at most 3/2.

* Proof: If the uSW-maximizing allocation is
proportional, then PoP=1. So, assume otherwise.
Then, some agent has value less than 1/2 for a
total of at most 3/2. In any proportional
allocation, uSW=1.



PoP & uSW for 2 agents

* Theorem: The price of proportionality with
respect to the utilitarian social welfare for 2-
agent instances is at most 3/2.

* Proof: If the uSW-maximizing allocation is
proportional, then PoP=1. So, assume otherwise.
Then, some agent has value less than 1/2 for a
total of at most 3/2. In any proportional
allocation, uSW=1.

* Question: PoP/PoEF wrt uSW for many agents?



Computational (in)efficiency

 Computing a proportional/EF allocation is NP-
hard

e Reduction from Partition:

— Partition instance: given items with weights w,, w,,
..., W, decide whether they can be partitioned into
two sets with equal total weight

— Proportionality/EF instance: A good for each item; 2
agents with identical valuation of w; for good i



EF1: a relaxed version of EF
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PROVABLY FAIR SOLUTIONS.

Spliddit offers quick, free solutions to everyday fair division problems, using
methods that provide indisputable fairness guarantees and build on decades of
research in economics, mathematics, and computer science.

J ©

Share Rent Split Fare Assign Credit




¥ splid

* Fairness hierarchy

1. Envy-freeness
2. Proportionality
3. Maxmin share guarantee

* Previous spliddit protocol
— Find best fairness criterion
— Maximize social welfare (subject to that criterion)



spliddit

Spliddit Feedback -

admin@spliddit.org Jan 7 L v
to admin |~

Hil Great app :) We're 4 brothers that need to divide an inheritance of 30+
furniture items. This will save us a fist fight ;) | played around with the demo app
and it seems there are non-optimal results for at least two cases where
everyone distributes the same amount of value onto the same goods. Try it with
either 3 people distributing 1000 points to good A and 0 to the 5 remaining
goods, OR try 3 people, 5 goods, with everyone placing 200 on every good.
The first case gives 0 to one person, 1 to another and 5 to the third. The second
case gives 3 to one person and 1 to each of the others. Why is that? All the
best,



spliddit

Spliddit Feedback -

admin@spliddit.org Jan7 - v
to admin |~

Hi! Great app :) We're 4 brothers that
need to divide an inheritance of 30+
furniture items. This will save us a fist
fight ;)

... try 3 people, 5 goods, with everyone
placing 200 on every good.

... gives 3 to one person and 1 to each
of the others. Why is that?



Relaxing EF

* Envy-freeness up to one good (EF1):

— There is a good that can be removed from the bundle
of agent j so that any envy of agent i for agent j is
eliminated

Vi, j, g € Aj: vi(A;) 2 Vi(Aj — 8)



Relaxing EF

* Envy-freeness up to one good (EF1):

— There is a good that can be removed from the bundle
of agent j so that agent i is not envious for agent |

— Budish (2011)
— Easy to achieve: draft mechanism
— Also: Lipton, Markakis, Mossel, and Saberi (2004)



The draft mechanism
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The draft mechanism
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The draft mechanism
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The draft mechanism

* Drafting order:

$300 $100
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The draft mechanism

J

Drafting order: \: : \: z ”z g
|

| |

- -~
. .

In each phase, g prefers the good he gets to

the good every other agent gets

Phases for agent

So, ignoring the good picked by an agent at

the very beginning of the sequence, : is EF



Local search

Allocate goods one by one

In each step j:
— Allocate good j to an agent that nobody envies

— If this creates a “cycle of envy”, redistribute the
bundles along the cycle

Crucial property:

— Envy can be eliminated by removing just a single
good

— Implies EF1
Lipton, Markakis, Mossel, & Saberi (2004)



Adding an efficiency objective

* Pareto optimality (PO):

— No alternative allocation exists that makes some
agent better off without making any agents worse off

— An allocation A= (A, A,, ..., A,) is called Pareto-
optimal if there is no allocation B = (B4, B,, ..., B,)
such that v(B:) > v.(A;) for every agent i and v,(B;) >
v.(Ay) for some agent i’

e Easy to achieve: give each good to the agent that values
it the most



EF1+PO?



EF1+PO?

 Maximum Nash welfare (MNW) allocation:

— the allocation that maximizes the Nash welfare
(product of agent valuations)

e Theorem: the MNW solution is EF1 and PO

— C., Kurokawa, Moulin, Procaccia, Shah, & Wang
(2016)



Theorem: MNW solution is EF1+PO



Theorem: MNW solution is EF1+PO

* PO is trivial since MNW maximizesl_[ vi(Aj)
iEN
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e Assume MNW is not EF1
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Theorem: MNW solution is EF1+PO

e Assume MNW is not EF1

 Agenti envies agent j even after any single good
is removed from j’s bundle

. _vi(8)
* Forgood g* = argmin
geA;:vi(g)>0 Vi (g)

we have|vi(4;) < Vi(Aj) —vi(g")
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Theorem: MNW solution is EF1+PO

V.
* Recall thatg™ = argmin i(8)
gEA;:vi(g)>0 Vi (g)

vz ) ve = ) w(g)iﬁ%

geA;:vi(g)>0 geA;:vi(g)>0
vi(g") Z vi(g™)

— - V(g) — - Vv:( A
vi(g™) l vi(g™) l( ])

geA;:vi(g)>0

* Hence,|v;(g



Theorem: MNW solution is EF1+PO

vi(Ap) < vi(4) — vi(@)|f vi(g*)vi(4;) — vi(g")vi(A;) = 0




Theorem: MNW solution is EF1+PO

vi(Ap) < vi(4) — vi(@)|f vi(g*)vi(4;) — vi(g")vi(A;) = 0

vi(Aj) vj(A))




Theorem: MNW solution is EF1+PO

vi(Ap) < vi(4) — vi(@)|f vi(g*)vi(4;) — vi(g")vi(A;) = 0

vi(Aj) vi(4)
< vi(ADvj(4)) + v (g87)v; (Aj) — vi(g8")vi (Ai)
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vi(Ap) < vi(4) — vi(@)|f vi(g*)vi(4;) — vi(g")vi(A;) = 0

vi(Aj) vj(A))
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Theorem: MNW solution is EF1+PO

vi(Ap) < vi(4) — vi(@)|f vi(g*)vi(4;) — vi(g")vi(A;) = 0

vi(Aj) vj(A))

< vi(A)vj(4;) +vi(g"Ivj(4)) — vi(g"vi(4))

< vi(ADV;(4)) + vi(g")vi(4;) —vi(g)vi(Ap) — vi(g9)vi(g")
= (vi(A) +vi(8") - (vj(4;) — vy(g")




Theorem: MNW solution is EF1+PO

vi(Ap) < vi(4) — vi(@)|f vi(g*)vi(4;) — vi(g")vi(A;) = 0

vi(Aj) vj(A))

< vi(A)vj(4;) +vi(g"Ivj(4)) — vi(g"vi(4))

< vi(ADV;(4)) + vi(g")vi(4;) —vi(g)vi(Ap) — vi(g9)vi(g")
= (vi(A) +vi(8") - (vj(4;) — vy(g")

e So Ais nota MNW solution, a contradiction.

* QED



Computational issues §j>

* EF1+PO in polynomial time?
— Yes for two agents (using a restricted MNW solution)
— Open for more agents (e.g., three agents)

— Several attempts (e.g., rounding a fractional MNW
solution) miserably failed

— Some progress in very recent work by Barman,
Murthy, & Vaish (2018)



More fairness notions
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What does “fairly” mean? §§>

* Fairness notions
— Envy freeness (EF)
— Proportionality
— Envy-freeness up to one good (EF1)
— Maxmin share (MmS) allocation
— Minmax share (mMS) allocation
— Envy-freeness up to any good (EFX)
— Pairwise MmS allocation



What does “fairly” mean? §§>

 Fairness notions

— Envy freeness (EF)
— Proportionality
— Envy-freeness up to one good (EF1)

— Maxmin share (MmS) allocation: each agent’s value
is at least the best guarantee when dividing the

goods into n bundles and getting the least valuable
bundle

Vi, vi(A}) > 8; = max minv;(A';)



MmS: an example
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MmS: an example

Let’s compute the
mS thresholds first
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MmS: an example

Let’s compute the
TS mS thresholds first
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MmS: an example

Now, let’s compute
ROLLS the allocation
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$900 S600 $200 $200 $100 $500



MmS: an example

Now, let’s compute
@
i

the aIIocatlon
S500 S600 S200 S400 S300 S600

$700 $300 $200 $100 $600

‘ $900 $600 $200 $200 $100 $500




An implication

* Theorem: Proportionality implies MmS



An implication

* Theorem: Proportionality implies MmS

* Proof: Let A be a proportional allocation. Then,
1
Vi, Vi(Ai) = HVI(G)
But the MmS threshold for agent i is

1
0; = max Ijgll\pvl(A,) = ~vi(G)

Hence,
Vi, Vi (Al) = Bi



What does “fairly” mean? §§>

* Fairness notions
— Envy freeness (EF)
— Proportionality
— Envy-freeness up to one good (EF1)
— Maxmin share (MmS) allocation

— Minmax share (mMS) allocation: each agent’s value
is at least the worst guarantee when dividing the

goods into n bundles and getting the most valuable
bundle

Vi, vi(A)) 2 6; = min maxv;(4';)



mMS: an example

[ NOAN

$500 $600 $200 $400 $300

-
A
$700  $700  $300  $200  $100

$900 $600 $200 $200 $100



mMS: an example

Let’s compute the
MS thresholds first

Q

$500 $600 $200 $400 $300

@
A
$700 $700 $300 $200 $100

$900 S600 $200 $200 $100



mMS: an example

Let’s compute the
TS MS thresholds first

AN

0
$500 $600 $200 $400 $300 $700

@
AlA
$700 $700 $300 $200 $100 $700

$900 S600 $200 $200 $100 $900



mMS: an example

Now, let’s compute
ROLLS the allocation

AN

0
$500 $600 $200 $400 $300 $700

@
AlA
$700 $700 $300 $200 $100 $700

$900 S600 $200 $200 $100 $900



mMS: an example

Now, let’s compute
ROLLS|
i

the aIIocatlon
S500 S600 S200 $400 $300 S700

$700 $700 $300 $200 $100 $700

$900 $600 $200 $200 $100 $900

E®<DE )



An implication

* Theorem: EF implies mMS



An implication

* Theorem: EF implies mMS
* Proof: Let A be an EF allocation. Then,




Another implication

 Theorem: mMS implies Proportionality



Another implication

 Theorem: mMS implies Proportionality
* Proof: Let A be an mMS allocation. Then,

Vi, vi(A;) > 0; = min maxv;(A'))

But the mMS threshold for agent i is

. o L
0, = min rjne%xvi(Aj) > Hvi(G)

Hence, T
Vi, vi(Aj) = HVi(G)



What does “fairly” mean? §§>

* Fairness notions
— Envy freeness (EF)
— Proportionality
— Envy-freeness up to one good (EF1)
— Maxmin share (MmS) allocation

— Minmax share (mMS) allocation

EF mms) mMS =mmp Prop mmmp MmS

N

EF1



What does “fairly” mean? §§>

Fairness notions

— Envy freeness (EF)

— Proportionality

— Envy-freeness up to one good (EF1)
— Maxmin share (MmS) allocation

— Minmax share (mMS) allocation

— Envy-freeness up to any good (EFX): agent i is either
not envious of agent j initially or s/he is not envious
after removing any good from the bundle of agent |

Vi,j, Vg € A] with Vi(g) > 0: Vi(Ai) = Vi(A]‘ — g)



EFX: an example

[ NOAS

$500 $600 $200 $400 $300

$700 $700 $300 $200 $100

$900 $600 $200 $200 $100

E®<DE )



EFX: another example
e e

- @
. Draftmg order: Q . 4 o
d 2 drc

ROLLS @e E

$1200 $200 $200

500 $200 $200
S S S S S

: 3800 400 200 200




More implications

* Theorem: EF implies EFX, which implies EF1

EF mmm) mMS =mmp Prop =) MmS
\ EFX ==mp EF1



More implications

* Theorem: EF implies EFX, which implies EF1

EF mmm) mMS =mmp Prop =) MmS
\ EFX ==mp EF1

* Open question: Does an EFX allocation always
exist?

* So, is the implication EFX => EF1 strict?



What does “fairly” mean? §§>

 Fairness notions

— Envy freeness (EF), Proportionality, Envy-freeness up
to one good (EF1), Maxmin share (MmS) allocation,
Minmax share (mMS) allocation, Envy-freeness up to
any good (EFX)

— Pairwise MmS allocation: an allocation A is pairwise
MmS if for every pair of agents i and j, the allocation
(A;, A) between the two agents is MmS



E®<DE )

Pairwise MmS: an example

[ NOAN

$500 $600 $200 $400 $300

$700 $700 $300 $200 $100

$900 $600 $200 $200 $100

6
$700

$600



E®<DE )

Pairwise MmS: an example

[ NOAN

$500 $600 $200 $400 $300

$700 $700 $300 $200 $100

$900 $600 $200 $200 $100

6
$500

$300



Pairwise MmS: an example

[ NOAN

$500 $600 $200 $400 $300

$700 $700 $300 $200 $100 $700

$900 $600 $200 $200 $100 $800

E®<DE )



Pairwise MmS: another example
- R @ - 8
e draft me ".'

o @
. Draftmg order: ﬂ Q
IIocations?

CO®pM .

= A
$1200 $200 $300 $200 $100 $700
$800 $500 $200 $300 $200 $800
. $800 $400 $400 $200 $200
)




Yet another implication

* Theorem: EF implies pairwise MmS, which
implies EFX



Yet another implication

* Theorem: EF implies pairwise MmS, which
implies EFX

* Proof: The first implication is trivial.



Yet another implication

* Theorem: EF implies pairwise MmS, which
implies EFX

* Proof: The first implication is trivial.

Let A be a pMmS allocation that is not EFX.



Yet another implication

* Theorem: EF implies pairwise MmS, which
implies EFX

* Proof: The first implication is trivial.
Let A be a pMmS allocation that is not EFX.

l.e., there are agents |, j so that for a good g € A,
with vi(g)>0, it holds that v;(A;) < v;(A-g).



Yet another implication

* Theorem: EF implies pairwise MmS, which
implies EFX

* Proof: The first implication is trivial.
Let A be a pMmS allocation that is not EFX.

l.e., there are agents |, j so that for a good g € A,
with vi(g)>0, it holds that v;(A;) < v;(A-g).

Then, the pairwise MmS threshold for agent |
should be higher than either v,(Ai+g) or v;(A-g).



Yet another implication

* Theorem: EF implies pairwise MmS, which
implies EFX

* Proof: The first implication is trivial.
Let A be a pMmS allocation that is not EFX.

l.e., there are agents |, j so that for a good g € A,
with vi(g)>0, it holds that v;(A;) < v;(A-g).

Then, the pairwise MmS threshold for agent |
should be higher than either v,(Ai+g) or v;(A-g).

This contradicts the assumptions that A is pMmS.



Yet another implication

* Theorem: EF implies pairwise MmS, which
implies EFX

EF mss) mMS =) Prop mmmp MmS
\ pMmS ==mp EFX == EF1



Yet another implication

* Theorem: EF implies pairwise MmS, which
implies EFX

EF mss) mMS =) Prop mmmp MmS
\ pMmS ==mp EFX == EF1

* Open question: Does a pairwise MmS allocation
always exist?

* So, is the implication pMmS => EFX strict?



Further reading

 Fairness notions
— MmS, EF1: Budish (2011)

— MmS: Kurokawa, Procaccia, & Wang (2018),
Amanatidis, Markakis, Nikzad, & Saberi (2017),
Barman & Murthy (2017), Ghodsi, Hajiaghayi,
Seddighin, Seddighin, & Yami (2018)

— mMS: Bouveret & Lemaitre (2016)

— EFX, pairwise MmS: C., Kurokawa, Moulin, Procaccia,
Shah, & Wang (2016)

— EFX: Plaut & Roughgarden (2018), C., Gravin, & Huang
(2019)



Fairness, knowledge, and social
constraints



Fairness and knowledge

 What kind of knowledge do the agents need to
have?

 Knowledge about the goods and the number of
agents only:
— Proportionality, MmS, mMS

 Knowledge about the whole allocation:
— EF, EFX, EF1, pairwise MmS



Envy-freeness?

$1000 $600

=
Al
$1000  $600
-4

$100 $600

ROLLS

$600

$600

$600

$100

$100

$1000



Epistemic envy-freeness (EEF)

ROLLS O
R
$1000 $600 $600 $100

$1000 $600 $600 $100
g $100 $600 $600




Epistemic envy-freeness (EEF)

* Informally: a relaxation of EF with a definition
that uses only knowledge about goods and
number of agents

e Formal definition:

— the allocation (A, A, ..., A.) is EEF if, for every agent i,
there is a reallocation (B4, ..., B ;, A;, B,;;, ..., B,)) in
which agent i is not envious, i.e., vi(A;) = v(B;) for
every other agent j

e Aziz, C., Bouveret, Giagkousi, & Lang (2018)



Epistemic envy-freeness (EEF)

e Formal definition:

— the allocation (A, A, ..., A.) is EEF if, for every agent |,
there is a reallocation (B4, ..., B ;, A;, B,;;, ..., B,)) in
which agent i is not envious, i.e., vi(A;) = v(B;) for
every other agent j

* Theorem: EF implies EEF, which implies mMS



Epistemic envy-freeness (EEF)

e Formal definition:

— the allocation (A, A, ..., A.) is EEF if, for every agent |,
there is a reallocation (B4, ..., B ;, A;, B,;;, ..., B,)) in
which agent i is not envious, i.e., vi(A;) = v(B;) for
every other agent j

* Theorem: EF implies EEF, which implies mMS
* Proof: EF trivially implies EEF (with B = A).

Also, v;(A;) = 6; = min max v, {(A5)



Epistemic envy-freeness (EEF)

e Formal definition:

— the allocation (A, A, ..., A.) is EEF if, for every agent |,
there is a reallocation (B4, ..., B ;, A;, B,;;, ..., B,)) in
which agent i is not envious, i.e., vi(A;) = v(B;) for
every other agent j

* Theorem: EF implies EEF, which implies mMS

EF ==m) EEF mmm) mMS == Prop mmmp MmS
\ pMmS =mmp EFX =mmp EF1



Fairness with social constraints

e Existence of an underlying social graph




Fairness with social constraints

* Existence of an underlying social graph, which
represents the knowledge each agent has for the

bundles allocated to other agents

* Recent related papers (graph-EF/Proportionality):
— Abebe, Kleinberg, & Parkes (2017)
— Bei, Qiao, & Zhang (2017)
— Chevaleyre, Endriss, & Maudet (2017)
— Aziz, C., Bouveret, Giagkousi, & Lang (2018)



Graph-EEF

* Social graph G: directed graph having the agents
as nodes

* G-EEF:
— agentiis EF wrt her neighbors and
— EEF wrt to her non-neighbors
* G-EEF is
— EF if G is the complete graph (or every node has
degree > n-2)
— EEF if G is the empty graph



More implications

e Social graphs G and H over the same set of nodes

— Rich hierarchy of fairness notions between EF and EEF
— If G is a subgraph of H, then H-EEF implies G-EEF

— Otherwise, there is an n-agent allocation instance that
has an H-EEF but no G-EEF allocation

mMS == Prop ==p MimS

EFX == EF1



More fairness notions

* G-PEF
— Again, using a social graph G
— P stands for proportionality
— Combined with EF

e See also:
— Aziz, C., Bouveret, Giagkousi, & Lang (2018)



Summary

Basic notions

Fairness vs. efficiency

EF1: a relaxed version of envy-freeness
More fairness notions

Fairness, knowledge, and social constraints



What didn’t we cover?

e Algorithms for EFX allocations with item
donations

— C., Gravin, & Huang (2019)
e Connected bundles

— Bilo, C., Flammini, Igarashi, Monaco, Peters, Vince, &
Zwicker (2019)

* Chores or mixed settings with chores and goods
— Aziz, C., Igarashi, & Walsh (2019)



Last slide

* Please, send me any questions, remarks, or
proofs at caragian@ceid.upatras.gr



Last slide

* Please, send me any questions, remarks, or
proofs at caragian@ceid.upatras.gr

Thank you!



