
Envy-Freeness Up to Any Item with High Nash Welfare:
The Virtue of Donating Items

IOANNIS CARAGIANNIS, University of Patras & CTI “Diophantus”

NICK GRAVIN, Shangai University of Finance and Economics, ITCS

XIN HUANG, The Chinese University of Hong Kong

Several fairness concepts have been proposed recently in attempts to approximate envy-freeness in settings

with indivisible goods. Among them, the concept of envy-freeness up to any item (EFX) is arguably the closest

to envy-freeness. Unfortunately, EFX allocations are not known to exist except in a few special cases. We

make significant progress in this direction. We show that for every instance with additive valuations, there

is an EFX allocation of a subset of items with a Nash welfare that is at least half of the maximum possible

Nash welfare for the original set of items. That is, after donating some items to a charity, one can distribute

the remaining items in a fair way with high efficiency. This bound is proved to be best possible. Our proof

is constructive and highlights the importance of maximum Nash welfare allocation. Starting with such an

allocation, our algorithm decides which items to donate and redistributes the initial bundles to the agents,

eventually obtaining an allocation with the claimed efficiency guarantee. The application of our algorithm

to large markets, where the valuations of an agent for every item is relatively small, yields EFX with almost

optimal Nash welfare. We also show that our algorithm can be modified to compute, in polynomial-time,

EFX allocations that approximate optimal Nash welfare within a factor of at most 2ρ, using a ρ-approximate

allocation on input instead of the maximum Nash welfare one.

CCS Concepts: • Theory of computation → Algorithmic game theory; Approximation algorithms
analysis.

Additional Key Words and Phrases: Fairness in allocation problems, indivisible items, envy-freeness, Nash

wefalre

ACM Reference Format:
Ioannis Caragiannis, Nick Gravin, and Xin Huang. 2019. Envy-Freeness Up to Any Itemwith High NashWelfare:

The Virtue of Donating Items. In ACM EC ’19: ACM Conference on Economics and Computation (EC ’19), June
24–28, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/3328526.3329574

1 INTRODUCTION
The agenda of fairly allocating items to agents has received much attention by the EconCS com-

munity recently. Most of the solution concepts with compelling properties such as envy-freeness

and proportionality cannot always be attained when the items are indivisible, in contrast to the

traditionally studied case of divisible items. Recent work put forth several promising fairness

notions that adapt and “approximate” the definition of envy-freeness to the case of individual

items and demonstrated that allocations that satisfy some of these notions are possible, with some

minimum efficiency guarantees at the same time.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’19, June 24–28, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6792-9/19/06. . . $15.00

https://doi.org/10.1145/3328526.3329574

EC’19 Session 4c: Fair Division

527

https://doi.org/10.1145/3328526.3329574
https://doi.org/10.1145/3328526.3329574

A very natural adaptation of envy-freeness for settings with indivisible items was defined by

Budish [13] (but is also implicit in the earlier work of Lipton et al. [29]). An allocation of items

is envy-free up to some item (EF1) if any possible envy of an agent for the allocation of another

can be eliminated by removing some item from the envied bundle. It is well known that EF1

allocations can always be achieved, and recently Caragiannis et al. [15] showed that the Nash

welfare maximizing allocation is Pareto-optimal and EF1. This is indeed a success story for the

Nash welfare efficiency measure defined as the geometric mean of the agent valuations, a standard

and well studied objective that is particularly well aligned with fair division applications.

c r p n

Alice 10 9 4 6

Bob 10 6 9 4

Carol 10 4 6 9

For example, consider the problem of fairly dividing the inheritance

of four items, a car, a ring, a painting, and a necklace, among three

agents named Alice, Bob, and Carol. Agents have preferences for the

items, which are expressed in the table at the right, where each number

represents the amount in thousands of USD of how much each agent

values the corresponding item. Clearly, there is no envy-free allocation

in this example, because someone must get at least two items, and then one of the two other agents

would have a higher total value for these items compared to what the agent received. The allocation

which gives the ring to Alice, the car and the painting to Bob, and the necklace to Carol, is EF1

with the valuations of 9, 19, and 9, respectively. In this allocation, Bob does not envy anyone, while

Alice and Carol would prefer to swap Bob’s allocation with their own: Alice values the car and

the painting in Bob’s bundle for the total of 14, and Carol values them for 16. This is still an EF1

allocation as Alice’s and Carol’s envy can be eliminated by ignoring their most valued item in Bob’s

bundle (i.e., the car) when comparing valuations.

The above allocation in our inheritance example maximizes the Nash welfare objective, which

is widely considered as an important efficiency measure for allocations. It provides an appealing

compromise between utilitarian and egalitarian social welfare objectives, defined as the sum of

agent valuations for their allocated items and minimum valuation among all agents, respectively.

Finding a Nash welfare maximizing allocation is well-known to be computationally tractable in

settings with divisible items (by minimizing the convex program of Eisenberg and Gale [21]), where

the resulting allocation also happens to be envy-free. In the case of indivisible goods, besides being

EF1, Nash welfare maximizing allocations have some additional fairness properties (see e.g. [15]),

including a remarkable scale-invariant property that rescaling the valuation of an agent does not

change the allocation that maximizes Nash welfare (see [30] for a detailed discussion).

On the other hand, the Nash welfare maximizing allocation from the example above can hardly

be considered fair, since Bob gets more value than Alice and Carol put together in our symmetric

instance
1
. Consider another allocation, where Alice gets the ring for the value of 9, Bob gets the

car for the value of 10, while the painting and the necklace go to Carol with the total value of 15.

This allocation is slightly sub-optimal in terms of the Nash welfare, but it looks clearly better than

the previous allocation from the fairness point of view. Indeed, observe that, inevitably, one agent

must get the car; it is Bob in our case. This already creates some envy from Alice and/or Carol. So,

it makes more sense to allocate the remaining three items only to them and give nothing more to

Bob. More concretely, such allocations have the much more appealing property of envy-freeness up

to any item (EFX), introduced by Caragiannis et al. [15]. Now, the envy of Alice and Bob for Carol

can be eliminated by ignoring their least-valued item in Bob’s bundle when comparing valuations.

Arguably, EFX is the best fairness analog of envy-freeness for indivisible items. But even though

EF1 allocations can be computed in many different ways (e.g., by a simple draft mechanism, by

1
The instance is invariant under a cyclic permutation of agents’ names and the respective cyclic permutation of all items

except the car.

EC’19 Session 4c: Fair Division

528

the local-search algorithm of Lipton et al. [29], by maximizing the Nash welfare, etc.), for EFX

allocations, we do not even know whether they always exist. Moreover, asking for EFX allocations

that simultaneously satisfy some efficiency guarantee is way beyond the reach of known techniques.

Donation of items. A natural way to deal with the (hypothetical) issue of the existence of EFX

allocations is to consider partial allocations, which leave some of the items unallocated. The

unallocated items could then be donated to a charity or sold at auction with the profit equally

distributed between the agents. Actually, in situations like the above inheritance example that arise

in practice, it is usually observed that people donate some of their possessions to charities before

distributing the rest to their heirs. Undoubtedly, the donation of items can completely eliminate

envy, e.g., by donating all items and allocating nothing to the agents. However, although beneficial

for the charity cause, this outcome cannot be considered as good for the problem at hand. Therefore,

an important question to ask is:

How can we achieve an EFX allocation of high Nash welfare by donating items smartly?

Our results. We make careful use of the idea of donating items and hit many birds with one stone.

We present an algorithm that takes an allocation of maximum Nash welfare as input and, after

donating some of the items, outputs an allocation of the remaining ones that is EFX and has a Nash

welfare that is at least half the optimal one for the original instance (that includes the donated

items). As we show, this efficiency guarantee is best possible for EFX allocations, no matter whether

there are donated items or not. A remarkable bonus property is that the bundle that is allocated to

each agent is a subset of the bundle he/she initially gets in the maximum Nash welfare allocation.

When the same approach is applied to large market instances, where any item’s contribution is only

a small fraction of the total value of any agent, our algorithm outputs almost optimal allocations.

The algorithm can be modified to work with input allocations that have sub-optimal Nash welfare.

Combined with a ρ-approximation algorithm for maximizing Nash welfare (such as the algorithms

of Cole and Gkatzelis [19] or Barman et al. [10]), the modified algorithm runs in polynomial-time

and computes an EFX allocation that is 2ρ-approximation to the maximum Nash welfare.

Techniques. Our algorithms are purely combinatorial. Our algorithms do not reallocate any items

between the bundles in the initial allocation but permanently remove items from the instance. This

removal operation gives us fine control of the agents’ preferences. For example, if an agent is “happy”

with a bundle from which we do not remove an item, then she stays happy with it after the removal

of an item. At a high level, we always seek to find a complete EFX feasible matching of agents with

bundles and carefully remove an item so that the size of the matching never decreases. From the

Nash welfare maximality property, we derive that no bundle can lose more than a certain fraction

of its value for the agent who had it in the initial Nash welfare maximizing allocation, yielding the

desired Nash welfare guarantee. For large markets, we are able to obtain our considerably improved

result by proving a number-theoretic lemma using Karamata’s inequality for the logarithm function.

Significance. We employ the natural and practical operation of donating/removing items to

resolve the challenging issues related to the EFX solution concept. Our approach contrasts with the

recent attempts to mitigate such challenges by considering approximate versions of EFX (e.g., in

the papers by Plaut and Roughgarden [34] and Amanatidis et al. [1]). Instead, we keep the precise

definition of EFX and use approximation only for the efficiency guarantee, which is unavoidable.

This approach of considering item donations could be useful in the study of the interplay of other

fairness notions with efficiency.

EC’19 Session 4c: Fair Division

529

1.1 Related work
Fair division with indivisible items. The rigorous study of fair division with divisible items has

a long history; it originates from the work of Steinhaus [35] in the 40’s and includes very recent

breakthroughs like the envy-free cake-cutting protocol of Aziz and McKenzie [7]. In contrast, fairly

allocating indivisible items among agents has not been as popular until very recently. Most probably,

the reason for this delay is that the beautiful fairness notions of envy-freeness and proportionality,

that have received so much attention in the literature on divisible items, are not always achievable

with indivisible items. To give an embarassing example, just consider a single item and two agents

with identical valuations for the item.

The recent interest for the indivisible items setting was sparked with the definition of fairness

notions that approximate envy-freeness and proportionality. In particular, the notion of maxmin

fair share (MMS), defined by Budish [13] and Bouveret and Lemaître [12] can be thought of as an

approximate version of proportionality and has received much attention recently, e.g., see [2, 9, 25,

27]. Besides the concepts of EF1 and EFX mentioned above, approximate versions of envy-freeness

include epistemic envy-freeness [6] or notions that require the minimization of the envy-ratio [29]

and degree of envy [17, 33] objectives.

As mentioned earlier, EF1 is easy to achieve with several different methods. What is really

challenging is to achieve EF1 and Pareto-optimality simultaneously. This was proved to be possible

in [15], by an allocation of maximum Nash welfare. The popular website Spliddit [26], available

at www.spliddit.org, returns such allocations as part of its “Divide goods” application. Following

[15], Barman et al. [10] investigate whether EF1 and Pareto-optimal allocations can be computed

efficiently and present a pseudo-polynomial-time algorithm.

Unlike EF1, the existence of EFX allocations is still a mystery, even for three agents with additive

valuations. Plaut and Roughgarden [34] prove the existence of EFX allocations for setting with two

agents only or with more agents and identical valuations. In addition, they present an algorithm

for computing an 1/2-EFX allocation, where the value of each agent from her bundle is at least

half of what the EFX property requires it to be. Caragiannis et al. [15] and Amanatidis et al. [1]

consider different approximations of EFX (namely, approximations of the strongly related pairwise

MMS fairness concept).

Nash welfare. The history of Nash social welfare (or, simply, Nash welfare) dates back to the 50’s,

where it was used in bargaining problems [31]. In fair division, it is considered as a good measure

to balance fairness with efficiency. In particular, in settings with divisible items, maximizing the

Nash welfare can be done in polynomial-time using the convex program of Eisenberg and Gale [21],

which also leads to envy-free allocations. Unfortunately, such nice properties dissappear in the

indivisible items setting as the problem of computing an allocation of maximum Nash welfare

becomes APX-hard [28] (see also [32] for a weaker hardness result). Still, as the Nash welfare is a

very important efficiency measure, several constant-approximation algorithms have been proposed

recently. The first such algorithm was due to Gkatzelis and Cole [19] and approximates the Nash

welfare within a factor of 2.89. This was improved to 2 by Cole et al. [18], and further to 1.45 by

Barman et al. [10]. See also [4, 5, 16, 24] for approximation algorithms in more general settings (with

non-additive valuations). With the exception of [10] that uses item pricing techniques, rounding of

convex programming relaxations is the main algorithmic tool in this line of research.

Other related papers. Our main positive result bounds the efficiency gap of the best EFX allocation

in terms of Nash welfare. As such, this is a price of fairness result, a notion that was introduced

independently by Bertsimas et al. [11] and Caragiannis et al. [14]. Also, the general structure of

our algorithms has conceptual similarities (but also many technical differences) to algorithms for

EC’19 Session 4c: Fair Division

530

www.spliddit.org

computing combinatorial Walrasian equilibria [22], where items are packaged into groups instead

of being donated. Finally, we remark that large market assumptions have been considered in a

few different areas recently, such as in the study of the price of anarchy of large games [20, 23],

in budget-feasible mechanisms [3], and in optimizing over (very different from ours) fairness

constraints [8].

1.2 Roadmap
The rest of the paper is structured as follows. We begin with formal definitions in Section 2. Our

counter-example showing that the Nash welfare of EFX allocations can be far from optimal is given

in Section 3. The description and analysis of our main positive result is presented in Section 4. Our

modifications that allow the algorithm to work with allocations of sub-optimal Nash welfare as

input are given in Section 5. The large market assumption is considered in Section 6. We conclude

in Section 7 with a short discussion and open problems.

2 PRELIMINARIES
Let N be the set of n agents andM be the set ofm indivisible items. We enumerate agents and

items from 1 through n and throughm, respectively. We will often refer to the set of agents N as

[n] and to the set of itemsM as [m], where [k]
def

= {1, 2, . . . ,k} for any positive integer number k .
Each agent i ∈ N is endowed with a valuation function vi :M → R≥0, where R≥0 is the set of

non-negative real numbers. Valuations are additive; by slight abuse of notation, agent i has a value

of vi (S)
def

=
∑
д∈S vi (д) for any set S ⊆ M.

We refer to a set of items as a bundle and extensively consider partitions of items into bundles.

Formally, a partition of a set of items S ⊆ M is a set of n disjoint bundles B = {B1, . . . ,Bn} such
that Bi ∩ Bj = ∅ and

⋃
i ∈[n] Bi = S . An allocation X = (X1, . . . ,Xn) of the items in S ⊆ M to the

agents of N is an ordered partition of the item set S , where each agent i ∈ [n] gets the bundle Xi .

We denote the set of all possible allocations of S to the agents ofN as X(S). From now on, the term

allocation implies an allocation to the agents of N .

An allocation X = (X1, . . . ,Xn) is called

• envy-free (EF) if vi (Xi) ≥ vi (X j) for any i, j ∈ N ;

• envy-free up to one item (EF1) if vi (Xi) ≥ minд∈X j vi (X j − {д}) for any i, j ∈ N ;

• envy-free up to any item (EFX)2 if vi (Xi) ≥ maxд∈X j vi (X j − {д}) for any i, j ∈ N .

We measure the efficiency of an allocation X = (X1, . . . ,Xn) using its Nash social welfare (or,
simply Nash welfare) NW(X), which is defined as the geometric mean of {vi (Xi)}

n
i=1

. For any set of

items S ⊆ M, we denote by opt(S) the maximum Nash welfare over all allocations of S . Formally,

NW(X) def= ©­«
∏
i ∈[n]

vi (Xi)
ª®¬

1/n

, opt(S)
def

= max

X∈X(S)
NW(X).

Our goal is to find an EFX allocation with as large Nash welfare as possible. We say that the

allocation X of S ⊆ M is α -efficient if α · NW(X) ≥ opt(M). An allocation X is called Pareto-optimal
if there is no other allocation Y with at least as high value for every agent i , i.e., vi (Yi) ≥ vi (Xi),

and strictly higher value for one of the agents. In particular, a Nash welfare maximizing allocation

is Pareto-optimal.

2
If the set X j is empty we assume that minд∈X j vi (X j − {д }) = maxд∈X j vi (X j − {д }) = 0. We remark that our definition

of EFX is slightly different than the one in [15], where the maximum is taken over the items of bundle X j for which agent i
has strictly positive valuation. However, our positive results are only stronger in this way, and in the proof of Theorem 1,

all agent valuations are non-zero.

EC’19 Session 4c: Fair Division

531

We now introduce large markets. These are allocation problems, in which the valuation of every

agent for any item is a small fraction of her total value for all items ofM.

Definition 1 (Large Market). An allocation problem satisfies the large market condition with
parameter ε ∈ (0, 1] if vi (д) ≤ ε

nvi (M) for every agent i ∈ [n] and any item д ∈ M.

In Section 6, we actually use the following weaker large market condition, which is defined with

respect to any allocation of optimal Nash welfare.

Definition 2 (Large market w.r.t. optimal allocation X). An allocation X of optimal Nash
welfare satisfies the large market condition with parameter ε ∈ (0, 1] if vi (д) ≤ ε · vi (Xi) for every
agent i ∈ [n] and any item д ∈ Xi .

Claim 1. The large market condition with parameter ε implies the large market condition for an
optimal Nash welfare allocation with parameter ε ′ = ε/(1 − n−1

n ε).

Proof. We use the fact that a Nash welfare maximizing allocation X is also EF1 [15]. Let

us fix any agent i ∈ N . The EF1 condition for agent i implies that ∀j , i , ∃дi j ∈ X j such that

vi (Xi) ≥ vi (X j \{дi j }). By summing these inequalities over all j , i and the equalityvi (Xi) = vi (Xi),

we get

n · vi (Xi) ≥ vi (Xi) +
∑
j,i

vi (X j \ {дi j }) = vi (M) −
∑
j,i

vi (дi j) ≥ vi (M) − (n − 1) ·
ε

n
vi (M).

Therefore, for any agent i and item д ∈ Xi we have

vi (д) ≤
ε

n
vi (M) ≤

ε

n
n · vi (Xi)

(
1 −

n − 1

n
ε

)−1

= ε ′ · vi (Xi). □

3 A LOWER BOUND ON THE NASHWELFARE OF EFX ALLOCATIONS
Before presenting our positive results, we give an allocation problem where almost half of the

optimal Nash welfare must be sacrificed in order to achieve EFX, either for the original set of items

or for any subset of them.

Theorem 1. For any positive integer n and ε > 0, there is an allocation problem with n agents and
set of itemsM, such that any EFX allocation X of any subset of items S ⊆ M satisfies

(
2

1−1/n − 2ε
)
·

NW(X) ≤ opt(M).

Proof. Consider the allocation problem with n agents, set of itemsM
def

= {1, ..., 2n − 1}, and

valuation function vi :M → R≥0 of agent i ∈ [n] that is defined as follows:

vi (д)
def

=


1 when д ∈ {1, ...,n − 1},

1 − ε when д = 2n − i,
ε/2n , otherwise.

The allocation X∗ = (X ∗
1
, ...,X ∗n)withX

∗
i = {i, 2n− i} for i ∈ [n−1], andX ∗n = {n} has Nash welfare

NW(X∗) = n
√
(2 − ε)n−1(1 − ε). Hence, the optimal Nash welfare is

opt(M) ≥ n
√
(2 − ε)n−1(1 − ε) = 2

1−1/n ·

(
1 −

ε

2

)
1−1/n

(1 − ε)1/n

> 2
1−1/n · (1 − ε)1−1/n (1 − ε)1/n > 2

1−1/n − 2ε .

Now consider any EFX allocation X = (X1, ...,Xn) of a set of items S ⊆ M. By the pigeonhole

principle, there must be some agent j who does not receive any of the first n − 1 items. Then, agent

j’s value is at most vj (X j) ≤
∑

2n−1

д=n vi (д) < 1 − ε
2
. It means that, if any other agent i , j receives

EC’19 Session 4c: Fair Division

532

a large item д ∈ [n − 1], then her allocation must contain only that item, i.e., Xi = {д}. Indeed, if
there is an item д′ different than д so that д and д′ belong to bundle Xi , then the EFX condition

is violated, as vj (X j) < 1 − ε/2 < 1 ≤ vj (Xi \ д
′). This means that no agent gets value higher

than 1: either agent i gets a large item д ∈ [n − 1] and, subsequently, vi (Xi) = vi (д) = 1, or she

gets (a subset of) items n,n + 1, ..., 2n − 1 and has value vi (Xi) ≤
∑

2n−1

д=n vi (д) < 1 − ε/2. Therefore,
NW(X) ≤ 1 which, together with the inequality on opt(M) above, completes the proof. □

4 MAIN ALGORITHM
We now present our algorithm for computing an EFX allocation of some of the items to the agents.

Together with the allocation problem (a set of itemsM and n agents with valuations for the items

inM), the algorithm receives as input a Nash welfare maximizing allocation X for it. It tries to

match as many bundles from the initial allocation to agents as possible and repeatedly removes

items from the bundles as long as this matching does not correspond to an EFX allocation. The

algorithm is guaranteed to output an EFX allocation Y with Nash welfare which is at least half of

the original one. More precisely, we will show that 2

n−1

n · NW(Y) ≥ NW(X) = opt(M).
Before presenting our algorithm in detail, we introduce several useful notions, giving forward

pointers to the lines of the pseudocode (see Algorithm 1) where these notions are used. During its

execution, the algorithm maintains a disjoint set Z of n bundles. Initially (see Line 1), Z consists of

the bundles in X. The algorithm progresses in rounds. In each round (defined by an execution of

Lines 3-12 of the pseudocode in the “repeat-until” loop), it tries to compute an EFX allocation (with

particular properties) by assigning the bundles of Z to the agents. Whenever this is not possible, it

removes an item from a bundle of Z and proceeds to the next round. When a bundle of Z misses an

item, it becomes a touched bundle.
In order to compute the EFX allocation in each round, the algorithm uses the notion of the

EFX feasibility graph, which is defined as follows. The EFX feasibility graph is a bipartite graph

G = (N ∪ Z,E) between two sets of vertices: the first part contains all agents N , each agent as a

vertex; the second part contains the bundles in Z, each bundle Zi as a vertex. Edges ofG are defined

as

E(G)
def

= {(i,Z j)| (i) Z j is EFX feasible for i; (ii) vi (Z j) > vi (Zi) if i , j}.

In particular, EFX feasibility in condition (i) requires that vi (Z j) ≥ maxд∈Zk vi (Zk − {д}) for all
k ∈ [n]. Condition (ii) in the definition of E(G) restricts the space of possible allocations and

expresses our preference for matching agents to their initial bundles whenever possible. The call of

the subroutine EFX-feasibility-graph in Line 3 of Algorithm 1 builds the EFX feasibility graph

for the current set of bundles Z.
In each round, the algorithm computes a matching in the EFX feasibility graph. This matching can

naturally be thought of as a partial allocation of the current bundles to the agents. If the matching is

perfect, the corresponding (complete) allocation is returned and the algorithm terminates. Otherwise,

an item is removed from some bundle and the algorithm proceeds to the next round. The matching

computed in each round has particular properties that guarantee that the algorithm makes progress

during its execution. In particular, all touched bundles are matched (condition (a) in Line 6). Under

this condition, the matching contains the maximum number of edges of the form (i,Zi) (condition
(b) in Line 7). And, under these two conditions, the size of the matching is maximized (condition (c)

in Line 8).

The algorithm finds the robust demand bundle of an arbitrary unmatched agent i (Line 10) if the
current matching is not perfect. The robust demand for agent i is defined as

robust-demand (i,Z) def= Z j ∈ argmax

Z ∈Z
{max

c ∈Z
vi (Z \ {c})},

EC’19 Session 4c: Fair Division

533

breaking ties arbitrarily. Then, the algorithm updates the set of bundles Z by removing from the

robust-demand bundle Z j the least valued item of agent i (Line 11). The definition of the robust

demand guarantees that the bundle Z j will be EFX feasible for agent i in the next round. In addition,

as we will see, the edge (i,Z j) will belong to the EFX feasibility graph in the next iteration.

Input: allocation X = (X1, . . . ,Xn) ofM, such that NW(X) = opt(M).
Output: allocation Y = (Y1, . . . ,Yn) of a set S ⊆ M.

1 Let Z = (Z1, . . . ,Zn) ← (X1, . . . ,Xn) be an ordered partition ofM.

2 repeat
3 G ← EFX-feasibility-graph([n],Z);
4 Let T be the set of touched bundles in Z;
5 LetM be a matching in G such that

6 (a) All bundles in T are matched inM ,

7 (b) Under (a), |M ∩ {(i,Zi) : i ∈ [n]} | is maximized, and

8 (c) Under (a) and (b), |M | is maximized;

9 if ∃i ∈ [n] not matched inM then
10 Z j ← robust-demand(i,Z);
11 Z← (Z1, . . . ,Z j−1,Z j \ {c},Z j+1, . . . ,Zn), where c ∈ {argminд∈Z j vi (д)};

12 end
13 until |M | = n;
14 return Y = (M1, . . . ,Mn) ; ▷ It must hold {Mi = Zi }i ∈[n].

Algorithm 1: Computes an EFX allocation of high Nash welfare.

Algorithm 1 will eventually terminate and output some allocation Y, since in every iteration

of the repeat loop (except the last time t̄) it removes an item fromM. Next, we need to argue

that in every iteration t ∈ {0, . . . , t̄} of the repeat loop the algorithm is correct, i.e., that in

Line 6 of Algorithm 1, all touched bundles from T (t) can be simultaneously matched in graph

G(t)
def

= EFX-feasibility-graph([n],Z(t))3. This is proved in Lemma 1; the proof uses several

useful observations about the structure of the EFX feasibility graphG(t).

Lemma 1. All bundles in T (t) can be simultaneously matched to agents in G(t) at any iteration t .

Proof. The proof proceeds by induction on t . For t = 0, the statement is true, as T (0) = ∅ and
we can choose M(0) = ∅. We assume that at time t < t̄ the matching M(t) covers all bundles
from T (t). Let us assume that agent i∗ is chosen in the execution of the if statement (Line 9

of Algorithm 1) at time t and the item c∗ ∈ {argminд∈Z j∗ (t)vi∗ (д)} is removed from the bundle

Z j∗ (t) = robust-demand(i∗,Z(t)) in Lines 10-11. Now, in order to show that all bundles in T (t + 1)

can be matched to agents in G(t + 1), we will need a few useful observations about the edges of

G(t + 1).

Claim 2. Graph G(t + 1) contains every edge e = (i,Z j) with Z j , Z j∗ of the graph G(t).

Proof. Indeed, since no item is removed from bundle Z j , we have vi (Z j (t + 1)) = vi (Z j (t)) ≥
vi (Zi (t)) ≥ vi (Zi (t + 1)). Similarly, Z j (t + 1) remains EFX feasible for agent i . Thus (i,Z j) ∈

E(G(t + 1)). □

Claim 3. There is no edge between i∗ and Zi∗ in G(t).
3
In the t th iteration, Z(t) andT (t) represents Z andT before the execution of the if statement in Lines 9-12 of the algorithm.

EC’19 Session 4c: Fair Division

534

Proof. We prove this claim by contradiction. Suppose the edge (i∗,Zi∗) belongs to E(G(t)), but
i∗ was not matched inM(t). Then we may increase the number of matched pairs (i,Zi) (condition
(b)) inM(t) by adding or possibly substituting another edge to Zi∗ inM(t). As the set of matched

bundles in Z(t) can only increase after such an operation, we get a contradiction to condition (b)

(Line 7 of Algorithm 1). □

Claim 4. There is an edge between i∗ and Z j∗ in both graphs G(t) and G(t + 1).

Proof. Claim 3 says that Zi∗ (t) is not EFX feasible for agent i∗, i.e., there exists agent i ∈ [n] such
that vi∗ (Zi∗ (t)) < vi∗ (Zi (t) \ {д}) for some item д ∈ Zi (t). As bundle Z j∗ (t) is the robust demand of

i∗ at time t , we have

vi∗ (Z j∗ (t + 1)) = vi∗ (Z j∗ (t) \ {c
∗}) ≥ max

c ∈Zi (t)
vi∗ (Zi (t) \ {c}) > vi∗ (Zi∗ (t)) ≥ vi∗ (Zi∗ (t + 1)).

Similarly, Z j∗ (t) and Z j∗ (t + 1) are EFX feasible for agent i∗, as vi∗ (Z j∗ (t) \ {c
∗}) is at least as high

as vi∗ (Z j (t) \ {д}) for all j ∈ [n] and any item д ∈ Z j (t). Therefore, (i
∗,Z j∗) ∈ E(G(t + 1)) and

(i∗,Z j∗) ∈ E(G(t)). □

We can now show that the algorithm will match Z j∗ to some agent.

Claim 5. Bundle Z j∗ is matched inM(t) to an agent k .

Proof. If the bundle Z j∗ is unmatched inM(t), then there is a bigger matchingM(t) ∪ (i∗,Z j∗)

in G(t): by Claim 4, the edge (i∗,Z j∗) belongs to E(G(t)) and, as the agent chosen when Line 9 is

executed during iteration t , i∗ is unmatched in M(t). This contradicts property (c) in Line 8 of

Algorithm 1. □

Finally, we note that T (t + 1) = T (t) ∪ Z j∗ , as bundle Z j∗ is the only new bundle that can become

touched in iteration t . Now consider the matching

M ′
def

=
(
M(t) \ {(k,Z j∗)}

)
∪ {(i∗,Z j∗)} (1)

in G(t + 1) that covers all bundles in T (t + 1). Indeed, according to Claim 2, G(t + 1) contains all

edges ofM(t) \ {(k,Z j∗)} and, according to Claim 4, the edge (i∗,Z j∗) belongs to G(t + 1) as well.

Hence,M ′ is a matching inG(t + 1). Since (by our induction hypothesis) all bundles of T (t) \ {Z j∗ }

are matched in M(t) \ {(k,Z j∗)}, M
′
covers all bundles in T (t + 1) = T (t) ∪ Z j∗ . The proof of the

induction step is complete. □

As the algorithm terminates after finding a complete matching in the EFX feasibility graph, the

returned solution Y must be an EFX allocation. We note that Algorithm 1 runs in polynomial time:

it executes at mostm iterations and all steps in each iteration can be completed in polynomial time.

Indeed, the only non trivial part is the computation of matchingM (Line 5) under the conditions

(a)-(c) (Lines 6-8). To this end, we can assign weights to the edges of the graphG that express our

preferences (a)-(c) and compute a maximum weighted matching in the weighed version of G.4 For
example, we can give a weight of n4

to the edges of G incident to bundle Zi ∈ T , and then add an

extra weight of n2
to edges (i,Zi) ∈ E(G) for i ∈ [n], and give a weight of 1 to the remaining edges

of G.
In the following we give efficiency guarantees for the returned EFX allocation Y. Very informally,

Algorithm 1 does not remove too many items. First, we observe that at the end of the algorithm

there must be at least one untouched bundle, i.e., a bundle from which no items have been removed.

Claim 6. There is an untouched bundle Zi = Xi upon termination of Algorithm 1.
4
We remark that this is apparently not the fastest way to compute the desired matching.

EC’19 Session 4c: Fair Division

535

Proof. Assume to the contrary that the algorithm has removed items from every bundle in Z
after iteration t , i.e., the set of touched bundles becomes the set T (t + 1) = {Zi }i ∈[n] of size n after

iteration t . Then, by Lemma 1, the algorithm will match all bundles in M(t + 1) and terminate

at round t + 1. Let agent i∗ and bundle Z j∗ be the ones chosen, respectively, when Algorithm 1

executes Lines 9 and 10 at iteration t . At this time, we have Z j ∈ T (t) for all j , j∗. Thus, all touched
bundles Z j with j , j∗ must be matched inM(t) (due to the condition (a) in Line 6). According to

Claim 5, bundle Z j∗ must also be matched inM(t). Therefore, |M(t)| = n and the algorithm should

have terminated after iteration t leaving bundle Z j∗ untouched. □

We are now ready to present guarantees for the Nash welfare of allocation Y.

Lemma 2. vi (Xi) ≤ 2 · vi (Yi) for any agent i ∈ [n] and there exists an agent io ∈ [n] such that
vio (Xio) ≤ vio (Yio).

Proof. We note first that when the algorithm terminates at time t̄ , then vi (Zi) ≤ vi (Yi) for all
i ∈ [n]. Indeed, this is the case if agent i is matched to bundle Zi . If i is matched to another bundle

Yi = Z j in G(t̄), then vi (Z j) > vi (Zi) by the definition of the EFX feasibility graph G(t̄). Thus,
Claim 6 proves the second part of the lemma, since it states that there exists some agent io such
that vio (Xio) = vio (Zio) ≤ vio (Yio).
To complete the proof of the lemma, it is sufficient to show that 2 · vi (Zi) ≥ vi (Xi) for any

agent i ∈ [n]. We do so by contradiction. If this is not the case, let t ∈ {0, . . . , t̄} be the first

time when 2 · vi (Zi (t)) becomes strictly smaller than vi (Xi) for an agent i after an item was

removed. Let i∗ be the agent who was chosen in Line 9 and Z j∗ be the bundle chosen in Line 10

of the algorithm at iteration t . Then j∗ is the agent for whom 2 · vj∗ (Z j∗ (t)) became smaller than

vj∗ (X j∗). For convenience of notation, we denote the matching {(i,Zi)}i ∈[n] byM
o
. We consider the

matching M ′
△
= M(t) \ {(k,Z j∗)} ∪ {(i

∗,Z j∗)}, that was also used in the proof of Lemma 1. Recall

that, by Claim 5, bundle Z j∗ is matched to agent k in M(t). As agent k is not matched in M ′, we
have |M ′ | < n = |Mo |. Therefore, one can represent the union of the matchings M ′ and Mo

as a

collection of augmenting paths and cycles, including degenerate cycles that consist of a single edge

that belongs to bothM ′ andMo
.

First, assume that M ′ ∪ Mo
has a non-degenerate cycle C with 2k vertices {j1, . . . , jk } and

{Z j1 , . . . ,Z jk }.

C
def

= {(j1,Z j2), . . . , (jk−1,Z jk), (jk ,Z j1)} ∈ M
′, {(j1,Z j1), . . . , (jk ,Z jk)} ∈ M

o .

For convenience of notation, let us denote jk+1 = j1. Since each (ji ,Z ji+1
) ∈ M ′ is an edge in

the EFX feasibility graph G(t), we have vji (Z ji+1
) > vji (Z ji) for every i ∈ [k]. This implies that

vji (X ji) + vji (Z ji+1
) − vji (Z ji) > vji (X ji) for every i ∈ [k]. Thus, we get a Pareto improvement in

the allocation X for each agent ji ∈ C by replacing bundle X ji with bundle

(
X ji \ Z ji

)
∪ Z ji+1

for

every i ∈ [k]. Hence, we can improve the Nash welfare of the allocation X, a contradiction to its

optimality.

Second, we observe that bundle Z j∗ is matched inM ′ to i∗ which, by Claim 3, must be different

from j∗. SinceM ′ ∪Mo
does not have non-degenerate cycles and bundle Z j∗ is not matched to j∗ in

M ′, bundle Z j∗ must belong to an augmenting path P that originates from an unmatched bundle

Z j1 in M ′; notice that Z j1 is unmatched in M(t) as well, since matching M(t) has the same set of

bundles as M ′. The augmenting path P consists of k agent vertices j1, . . . , jk and k + 1 bundle

vertices Z j1 , . . . ,Z jk+1
, where jk+1 = j∗, and 2k edges:

P
def

= {(j1,Z j2), . . . , (jk ,Z jk+1
)} ∈ M ′, {(j1,Z j1), . . . , (jk ,Z jk)} ∈ M

o . (2)

EC’19 Session 4c: Fair Division

536

We consider the following transformation X̂ of the initial allocation X (see Figure 1):

X̂ def

=


X̂ j1 = X j1 ∪ Z j2 ,

X̂ ji = X ji \ Z ji ∪ Z ji+1
, i ∈ {2, ...,k}

X̂ jk+1
= X jk+1

\ Z jk+1

X̂ j = X j , j < {j1, ..., jk+1}

Fig. 1. The main argument in the proof of Lemma 2: reallocating the items of allocation X to obtain another
allocation X̂ with improved Nash welfare.

Let us denote the set of agents {j1, . . . , jk+1} as J . Similar to the previous case wherewe consdiered

a non-degenerate cycle, we have vji (Z ji+1
) > vji (Z ji) for every i ∈ [k]. By our assumption for agent

j∗ (with j∗ = jk+1), it holds that vjk+1
(Z jk+1

) < 1

2
· vjk+1

(X jk+1
). Finally, since Z j1 is unmatched in

M(t) it must also be an untouched bundle, i.e., Z j1 = X j1 . Combining these properties, we get:

NW(X̂)n = vj1 (X j1 ∪ Z j2) · vjk+1
(X jk+1

\ Z jk+1
) ·

k∏
i=2

vji (X ji \ Z ji ∪ Z ji+1
) ·

∏
j<J

vj (X j)

=
[
vj1 (X j1) +vj1 (Z j2)

]
·
[
vjk+1
(X jk+1

) −vjk+1
(Z jk+1

)
]

·

k∏
i=2

[
vji (X ji) −vji (Z ji) +vji (Z ji+1

)
]
·
∏
j<J

vj (X j)

>
[
vj1 (X j1) +vj1 (Z j1)

]
·

1

2

vjk+1
(X jk+1

) ·

k∏
i=2

vji (X ji) ·
∏
j<J

vj (X j) = NW(X)n

We have reached a contradiction, since NW(X) = opt(M). □

Using Lemma 1 and 2, we obtain the following statement.

Theorem 2. Given a Nash welfare maximizing allocation X, Algorithm 1 computes in polynomial
time a 2

1− 1

n -efficient EFX and Pareto-optimal allocation Y of ∪ni=1
Yi , such that Yi ⊆ Xi for all i ∈ N .

Proof. The correctness of the algorithm was shown in Lemma 1. According to the definition of

the EFX feasibility graph G, the final allocation, which is a complete matching in G, must be an

EFX allocation. Finally, according to Lemma 2, the Nash welfare of the final allocation Y is at least

a 2
−(n−1)/n

-fraction of opt(M) = NW(X).
Moreover, if the returned complete matchingM is different from the matchingMo △= {(i,Zi)}i ∈[n],

then there must be a cycle C : {(j1,Z j2), ..., (jk−1,Z jk), (jk ,Z j1)} ∈ M, {(j1,Z j1), . . . , (jk ,Z jk)} ∈

Mo
in M ∪ Mo

. Then one can get a strict improvement to the initial Nash welfare maximizing

EC’19 Session 4c: Fair Division

537

allocation X, by setting X̂ ji = X ji \ Z ji ∪ Z ji+1
, where jk+1

def

= j1. Indeed, vji (Z ji+1
) > vji (Z ji) and

vji (X̂ ji) > vji (X ji) for all i ∈ [k], as (ji ,Z ji+1
) is an edge in the EFX feasibility graph G. Hence,

M(i) = Zi for all i ∈ [n] and Yi ⊆ Xi .

Finally, allocation Y is Pareto optimal, as otherwise one could first Pareto improve the allocation

Y and then give back to each agent i their original removed items Xi \ Yi ; the resulting allocation

would be a Pareto-improvement of the initial allocation X, contradicting its optimality. □

5 SUBOPTIMAL INPUT ALLOCATION
One might hope that the algorithm we presented in Section 4 could also work with an input

allocation of suboptimal Nash welfare. Indeed, the algorithm would result in an EFX allocation in

this case too. Unfortunately, the proof of the efficiency guarantee in Lemma 2 crucially relies on the

optimality of the input allocation. In this section we present a modified Algorithm 2 with a good

efficiency guarantee, provided that the input allocation is efficient as well, albeit not necessarily

optimal. In particular, starting with an initial allocation X, the modified algorithm computes either

an EFX allocation Y of some of the items inM that recovers a large fraction of the Nash welfare of

the initial allocation or indicates that the Nash welfare of the input allocation can be improved

significantly and provides such an improved allocation X̂ as output. Repeating the algorithm with

the allocation X̂ as input until it produces an EFX allocation will yield, in polynomial time, an EFX

allocation with at least half the Nash welfare of the initial input allocation.

The general structure of the algorithm is the same as before. It proceeds in rounds (defined by the

outer repeat-until loop; Lines 5-30). In each round, it tries to match as many bundles from the initial

allocation to agents as possible (by essentially repeating the matching computation on the EFX

feasibility graph; Lines 5-10) and repeatedly removes items from the bundles as long as this matching

does not correspond to an EFX allocation. The main difference of the modified algorithm is in the

selection of the agent and an item in their robust demand bundle to be removed at each round, which

is implemented in lines 11-30 and includes the inner repeat-until loop. This step is more complicated

now and may modify the computed matching as well (but clearly takes polynomial time). We

exploit paths on the union of matching M with the identity matching Mo △= {(i,Zi) : i ∈ [n]}. In
particular, given an unmatched bundle Z j1 (defined in line 11), the algorithm first computes the

augmenting path ofM ∪Mo
that originates from vertex Z j1 of the EFX feasibility graph. This is a

path that alternates between edges of matchingMo
andM , and terminates with an edge ofMo

and

the vertex corresponding to the unmatched agent jk . The algorithm temporarily selects agent jk
(Line 14, where the set of edges ofM that belong to the augmenting path is returned by the call to

the subroutine augmenting-path) and computes agent’s jk robust demand (Line 15), say bundle

Z j∗ , but it does not remove any item from it yet.

If bundle Z j∗ belongs to the augmenting path and appears in the edge (jo ,Z j∗) ofM , the algorithm

modifiesM by removing edge (jo ,Z j∗) and adding edge (jk ,Z j∗) to it (Line 17). We will see shortly

that this is a valid modification that does not violate the properties (a), (b), and (c) of matchingM .

The algorithm repeats the augmenting path process until the computed robust demand bundle Z j∗

does not belong to the augmenting path. In this case, the execution flow enters the else statement

and the least valued item for agent jk is removed from bundle Z j∗ (Line 19). Before completing

the current round, the algorithm checks whether the value of agent j∗ for bundle Z j∗ has dropped

significantly below half (more than by a factor of 2 + δ1) of her value for the initial bundle X j∗

(Line 20). If this is the case, the algorithm computes a new allocation X̂ (Lines 21-25) which, as we

will prove, has Nash welfare at least (1 + δ)1/nNW(X). It then terminates, returning allocation X̂
as output. Otherwise, it indicates the end of the item removal process (Line 28), which will allow

execution flow to leave the inner repeat-until loop.

EC’19 Session 4c: Fair Division

538

Input: allocation X = (X1, . . . ,Xn) ofM and δ ∈ R+.

Output: allocation Y = (Y1, . . . ,Yn) of S ⊆ M or allocation X̂ = (X̂1, . . . , X̂n) ofM.

1 Let Z = (Z1, . . . ,Zn) ← (X1, . . . ,Xn) be an ordered partition ofM;

2 LetM0 = {(i,Zi) : i ∈ [n]};

3 Let δ1 =
2δ

1−δ ; ▷ 2+2δ1

2+δ1

= 1 + δ

4 repeat
5 G ← EFX-feasibility-graph([n],Z);
6 Let T be the set of touched bundles in Z;
7 Compute a matchingM in G such that

8 (a) All bundles in T are matched inM ,

9 (b) Under (a), |M ∩M0 | is maximized, and

10 (c) Under (a) and (b), |M | is maximized;

11 Let Z j1 be an unmatched bundle inM ;

12 repeat
13 itemremoved← false;

14 Let P = {(j1,Z j2), . . . , (jk−1,Z jk)} ← augmenting-path(Z j1 ,M ∪M0);

15 Z j∗ ← robust-demand(jk ,Z);
16 if ∃(jo ,Z j∗) ∈ P then
17 M ← M \ {(jo ,Z j∗)} ∪ {(jk ,Z j∗)};

18 else
19 Z← (Z1, . . . ,Z j∗−1,Z j∗ \ {c},Z j∗+1, . . . ,Zn), where c ∈ {argminд∈Z j∗ vjk (д)};

20 if (2 + δ1)vj∗ (Z j∗) < vj∗ (X j∗) then
21 X̂ j1 ← X j1 ∪ Z j2 ;

22 X̂ ji ← X ji \ Z ji ∪ Z ji+1
for i = 2, . . .k − 1;

23 X̂ jk ← X jk \ Z jk ∪ Z j∗ ;

24 X̂ j∗ ← X j∗ \ Z j∗ ;

25 X̂i ← Xi for i ∈ [n] \ {j1, j2, ..., jk , j
∗}.

26 return X̂;
27 end
28 itemremoved← true;

29 end
30 until itemremoved;
31 until |M | = n;
32 return Y = (M1, . . . ,Mn);

Algorithm 2: Computes an EFX allocation of high Nash welfare or indicates that a signifi-

cant improvement to the Nash welfare of the input allocation is possible.

For the analysis, we first claim that Lemma 1 carries over to the modified algorithm. All we

need to show is that matchingM keeps all its properties (a),(b), and (c) after every modification (in

Line 17). As the modification affects neither the set of matched bundles, nor the size ofM ∩Mo
,

it suffices to show that the new edge (jk ,Z j∗) does exist in the EFX feasibility graph. The proof is

similar to the proof of Claim 4. Notice that the edge (jk ,Z jk) is not EFX feasible, since otherwise it

could replace edge (jk−1,Z jk) inM to increase |M ∩Mo |, still matching all touched bundles. Hence,

EC’19 Session 4c: Fair Division

539

there exists j such that

vjk (Z jk) < max

д∈Z j
vjk (Z j \ {д}) ≤ max

д∈Z j∗
vjk (Z j∗ \ {д}) ≤ vjk (Z j∗),

where the second inequality follows since Z j∗ is the robust demand of agent jk . Hence, the edge
(jk ,Z j∗) indeed belongs to the EFX feasibility graph.

Now, if the algorithm terminates by returning allocation Y in Line 32, this will be an EFX

allocation satisfying (2 + δ1) ·vi (Yi) ≥ vi (Xi) for every agent i ∈ [n]. Furthermore, the argument in

the proof of Claim 6 carries over, and one of the bundles, say Xio , will stay untouched until the end

of the execution so that vi (Yio) ≥ vio (Xio). Consequently, the Nash welfare of allocation Y is

(2 + δ1)
1−1/n · NW(Y) = ©­«vio (Yio) ·

∏
i ∈[n]\{io }

(2 + δ1)vi (Yi)
ª®¬

1/n

≥
©­«
∏
i ∈[n]

vi (Xi)
ª®¬

1/n

= NW(X).

This is summarized in the following statement.

Lemma 3. If the algorithm terminates and outputs the EFX allocation Y, then (2+δ1)
1−1/n · NW(Y) ≥

NW(X).

If, in contrast, the execution of the algorithm enters Lines 21-25 and the algorithm terminates

returning the allocation X̂, we can show the following.

Lemma 4. If the algorithm terminates and outputs allocation X̂, then NW(X̂) ≥ (1 + δ)1/nNW(X).

Proof. When the execution enters lines 21-26, it holds that (2 + δ1)vj∗ (Z j∗) < vj∗ (X j∗), which

implies that (2 + δ1)vj∗ (X̂ j∗) > (1 + δ1)vj∗ (X j∗). As vji (Z ji) ≤ vji (Z ji+1
) for i = 2, ...,k − 1 and

vjk (Z jk) ≤ vjk (Z j∗), we also have vi (X̂i) ≥ vi (Xi) for i ∈ [n] \ {j1, j
∗}. Furthermore, vj1 (X̂ j1) ≥

2vj1 (X j1). Putting the above inequalities together, we have

NW(X̂) = ©­«
∏
i ∈[n]

vi (X̂i)
ª®¬

1/n

≥

(
2(1 + δ1)

2 + δ1

)
1/n ©­«

∏
i ∈[n]

vi (Xi)
ª®¬

1/n

= (1 + δ)1/nNW(X).

The last equality is due to the relation of parameters δ and δ1 (Line 3). □

We keep running Algorithm 2, starting with the initial input allocation X, and, every time it

outputs an allocation X̂ with significantly higher Nash welfare than X, we let X← X̂ and invoke it

again. We stop when Algorithm 2 outputs an EFX allocation Y for the first time. By Lemma 3, this

is a (2 + δ1)
1−1/n

approximation to the Nash welfare of the current input allocation X. As the Nash
welfare of the input allocation only improves with time, we get (2 + δ1)

1−1/n · ρ · NW(Y) ≥ opt(M).
Notice that no more than O

(nρ
δ

)
executions of the algorithm will be required before Algorithm 2

outputs EFX allocation Y. Indeed, by Lemma 4, we know that, after every n updates of X ← X̂,
the Nash welfare of X increases by a factor of at least (1 + δ), yielding an additive improvement

to the Nash welfare of at least δ · NW(X) ≥ δ
ρ opt(M). Thus, if the Algorithm 2 does not output

Y, NW(X) would become larger than opt(M) after O
(nρ
δ

)
updates X← X̂. Setting δ = 1

2n+1
, and,

consequently, δ1 =
1

n we obtain a 2ρ-approximation
5
after at mostO

(
n2

)
executions of Algorithm 2.

The following statement summarizes the discussion of this section.

Theorem 3. On input a ρ-efficient allocation, Algorithm 2 returns a 2ρ-efficient EFX allocation
after at most O(n2) repeated executions.
5
We get (2 + δ1)

1−1/n · ρ-efficiency for the allocation Y (by Lemma 3), where (2 + 1

n)
1−1/n < 2.

EC’19 Session 4c: Fair Division

540

6 LARGE MARKETS
In this section, we give an improved guarantee for the Nash social welfare of the EFX allocation Y
produced by Algorithm 1, if the initial Nash social welfare maximizing allocation X satisfies the

large market condition with a parameter ε .

Theorem 4. If the input allocation X satisfies the large market condition with a parameter ε , then
Algorithm 1 outputs a

(
1 + 8

√
ε
)
-efficient EFX allocation Y.

Proof. In order to show the stated guarantee, we prove a stronger version of Lemma 2 where,

instead of the guarantee vi (Xi) ≤ 2 · vi (Yi), we show that vi (Xi) ≤
(
1 + 8 ·

√
ε
)
vi (Yi), for each

agent i ∈ [n]. We follow the approach in the proof of Lemma 2, with the only difference that we

stop at the iteration t of Algorithm 1 when the condition

∀i ∈ [n] (
1 + 8 ·

√
ε
)
vi (Zi (t)) ≥ vi (Xi) (3)

is violated for the first time (instead of the condition 2 · vi (Zi (t)) ≥ vi (Xi) that we considered in

the proof of Lemma 2).

As in Lemma 2, if condition (3) is violated for the bundle Z j∗ , we can find an augmenting path P
defined in equation (2) with a set of vertices {j1, . . . , jk } ⊂ N and {Z j1 , . . . ,Z jk+1

} ⊆ {Zi }
n
i=1

from

an unallocated bundle Z j1 to the violating bundle Z jk+1
= Z j∗ . To simplify notation, we assume

without loss of generality that ji = i for each i ∈ [k + 1]. Hence, we have

P
△
= {(1,Z2), . . . , (k,Zk+1)} ∈ M

′, {(1,Z1), . . . , (k,Zk)} ∈ M
o .

We recall some key facts about the bundles in the augmenting path P . Since (i,Zi+1) is an edge in

the EFX feasibility graphG, vi (Zi+1) > vi (Zi) for all i ∈ [k]. Since condition (3) is violated for the

bundle Zk+1,

(
1 + 8 ·

√
ε
)
vk+1(Zk+1) < vk+1(Xk+1). Also, since bundle Z1 is unallocated, it must be

untouched, i.e., Z1 = X1.

Next, we consider how to reallocate items between each consecutive pair of bundles Zi and
Zi+1. Unlike in the proof of Lemma 2, the reallocation of the entire set Zi+1 to each agent i does
not necessarily increase the Nash social welfare. To obtain an improvement, we have to be more

flexible and explore different reallocation schemes from agent i + 1 to agent i . Among many

possible schemes, we employ the greedy strategy. Specifically, we rename the items in Zi+1 so that

Zi+1 = {д1, . . . ,дℓ} with
6

vi (д1)

vi+1(д1)
≥

vi (д2)

vi+1(д2)
≥ · · · ≥

vi (дℓ)

vi+1(дℓ)
.

In the greedy scheme, we consider tomove the first r items, i.e., the setR(r) = Ri+1(r)
def

= {д1, . . . ,дr },
from agent i + 1 to agent i . The following Claim establishes an important property of any such

move: relative increase in agent i’s value is greater than the relative decrease in agent i + 1’s value.

Claim 7.
vi (R(r))
vi (Zi)

≥
vi+1(R(r))
vi+1(Zi+1)

for any r ∈ {0, . . . , ℓ}.

Proof. As vi (Zi+1) > vi (Zi), we have
vi (R(r))
vi (Zi)

≥
vi (R(r))
vi (Zi+1)

. It remains to show that
vi (R(r))
vi (Zi+1)

≥

vi+1(R(r))
vi+1(Zi+1)

or, equivalently, vi (R(r))vi+1(Zi+1) ≥ vi (Zi+1)vi+1(R(r)). Let S = Zi+1 \ R(r); then we

need to show vi (R(r))(vi+1(S) + vi+1(R(r))) ≥ (vi (S) + vi (R(r)))vi+1(R(r)) or, equivalently, x
def

=

vi (R(r))vi+1(S) − vi (S)vi+1(R(r)) ≥ 0. By the definition of x , R(r), and the renaming of items in

6
For simplicity of notation, in this section, we extensively use fractions that involve valuations of items or bundles in the

numerator and the denominator. As we have allowed valuations of zero, we use the convention that the outcome of the

comparison of two fractions with zeros in their denominators is the outcome of the comparison of their numerators.

EC’19 Session 4c: Fair Division

541

Zi+1, we have that x =
∑r

j=1

∑ℓ
s=r+1

(
vi (дj)vi+1(дs) −vi (дs)vi+1(дj)

)
. Since

vi (дj)
vi+1(дj)

≥
vi (дs)
vi+1(дs)

for

any j ≥ r ≥ s , we have vi (дj)vi+1(дs) −vi (дs)vi+1(дj) ≥ 0. Therefore, x ≥ 0. □

Claim 7 gives us a powerful tool to balance the valuations of agent i and i+1. The major challenge,

however, is to simultaneously adjust the valuations of the agents i ∈ [k + 1] in a way that improves

the Nash social welfare of the initial allocation X. We consider arbitrary simultaneous reallocation

of items between all pairs of agents i and i + 1, where the first ri+1 items are moved from agent i + 1

to agent i according to the greedy scheme for all i ∈ [k]. We can focus only on the changes of the

allocations for the first k + 1 agents, as the remaining bundles Xi remain unchanged for i < [k + 1].

The new allocation X̂ for the first k + 1 agents is as follows.

X̂ :


X̂1

def

= X1 ∪ R2(r2)

X̂i
def

= Xi \ Ri (ri) ∪ Ri+1(ri+1), i ∈ {2, ...,k}

X̂k+1

def

= Xk+1 \ Rk+1(rk+1)

We compare the Nash social welfare of the new allocation X̂ with that of the initial allocation X.

ln

(
NW(X̂)n

NW(X)n

)
= ln

(
k+1∏
i=1

vi (X̂i)

vi (Xi)

)
=

k+1∑
i=1

ln

(
vi (X̂i)

vi (Zi)

)
−

k+1∑
i=1

ln

(
vi (Xi)

vi (Zi)

)
. (4)

As every bundle Zi is always a subset of the initial bundle Xi , we have vi (Xi) = vi (Zi)+vi (Xi \Zi)

and
vi (Xi)

vi (Zi)
= 1 +

vi (Xi \Zi)
vi (Zi)

. Let ai
def

=
vi (Xi \Zi)
vi (Zi)

, so
vi (Xi)

vi (Zi)
= 1 + ai for each i ∈ [k + 1]. To simplify

notation, let R1(r1),Rk+2(rk+2)
def

= ∅, so that X̂i = Xi \ Ri (ri) ∪ Ri+1(ri+1) for each i ∈ [k + 1] and
vi (X̂i)

vi (Zi)
= 1 +

vi (Xi \Zi)
vi (Zi)

−
vi (Ri (ri))
vi (Zi)

+
vi (Ri+1(ri+1))

vi (Zi)
. Let xi

def

=
vi (Ri (ri))
vi (Zi)

for i ∈ [k + 1]; then we get

vi (X̂i)

vi (Zi)
= 1 + ai − xi +

vi (Ri+1(ri+1))

vi (Zi)
≥ 1 + ai − xi +

vi+1(Ri+1(ri+1))

vi+1(Zi+1)
= 1 + ai − xi + xi+1,

where the inequality follows from Claim 7. Therefore, we can continue equation (4):

(4) ≥

k+1∑
i=1

ln [1 + ai − xi + xi+1] −

k+1∑
i=1

ln [1 + ai] , (5)

where a1 = 0 and x1 = xk+2 = 0. Moreover, we have 8

√
ε · vi (Zi) ≥ vi (Xi \ Zi) by the definition of

ai for each i ∈ [k] and Zk+1 is the bundle that violates this inequality. Thus ai
△
=

vi (Xi \Zi)
vi (Zi)

≤ 8

√
ε

for every i ∈ [k] and ak+1 > 8

√
ε . Note that we control each xi =

vi (Ri (ri))
vi (Zi)

for i ∈ {2, ...,k + 1} by

choosing the corresponding number of items ri to be reallocated to agent i − 1. Let Θi = {θi,0 <
... < θi, ℓi } be the set of real numbers that xi can take for each i ∈ {2, ...,k + 1}. Then for each such

i we have

Claim 8. The set Θi = {θi,0 < ... < θi, ℓi } has θi,0 = 0, θi, ℓi = 1 and |θi, j − θi, j−1 | ≤ 2ε for all j.

Proof. Setting ri = 0 and ri = |Zi | yields xi = 0 and xi = 1, respectively. To bound the gap

between consecutive θi, j−1,θi, j it suffices to bound
vi (д)
vi (Zi)

≤ 2ε for any item д ∈ Zi . We have

vi (Zi) ≥
1

2
vi (Xi) (by Lemma 2). Thus

vi (д)
vi (Zi)

≤ 2
vi (д)
vi (Xi)

≤ 2ε by the large market assumption. □

Finally, we show that there are feasible xi ’s, so that the RHS of (5) is strictly positive.

EC’19 Session 4c: Fair Division

542

Lemma 5. For any sequence of numbers (ai)k+1

i=1
such that a1 = 0,ak+1 ≥ 8

√
ε, and ai ∈ [0, 8

√
ε]

there is a feasible solution (xi ∈ Θi)
k+2

i=1
with x1 = xk+2 = 0 such that

RHS (5) =
k+1∑
i=1

ln [1 + ai − xi + xi+1] −

k+1∑
i=1

ln [1 + ai] > 0

Proof. To prove the lemma, we use Karamata’s inequality for the concave function ϕ(x) =
ln(1 + x). Namely, we find a sequence of feasible xi ’s such that the ordered sequence b(1) ≥ b(2) ≥
... ≥ b(k+1) with bi = ai − xi + xi+1 for i ∈ [k + 1] is (strictly) majorized by the ordered sequence

a(1) ≥ a(2) ≥ ... ≥ a(k+1), i.e.,
∑s

i=1
bi ≤

∑s
i=1

ai for any 1 ≤ s ≤ k + 1, with equality for s = k + 1.

Then,

∑k+1

i ϕ(bi) >
∑k+1

i ϕ(ai) for any strictly concave function ϕ.
First, we consider the case when there are consecutive ai−1 and ,ai such that ai − ai−1 > 2ε .

In this case, we set x j = 0 for all j , i and xi = θi,1, i.e., the smallest non zero value in Θi .

Then almost all terms in both summations in the RHS of (5) are the same except for two terms

ln(1+ai−1+xi)+ln(1+ai−xi) and ln(1+ai−1)+ln(1+ai) in each summation. Asxi ≤ 2ε ,bi−1 = ai−1+xi
and bi = ai − xi are closer to each other than ai−1,ai with the same sum bi−1 + bi = ai−1 + ai .
Therefore, by Karamata’s inequality ln(1+ ai−1 + xi)+ ln(1+ ai − xi) − ln(1+ ai−1) − ln(1+ ai) > 0

and the proof of the lemma is complete.

So, in the following, we assume that ai − ai−1 ≤ 2ε for all i ∈ {2, ...,k + 1}. This means that

ai+1 ≤ 2ε · i and ak+1−i > 8

√
ε − 2ε · i for any i ∈ [k + 1], as a1 = 0 and ak+1 > 8

√
ε . Let ℓ

def

=
⌊

2√
ε

⌋
,

then a1, ...,aℓ+1 ≤ 4

√
ε ≤ ak−ℓ+1, ...,ak+1. First, we find an increasing sequence of (xi)

ℓ+1

i=1
, such

that x1 = 0, xℓ+1 = 1 and each bi becomes closer to the median 4

√
ε than ai (but still less than

the median). To this end, we set x1 = 0, and then, one after another, we set every following xi+1

equal to argmaxθ ∈Θi+1

{
θ | ai + θ − xi ≤ 4

√
ε
}
, where i ∈ [ℓ]. Note that once the sequence of xi ’s

reaches 1 it stays equal to 1, because maximal element
¯θ ∈ Θi+1 is 1 and it satisfies the condition

ai + ¯θ − 1 ≤ 4

√
ε for all i ∈ [ℓ]. Now, let us verify that sequence (xi)

ℓ
i=1

reaches 1. Assume to the

contrary that xi < 1 for i ≤ ℓ. That means by Claim 8 that each ai − xi + xi+1 must be at most 2ε
far from the median 4

√
ε , as otherwise we would increase xi+1 and get closer to the median. Thus

ai − xi + xi+1 > 4

√
ε − 2ε for all i ≤ ℓ + 1. Hence,

xℓ+1 = (x2 − x1) + ... + (xℓ+1 − xℓ) >
ℓ∑
i=1

(
4

√
ε − 2ε − ai

)
≥

ℓ∑
i=1

(
4

√
ε − 2ε − 2ε(i − 1)

)
=
√
εℓ ·

(
4 −
√
ε(ℓ + 1)

)
≥
√
ε

(
2

√
ε
− 1

)
·

(
4 −
√
ε

(
2

√
ε
+ 1

))
=

(
2 −
√
ε
)2

≥ 1,

where in the second inequality we used ai ≤ 2ε(i − 1), and in the third inequality we used

2√
ε ≥ ℓ =

⌊
2√
ε

⌋
≥ 2√

ε − 1. We get xℓ+1 > 1, which contradicts xℓ+1 ∈ Θℓ+1. Now, it is also easy to

see that sequence (xi)
ℓ+1

i=1
is non-decreasing: either xi has already reached 1 and stays constant, or

ai − xi + xi+1 = bi ≥
2√
ε − 2ε ≥ ai for any i ≤ ℓ. Analogously, we find a decreasing sequence

7
of

(xi)
k+2

i=k−ℓ+1
, such that xk−ℓ+1 = 1, xk+2 = 0 and each bi becomes closer to the median 4

√
ε than ai

(but still larger than 4

√
ε). We set the remaining xi for ℓ + 1 < i < k − ℓ + 1 to 1, which gives us

bi = ai for ℓ + 1 < i < k − ℓ + 1 (recall that xℓ+1 = xk−ℓ+1 = 1). Now, it is easy to see that {bi }
k+1

i=1
is

majorized by {ai }
k+1

i=1
which concludes the proof of the lemma by Karamata’s inequality. □

7
The argument mirrors the one for i ∈ [ℓ + 1], i.e., we set xk+2

= 0 first and then let each previous xi−1 =

argmaxθ ∈Θi−1

{
θ | ai−1 − θ + xi ≥ 4

√
ε
}

EC’19 Session 4c: Fair Division

543

Lemma 5 implies that Algorithm 1 must terminate before any quantity (1 + 8

√
ε)vi (Zi) becomes

smaller than vi (Xi), since otherwise there is an allocation X̂ with a higher Nash social welfare than

the optimal one of X. Moreover, for any edge (i,Z j) in the EFX-feasibility-graph vi (Z j) ≥ vi (Zi).
Hence, Algorithm 1 for large markets outputs an EFX allocation Y, with (1 + 8

√
ε)NW(Y) ≥ (1 +

8

√
ε)NW(Z) ≥ NW(X) = opt(M). □

7 DISCUSSION AND OPEN PROBLEMS
We believe that our techniques could be used to show interesting interplays of more fairness notions

with Nash welfare. For example, starting from the allocation computed by Algorithm 2, one could

use the local-search algorithm of Lipton et al. [29] to reallocate the removed items and get an EF1

allocation of all items. To the best of our knowledge, this is the first polynomial-time algorithm for

computing a complete EF1 allocation that approximates maximum Nash welfare within a constant.

Still, the problem of whether EFX allocations of all items exist is widely open. If EFX allocations

do not always exist, our proposed solution alleviates the existence issue while providing high

efficiency guarantees. But we suspect that there is a monotonicity property that, if true, would not

only show that EFX allocations always exist, but also that they are nearly-optimal in terms of Nash

welfare. In particular, we suspect that adding an item to an allocation problem (that provably has

an EFX allocation) yields another problem that also has an EFX allocation with at least as high

Nash welfare as the initial one. Then, our Theorem 2 would imply not only the existence of EFX

allocations for all items, but also that the best among them is 2
1−1/n

-efficient.

ACKNOWLEDGMENTS
Part of this work was done while authors IC and XH were visiting the Institute for Theoretical

Computer Science at Shanghai University of Finance and Economics.

REFERENCES
[1] Georgios Amanatidis, Georgios Birmpas, and Vangelis Markakis. 2018. Comparing approximate relaxations of envy-

freeness. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI). 42–48.
[2] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi. 2017. Approximation algorithms for

computing maximin share allocations. ACM Transactions on Algorithms 13, 4 (2017), 52:1–52:28.
[3] Nima Anari, Gagan Goel, and Afshin Nikzad. 2014. Mechanism design for crowdsourcing: An optimal 1-1/e competitive

budget-feasible mechanism for large markets. In Proceedings of the 55th IEEE Annual Symposium on Foundations of
Computer Science (FOCS). 266–275.

[4] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani. 2018. Nash social welfare for indivisible items

under separable, piecewise-linear concave utilities. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2274–2290.

[5] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. 2017. Nash social welfare, matrix permanent, and

stable polynomials. In Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS). 36:1–12.
[6] Haris Aziz, Sylvain Bouveret, Ioannis Caragiannis, Ira Giagkousi, and Jérôme Lang. 2018. Knowledge, fairness, and

social constraints. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI). 4638–4645.
[7] Haris Aziz and Simon Mackenzie. 2016. A discrete and bounded envy-free cake cutting protocol for any number of

Agents. In Proceedings of the 57th Annual Symposium on Foundations of Computer Science (FOCS). 416–427.
[8] Eric Balkanski and Yaron Singer. 2015. Mechanisms for fair attribution. In Proceedings of the 16th ACM Conference on

Economics and Computation (EC). 529–546.
[9] Siddharth Barman and Sanath Kumar Krishna Murthy. 2017. Approximation algorithms for maximin fair division. In

Proceedings of the 18th ACM Conference on Economics and Computation (EC). 647–664.
[10] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Finding fair and efficient allocations. In

Proceedings of the 19th ACM Conference on Economics and Computation (EC). 557–574.
[11] Dimitris Bertsimas, Vivek F. Farias, and Nikolaos Trichakis. 2011. The price of fairness. Operations Research 59, 1

(2011), 17–31.

[12] Sylvain Bouveret and Michel Lemaître. 2016. Characterizing conflicts in fair division of indivisible goods using a scale

of criteria. Autonomous Agents and Multi-Agent Systems 30, 2 (2016), 259–290.

EC’19 Session 4c: Fair Division

544

[13] Eric Budish. 2011. The combinatorial assignment problem: Approximate competitive equilibrium from equal incomes.

Journal of Political Economy 119, 6 (2011), 1061–1103.

[14] Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos, and Maria Kyropoulou. 2012. The efficiency of

fair division. Theory of Computing Systems 50, 4 (2012), 589–610.
[15] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah, and Junxing Wang. 2016.

The unreasonable fairness of maximum Nash welfare. In Proceedings of the 17th ACM Conference on Economics and
Computation (EC). 305–322.

[16] Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn. 2018.

On Fair Division for Indivisible Items. In 38th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[17] Yann Chevaleyre, Ulle Endriss, Sylvia Estivie, and Nicolas Maudet. 2007. Reaching envy-free states in distributed

negotiation settings. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI). 1239–1244.
[18] Richard Cole, Nikhil R Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani, and Sadra Yazdanbod.

2017. Convex program duality, Fisher markets, and Nash social welfare. In Proceedings of the 18th ACM Conference on
Economics and Computation (EC). 459–460.

[19] Richard Cole and Vasilis Gkatzelis. 2015. Approximating the Nash social welfare with indivisible items. In Proceedings
of the 47th Annual ACM on Symposium on Theory of Computing (STOC). 371–380.

[20] Richard Cole and Yixin Tao. 2016. Large market games with near optimal efficiency. In Proceedings of the 17th ACM
Conference on Economics and Computation (EC). 791–808.

[21] E. Eisenberg and D. Gale. 1959. Consensus of subjective probabilities: The pari-mutuel method. The Annals of
Mathematical Statistics 30, 1 (1959), 165–168.

[22] Michal Feldman, Nick Gravin, and Brendan Lucier. 2016. Combinatorial Walrasian equilibrium. SIAM J. Comput. 45, 1
(2016), 29–48.

[23] Michal Feldman, Nicole Immorlica, Brendan Lucier, Tim Roughgarden, and Vasilis Syrgkanis. 2016. The price of

anarchy in large games. In Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC). 963–976.
[24] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. 2018. Approximating the Nash social welfare with budget-additive

valuations. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2326–2340.
[25] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Seddighin, and Hadi Yami. 2018. Fair

allocation of indivisible goods: Improvements and generalizations. In Proceedings of the 19th ACM Conference on
Economics and Computation (EC). 539–556.

[26] Jonathan R. Goldman and Ariel D. Procaccia. 2014. Spliddit: unleashing fair division algorithms. SIGecom Exchanges
13, 2 (2014), 41–46.

[27] David Kurokawa, Ariel D. Procaccia, and Junxing Wang. 2018. Fair enough: Guaranteeing approximate maximin

shares. J. ACM 65(2) (2018), 8:1–27.

[28] Euiwoong Lee. 2017. APX-hardness of maximizing Nash social welfare with indivisible items. Inform. Process. Lett. 122
(2017), 17–20.

[29] Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004. On approximately fair allocations of

indivisible goods. In Proceedings of the 5th ACM Conference on Electronic Commerce (EC). 125–131.
[30] H. Moulin. 2003. Fair Division and Collective Welfare. MIT Press.

[31] John F Nash Jr. 1950. The bargaining problem. Econometrica: Journal of the Econometric Society (1950), 155–162.

[32] Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe. 2014. Computational complexity and

approximability of social welfare optimization in multiagent resource allocation. Autonomous Agents and Multi-Agent
Systems 28, 2 (2014), 256–289.

[33] Trung Thanh Nguyen and Jörg Rothe. 2014. Minimizing envy and maximizing average Nash social welfare in the

allocation of indivisible goods. Discrete Applied Mathematics 179 (2014), 54–68.
[34] Benjamin Plaut and Tim Roughgarden. 2018. Almost envy-freeness with general valuations. In Proceedings of the 29th

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2584–2603.
[35] Hugo Steinhaus. 1948. The problem of fair division. Econometrica 16, 1 (1948), 101–104.

EC’19 Session 4c: Fair Division

545

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Roadmap

	2 Preliminaries
	3 A lower bound on the Nash welfare of EFX allocations
	4 Main algorithm
	5 Suboptimal input allocation
	6 Large markets
	7 Discussion and Open Problems
	Acknowledgments
	References

