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We study the efficiency of mechanisms for allocating a divisible resource. Given scalar signals submitted by
all users, such a mechanism decides the fraction of the resource that each user will receive and a payment
that will be collected from her. Users are self-interested and aim to maximize their utility (defined as their
value for the resource fraction they receive minus their payment). Starting with the seminal work of Johari
and Tsitsiklis [8], a long list of papers studied the price of anarchy (in terms of the social welfare — the total
users’ value) of resource allocation mechanisms for a variety of allocation and payment rules. Here, we further
assume that each user has a budget constraint that invalidates strategies that yield a payment that is higher
than the user’s budget. This subtle assumption, which is arguably more realistic, constitutes the traditional
price of anarchy analysis meaningless as the set of equilibria may change drastically and their social welfare
can be arbitrarily far from optimal. Instead, we study the price of anarchy using the liquid welfare benchmark
that measures efficiency taking budget constraints into account. We show a tight bound of 2 on the liquid
price of anarchy of the well-known Kelly mechanism and prove that this result is essentially best possible
among all multi-user resource allocation mechanisms. This comes in sharp contrast to the no-budget setting
where there are mechanisms that considerably outperform Kelly in terms of social welfare and even achieve
full efficiency. In our proofs, we exploit the particular structure of worst-case games and equilibria, which also
allows us to design (nearly) optimal two-player mechanisms by solving simple differential equations.

CCS Concepts: • Theory of computation→ Algorithmic game theory and mechanism design; Design
and analysis of algorithms;

Additional Key Words and Phrases: resource allocation; liquid welfare; price of anarchy

1 INTRODUCTION
Resource allocation is an ubiquitous task in computing systems and often sets algorithmic chal-
lenges to their design. As such, resource allocation problems have received much attention by
the algorithmic community for decades. The recent emergence of large-scale distributed systems
with non-cooperative users that compete for access to scarce resources has led to game-theoretic
treatments of resource allocation.
In this paper, we study a particular simple class of resource allocation mechanisms that aim to

distribute a divisible resource (such as bandwidth of a communication link, CPU time, storage
space, etc.) by auctioning it off to different users as follows. Each user is asked to submit a scalar
signal. Given the submitted signals, the mechanism decides the fraction of the resource that will
be allocated to each user, as well as the payment that will be received from each of them. A
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typical example is a mechanism that has been proposed by Kelly [10] (henceforth called the Kelly
mechanism; see also [11]), according to which the fraction of the resource allocated to each user is
proportional to the user’s signal, and the signal itself is her payment.

The users are self-interested. Following the standard modeling assumptions in the related liter-
ature, the value of each user for a resource fraction is given by a private valuation function. The
above definition of resource allocation mechanisms allows the users to act strategically in the sense
that the signal they select to submit is such that their utility (value for the fraction of the resource
they receive minus payment) is maximized. Naturally, this behavior defines a strategic game among
the users, who act as players. Soon after the definition of the Kelly mechanism, a series of papers
studied the existence and uniqueness of pure Nash equilibria (snapshots of player strategies, in
which the signal of each player maximizes her own utility) of the induced games [6, 13, 16] and
quantified their inefficiency [8] using the notion of the price of anarchy [12].
In particular, Johari and Tsitsiklis [8] used the social welfare (i.e., the total value of the players

for their received fraction of the resource) as an efficiency benchmark and proved that the social
welfare at any equilibrium is at least 3/4 times the optimal social welfare. This translates into a price
of anarchy bound of 4/3, which is tight. The paper of Johari and Tsitsiklis [8] sparked subsequent
research on other resource allocation mechanisms, that use different (non-proportional) allocation
rules or payments.

A first apparent question was whether improved price of anarchy bounds are possible by chang-
ing the allocation function, but keeping the simple pay-your-signal (or PYS, for short) payment
rule. Sanghavi and Hajek [20] showed that no PYS mechanism has price of anarchy better than 8/7,
designed an allocation function that achieves this bound for two players, and provided strong exper-
imental evidence that a slightly inferior bound holds for arbitrarily many players. Surprisingly, full
efficiency at equilibria (i.e., a price of anarchy equal to 1) is possible via different allocation/payment
functions. This discovery was made in three independent papers by Maheswaran and Basar [17],
Yang and Hajek [22], and Johari and Tsitsiklis [9]. The mechanism of Maheswaran and Basar [17]
uses proportional allocation (but a different payment; see Section 2 for its description), while the
mechanisms of Johari and Tsitsiklis [9] and Yang and Hajek [22] are adaptations of the well-known
VCG paradigm (see also the survey by Johari [7] on these results).

Our focus in the current paper is on the —arguably, more realistic— setting, in which each player
has a private budget that constrains the payments that she can afford and, consequently, narrows
her strategy space. As resource allocation mechanisms do not have direct access to budgets, budget
constraints can restrict the set of equilibria so that their social welfare is extremely low compared
to the optimal social welfare, which in turn is not related to player strategies, payments, or budgets.
An efficiency benchmark that is suitable for budget-constrained players is known as liquid welfare
(introduced by Dobzinski and Paes Leme [4] and, independently, by Syrgkanis and Tardos [21] who
call it effective welfare) and is obtained by slightly changing the definition of the social welfare,
taking budgets into account. Informally, the liquid welfare is the total value of the players for the
resource fraction they receive, with the value of each player capped by her budget. Following the
recent paper of Azar et al. [1], we use the term liquid price of anarchy (and abbreviate it as LPoA)
to refer to the price of anarchy with respect to the liquid welfare, i.e., the ratio between the optimal
liquid welfare of a game induced by a resource allocation mechanism and the worst liquid welfare
over all equilibria of the game.

Our results and techniques. We aim to explore all resource allocation mechanisms and find the
mechanism with the best possible LPoA. Our results suggest a drastically different picture compared
to the no-budget setting. First, the analogue of full efficiency is not achievable; we show a lower
bound of 2 − 1/n on the LPoA of any n-player resource allocation mechanism (under standard
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technical assumptions for player valuations and mechanism characteristics; see Section 2). The
Kelly mechanism is proved to have an almost best possible LPoA of exactly 2. In contrast, the
mechanism of Sanghavi and Hajek [20] (henceforth called SH) has an LPoA of 3. Improved bounds
are possible for two players. We design the two-player PYS resource allocation mechanism E2-PYS
that has an LPoA of 1.792; this bound is optimal among a very broad class of mechanisms. We also
design the two-player mechanism E2-SR that achieves an almost optimal LPoA bound of at most
1.529; this mechanism uses different payments. See Table 1 for a summary of our results.

Mechanism LPoA Statement Comment
Kelly 2 Theorem 5.1 Tight bound. Almost optimal among all n-player mecha-

nisms (see Theorem 3.1)
SH 3 Theorem 5.2 Tight bound (Theorem 5.3)
E2-PYS 1.792 Theorem 6.1 Optimal among all two-player PYS mechanisms with

concave allocation functions (Theorem 6.2)
E2-SR 1.529 Theorem 6.3 Almost optimal among all two-player mechanisms (see

Theorem 3.1)
Table 1. Summary of our LPoA bounds.

Our results exploit a particular structure of worst-case (in terms of LPoA) games and their
equilibria. We prove that for every resource allocation mechanism, the worst-case LPoA is obtained
at instances in which players have affine valuation functions. In addition, all players besides one
have finite budgets and play strategies that imply payments that are either zero or equal to their
budget, while a single player has infinite budget and a signal that nullifies the derivative of her
utility. Compared to an analogous characterization for the no-budget case (with linear valuation
functions and player signals that all nullify their utility derivatives), first observed by Johari and
Tsitsiklis [8] for the Kelly mechanism and later extended to all resource allocation mechanisms, the
structure in our characterization is much richer and the proof is considerably more complicated.
The characterization contains so much information that the LPoA bounds follow rather easily; the
extreme example is the proof of our best LPoA bound of 2 for the Kelly mechanism which is only a
few lines long. It can also be used in the design of new mechanisms; for example, the design and
analysis of our two-player mechanisms E2-PYS and E2-SR follow by simple first-order differential
equations, which would never have been identified without our characterization. And, furthermore,
under assumptions about the resource allocation mechanisms (e.g., concave allocations and convex
payments), the LPoA bound is automatically proved to be tight without providing any explicit
lower bound instance.

Other related work. As an efficiency benchmark, the liquid welfare has been studied recently in
different contexts such as in the design of truthful mechanisms (see [4, 14, 15]) and in the analysis
of combinatorial Walrasian equilibria with budgets [5]. In the context of the price of anarchy, it
was considered recently in simultaneous first price auctions by Azar et al. [1].

Caragiannis and Voudouris [2] were the first to prove that the liquid price of anarchy of the Kelly
mechanism is constant. In particular, they showed LPoA upper and lower bounds of 2.78 and 2,
respectively. The lower bound is essentially proved again here (see Theorem 5.1) with a completely
different and more interesting technique. Christodoulou et al. [3] improved the LPoA upper bound
to 2.618 and extended the results to more general settings involving multiple resources. Prior to
these two papers, Syrgkanis and Tardos [21] proved that the social welfare at equilibria of the
Kelly mechanism is at most a constant factor away from the optimal liquid welfare. In contrast to
the analysis techniques in the current paper, the analysis of the Kelly mechanism by Caragiannis
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and Voudouris [2], Christodoulou et al. [3] and Syrgkanis and Tardos [21] is closer in spirit to the
smoothness template (see [18, 19]) and is based on bounding the utility of each player by the utility
she would have when deviating to appropriate signal strategies. Their results hold for more general
equilibrium concepts such as coarse-correlated or Bayes-Nash equilibria. Our LPoA bounds in the
current paper hold specifically for pure Nash equilibria, but are superior and tight.

Roadmap. The rest of the paper is structured as follows. We begin with definitions and notation
in Section 2. Our lower bound on the LPoA of any resource allocation mechanism appears in Section
3. Section 4 is devoted to proving the structural characterization of worst-case resource allocation
games and equilibria. Then, in Section 5 we present tight bounds on the liquid price of anarchy for
the Kelly and SH mechanisms. In Section 6, we present our two-player mechanisms E2-PYS and
E2-SR. We conclude with open problems and a discussion on possible extensions in Section 7.

2 DEFINITIONS, NOTATION, AND EXAMPLES
We consider a single divisible resource of unit size that is distributed among n users by a resource
allocation mechanismM . The mechanismM consists of

• an allocation function дM : Rn
≥0 → Q ∪ 0, where Q =

{
d ∈ [0, 1]n :

∑n
i=1 di = 1

}
is the unit

n-simplex and 0 = (0, ..., 0), and
• a payment function pM : Rn

≥0 → R
n
≥0,

and works as follows. Each user i submits a signal si ∈ R≥0, and the mechanism M allocates
a fraction of дMi (s) of the resource to each user i and asks her for a payment of pMi (s), where
s = (s1, ..., sn) denotes the vector formed by all signals.
Some important properties of allocation and payment functions are as follows. First, they are

anonymous: any permutation of the entries of the input signal vector results in the same permutation
of the output. So, all users get equal resource shares and are asked for equal payments when they
submit identical signals. The mechanism does not allocate any fraction and does not ask for any
payment from a user that submits a zero signal. By convention, when some user is the only one
with a non-zero signal, she gets the whole resource and is asked for a payment of zero. Let (y, s−i )
denote the signal vector in which user i has a signal of y and the remaining users have their signals
as in s. Viewed as univariate functions (of variable y), the functions дMi (y, s−i ) and pMi (y, s−i ) are
increasing and differentiable in R≥0 (with the exception of (y, s−i ) = 0).

Each user i has
• a monotone non-decreasing, concave, and differentiable1 valuation functionvi : [0, 1] → R≥0;
vi (x) represents the value that user i has for a resource fraction of x ;

• a budget ci ∈ R≥0∪{+∞}, which restricts (i.e., upper-bounds) her payment to the mechanism.
Her utility from the mechanism is defined as the value she gets for the fraction she is given minus
her payment, i.e.,

uMi (s) = vi
(
дMi (s)

)
− pMi (s).

To capture the fact that budgets impose hard constraints to the users, we technically assume that
uMi (s) = −∞ when pMi (s) > ci .

The users act strategically as utility maximizers and engage as players into a strategic resource
allocation game GM that is induced by mechanismM . A (pure Nash) equilibrium is a signal vector s
such that, when viewed as a univariate function of variable y, uMi (y, s−i ) is maximized for y = si ,
i.e., no player can increase her utility by unilaterally deviating to submitting a different signal.
1We remark that our results hold for semi-differentiable valuation functions as well. However, the proof of our characteriza-
tion (Lemma 4.1) is technically more involved. So, the differentiability assumption keeps the exposition simple.
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We denote by eq(GM ) the set of all equilibria of game GM . By the definition and properties of
the allocation and payment functions, the signal vector 0 cannot be an equilibrium as (by the
conventions mentioned above) any player has the incentive to unilaterally deviate and get the
whole resource without paying anything. We use Xn as an abbreviation of the set Rn

≥0 \ {0}.
Due to the budget constraints, we have three different cases for the strategy of player i at an

equilibrium s ∈ eq(GM ) (assuming a non-trivial budget ci > 0) and for the corresponding value of
the derivative of her utility. In particular, the derivative ∂uMi (y,s−i )

∂y

���
y=si

is equal to zero in case si
is such that 0 < pMi (s) < ci , non-positive in case si = 0, and non-negative in case si is such that
pMi (s) = ci . Note that nullification of the utility derivative does not necessarily imply maximization
of utility.
We are interested in studying the effect of strategic behavior to the efficiency of a mechanism.

An efficiency benchmark that has been used extensively in the literature is the social welfare. For
an allocation d ∈ Q ∪ 0 of a resource allocation game GM , the social welfare is defined as

SW(d,GM ) =

n∑
i=1

vi (di ),

where n is the number of players in GM and vi is the valuation function of player i . Then, the
inefficiency of equilibria of game GM can be measured by its price of anarchy which is defined as

PoA(GM ) = sup
s∈eq(GM )

SW∗(GM )

SW(дM (s),GM )
,

where SW∗(GM ) denotes the maximum social welfare over all allocations of GM .
However, the definition of the social welfare does not take into account the possibly finite budgets

that the players may have. Therefore, we instead use the liquid welfare as our efficiency benchmark.
The liquid welfare of an allocation d is defined as

LW(d,GM ) =

n∑
i=1

min{vi (di ), ci },

where ci is the budget of player i . Clearly, when players have no budget constraints, the liquid
welfare coincides with the social welfare. The liquid price of anarchy of a resource allocation game
GM is then defined as

LPoA(GM ) = sup
s∈eq(GM )

LW∗(GM )

LW(дM (s),GM )
,

where LW∗(GM ) denotes the maximum liquid welfare over all allocations of game GM . We use
the overloaded term LPoA(M) to denote the liquid price of anarchy of the resource allocation
mechanismM . This is defined as the maximum (or, more formally, the supremum) liquid price of
anarchy over all games that are induced by mechanismM .

Examples of resource allocation mechanisms. Let us devote some space to the definition of some
well-known mechanisms from the literature. An important class of resource allocation mechanisms
is that of pay-your-signal mechanisms (PYS, for short). When at least two players submit non-zero
signals, a PYS mechanism charges each player i a payment equal to the signal si that she submits.
Otherwise, PYS mechanisms follow the general convention that we have defined at the beginning
of Section 2, and do not charge any payment to any player.
The most popular PYS mechanism is the Kelly mechanism that was introduced in [10]. This

mechanism allocates the resource proportionally to the players’ signals (this is why it is also known
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as the proportional allocation mechanism in the related literature), i.e.,

д
Kelly
i (s) =

si∑n
j=1 sj

.

The Kelly mechanism has played a central role in the related literature; for the no-budget setting,
Johari and Tsitsiklis [8] proved that its price of anarchy is 4/3. In their attempt to design the
PYS mechanism with the lowest possible price of anarchy, Sanghavi and Hajek [20] defined the
allocation function

дSHi (s) =
si

maxℓ{sℓ}

∫ 1

0

∏
j,i

(
1 −

sj

maxℓ{sℓ}
t

)
dt .

We will refer to the PYS mechanism that uses this allocation function as SH. For two players, the
allocation function has a very simple definition as дSH1 (s) = s1

2s2 when s1 ≤ s2, and дSH1 (s) = 1 − s2
2s1

otherwise. Sanghavi and Hajek [20] proved that the two-player version of the SH mechanism has an
optimal (among all PYS mechanisms) price of anarchy of 8/7 and provided experimental evidence
that the price of anarchy of the n-player version is only marginally higher. As we will see later in
Section 5, the comparison between Kelly and SH yields a drastically different result when players
have budgets and the liquid welfare is used as the efficiency benchmark.
Other interesting classes of mechanisms use proportional allocation but different payments.

Among them, a mechanism defined by Maheswaran and Basar [17] uses the class of payment
functions

pMi (s) =

(∑
j,i

sj

)
·

∫ si

0

hM (t +
∑

j,i sj )

(t +
∑

j,i sj )
2 dt ,

where hM : R≥0 → R≥0 is an increasing function (such as hM (z) = z; Maheswaran and Basar
[17] suggest several other choices for hM ). These mechanisms have the remarkable property of
full efficiency at equilibria in the no-budget setting (i.e., they have price of anarchy equal to 1).
Independently from Maheswaran and Basar [17], Johari and Tsitsiklis [9] as well as Yang and Hajek
[22] presented resource allocation mechanisms that achieve full efficiency in the no-budget setting.
All these mechanisms can be thought of as adaptations of the well-known VCG paradigm.

3 A LOWER BOUND FOR ALL MECHANISMS
The fact that the mechanisms of Maheswaran and Basar [17], Johari and Tsitsiklis [9], and Yang
and Hajek [22] achieve full efficiency seems surprising, as resource allocation mechanisms do not
have direct access to the valuation functions of the players. Still, the definition of these mechanisms
is such that the incentives of the players are fully aligned to the global goal of maximizing the
social welfare. In a sense, these mechanisms manage to achieve access to the valuation functions
indirectly. In contrast, when players have budget constraints, we show below that a liquid price of
anarchy equal to 1 is not possible. This means that resource allocation mechanisms fail to “mine”
any kind of information about the budget values of the players, while budgets affect the strategic
behavior of the players crucially.

Theorem 3.1. Every n-player resource allocation mechanism has liquid price of anarchy at least
2 − 1/n.

Proof. LetM be any n-player resource allocation mechanism that uses an allocation function
дM and a payment function pM . Let s = (s1, ..., sn) be an equilibrium of the game GM

1 induced by
M for players with valuations vi (x) = x and budgets ci = +∞, for every i ∈ [n]. Assume that the
allocation returned by M at this equilibrium is d = (d1, ...,dn). Since all players have the same
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valuation function and budget, the liquid (or social) welfare at equilibrium is optimal and, hence,
LPoA(GM

1 ) = 1.
Recall that, for every signal vector y = (y1, ...,yn), the utility of player i is defined as uMi (y) =

vi (д
M
i (y)) − pMi (y). Now, let i∗ = argmini di (hence, di∗ ≤ 1/n) and consider the game GM

2 where
each player i , i∗ has the modified valuation function ṽi (x) = di + x and budget c̃i = di , while
player i∗ is as in GM

1 (see Figure 1). Observe that the modified utility of player i , i∗ as a function of
a signal vector y is now ũMi (y) = ṽi (дMi (y)) − pMi (y) = uMi (y) + di . Also, since the utility of player
i , i∗ is non-negative at the equilibrium s of game GM

1 , we have that pMi (s) ≤ di = c̃i , meaning
that player i can also afford this payment in game GM

2 . Hence, s is an equilibrium in GM
2 as well

(and, again,M returns the same allocation d).
Its liquid welfare is

∑
i min{ṽi (di ), c̃i } =

∑
i di = 1 while the optimal liquid welfare is at least

1 +
∑

i,i∗ di , achieved at the allocation according to which the whole resource is given to player i∗.
Hence, we conclude that the liquid price of anarchy ofM is LPoA(M) ≥ LPoA(GM

2 ) ≥ 1+
∑

i,i∗ di =
2 − di∗ ≥ 2 − 1/n, as desired. □

0 di∗ 10

di∗

1

vi∗ (x ) = x

0 di 10

di

1

2di

vi (x ) = x

ṽi (x ) = di + x

Fig. 1. A graphical representation of the games used in the proof of Theorem 3.1. The two figures depict the
valuation functions of players i∗ and i , i∗ in games GM

1 and GM
2 . The blue points (i.e., point (di∗ ,di∗ ) in the

left figure, and points (di ,di ) and (di , 2di ) in the right figure) represent the equilibrium in both games, and
the optimal allocation in game GM

1 . The optimal allocation in GM
2 is represented by the red points (i.e., point

(1, 1) in the left figure and point (0,di ) in the right one).

4 THE STRUCTURE OFWORST-CASE GAMES AND EQUILIBRIA
In this section, we prove our structural characterization. Given an n-player resource allocation
mechanism M (with allocation and payment functions дM and pM , respectively), signal vector
s ∈ Xn , and an integer j ∈ [n], define the n-player game GM (s, j) as follows. Every player has the
affine valuation function ṽi (z) = λMi (s) · z + κMi (s) and budget c̃i , where

λMi (s) = ©«
∂дMi (y, s−i )
∂y

�����
y=si

ª®¬
−1

·
∂pMi (y, s−i )
∂y

�����
y=si

and κMj (s) = 0, c̃ j = +∞, and κMi (s) = c̃i = pMi (s) for every player i , j.
In the following, we show that the games defined in this way are in a sense extreme in terms of

the liquid price of anarchy of mechanismM .

Lemma 4.1. Let GM
1 be an n-player resource allocation game that is induced by a mechanismM

with LPoA(GM
1 ) > 1. Let s ∈ Xn be an equilibrium of GM

1 of minimum liquid welfare. Then, there

Session 10b: Mechanism Design V ACM EC’18, June 18–22, 2018, Ithaca, NY, USA.

687



exists integer i∗ ∈ [n] such that

LPoA(GM
1 ) ≤

LW(x̃,GM (s, i∗))
LW(дM (s),GM (s, i∗))

=

∑
i,i∗ p

M
i (s) + λMi∗ (s)∑

i,i∗ p
M
i (s) + λMi∗ (s) · д

M
i∗ (s)
,

where x̃ = (x̃1, ..., x̃n) denotes the allocation with x̃i∗ = 1 and x̃i = 0 for i , i∗.

Proof. Consider an n-player resource allocation game GM
1 that is induced by mechanismM . Let

vi and ci be the valuation function and budget of player i , respectively. Let s ∈ Xn be the equilibrium
of game GM

1 of minimum liquid welfare. We denote by x the optimal allocation in GM
1 . Without loss

of generality, we assume that, for every player i , xi = 0 if vi (0) > ci and vi (xi ) ≤ ci otherwise, and
we relax the allocation definition to

∑n
i=1 xi ≤ 1; this does not constrain the optimal liquid welfare

which is LW(x,GM
1 ) =

∑
i min{vi (xi ), ci }. We use di = дMi (s) for the resource fraction allocated to

player i in s; let d = (d1, ...,dn).
We partition the players into the following three sets:
• SetA consists of players i withvi (di ) < ci and signal si such that the derivative of their utility
is equal to 0.

• Set B consists of players i with signal si = 0 (hence, di = 0) and negative utility derivative
such that vi (0) < ci .

• Set Γ consists of players i with signal si such that vi (di ) ≥ ci .
First, observe that sets A and B cannot be both empty, since it would then be LW(d,GM

1 ) =∑
i ∈[n] ci ≥ LW(x,GM

1 ), and the liquid price of anarchy of GM
1 would be exactly 1, contradicting the

assumption of the lemma. So, in the following, we assume that at least one ofA and B is non-empty.
Now consider the games GM (s, j) for j ∈ [n] and let i∗ = argmaxj ∈A∪B {λMj (s)}. We will show

that

LW(d,GM
1 ) ≥ LW(d,GM (s, i∗)) (1)

and we will furthermore show that the allocation x̃ satisfies

LW(x,GM
1 ) − LW(x̃,GM (s, i∗)) ≤ LW(d,GM

1 ) − LW(d,GM (s, i∗)). (2)

In this way (recall that s is the equilibrium of minimum liquid welfare in game GM
1 and d is the

resulting allocation), we will have

LPoA(GM
1 ) =

LW(x,GM
1 )

LW(d,GM
1 )

≤
LW(x,GM

1 ) − (LW(x,GM
1 ) − LW(x̃,GM (s, i∗)))

LW(d,GM
1 ) − (LW(d,GM

1 ) − LW(d,GM (s, i∗)))

=
LW(x̃,GM (s, i∗))
LW(d,GM (s, i∗))

=

∑
i,i∗ p

M
i (s) + λMi∗ (s)∑

i,i∗ p
M
i (s) + λMi∗ (s) · д

M
i∗ (s)
,

as desired. The inequality follows by (1) and (2). The last equality follows since all players inGM (s, i∗)
besides i∗ have always their value capped by their budget, which is equal to their payment.

Inequality (1) is due to the fact that the contribution of each player to the liquid welfare at s can
only decrease between the two games. Indeed, if player i∗ belongs to B, she has zero value in game
GM (s, i∗). If she belongs to A, then her utility derivative is nullified and, hence, v ′

i∗ (di∗ ) = λMi∗ (s).
Due to the concavity of vi , we get vi∗ (di∗ ) ≥ di∗v

′
i∗ (di∗ ) = di∗λ

M
i∗ (s) = ṽi∗ (di∗ ). Moreover, the

contribution of player i , i∗ in LW(d,GM (s, i∗)) is c̃i = pMi (s) which is at most her contribution
min{vi (di ), ci } in LW(d,GM

1 ) since the payment of player i cannot exceed her budget in GM
1 and

her utility at equilibrium s is non-negative. See Figure 2 for a graphical representation of valuation
functions and budgets in games GM

1 and GM (s, i∗).
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0 di 10

c̃i = p
M
i (s)

vi (di )

ci

vi (z)

ṽi∗ (z)

ṽi (z)

i∗ ∈ A
i ∈ A

di∗ = 0 1
c̃i = p

M
i (s) = 0

vi∗ (di∗ )

ci∗ vi∗ (z)

ṽi∗ (z)

i∗ ∈ B
i ∈ B

di = 0 1
c̃i = p

M
i (s) = 0

ci

vi (di )

vi (z)

ṽi (z)

i ∈ Γ
case 1

0 di 10

c̃i = p
M
i (s)

ci

vi (di )

vi (z)

ṽi (z)

i ∈ Γ
case 2

0 di 10

c̃i = p
M
i (s) = ci

vi (di )

vi (z)

ṽi (z)

i ∈ Γ
case 3

Fig. 2. Relation between the two games GM
1 and GM (s, i∗) that are used in the proof of Lemma 4.1. In the first

two plots, player i is different than i∗ and c̃i∗ is infinite by definition. The dashed line is the tangent ofvi at di .
The slope λMi (s) of the affine valuation function of player i in game GM (s, i∗) is greater than (upper right and
middle left plots), equal to (upper left and middle right plots), or smaller than (lower plot) v ′

i (di ) depending
on whether the utility derivative of the player is negative, zero, or positive, respectively (in particular, these
are the three cases identified in the plots for i ∈ Γ). This follows by the definition of games GM

1 and GM (s, i∗)

and the fact that, as the utility of player i in game GM
1 has derivativev ′

i (di )
∂дMi (y,s−i )

∂y

����
y=si

−
∂pMi (y,s−i )

∂y

����
y=si

at equilibrium, the sign of this derivative coincides with the sign of v ′
i (di ) − λMi (s).

Let

δ (i) = min{vi (xi ), ci } −min{ṽi (x̃i ), c̃i } −min{vi (di ), ci } +min{ṽi (di ), c̃i }

denote the contribution of player i to the expression LW(x,GM
1 ) −LW(x̃,GM (s, i∗)) −LW(d,GM

1 )+

LW(d,GM (s, i∗)). Then, in order to prove inequality (2) it suffices to prove that
∑

i δ (i) ≤ 0.
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• For player i∗, we have thatvi∗ (di∗ ) < ci∗ . Using the inequalityvi∗ (xi∗ ) ≤ vi∗ (di∗ )+v
′
i∗ (di∗ )(xi∗−

di∗ ) due to the concavity of the valuation function vi∗ and the fact x̃i∗ = 1, we have that
δ (i∗) = min{vi∗ (xi∗ ), ci∗ } − λMi∗ (s)x̃i∗ −vi∗ (di∗ ) + λ

M
i∗ (s)di∗

≤ vi∗ (xi∗ ) − λMi∗ (s) −vi∗ (di∗ ) + λ
M
i∗ (s)di∗

≤ v ′
i∗ (di∗ )(xi∗ − di∗ ) − λMi∗ (s) + λ

M
i∗ (s)di∗ .

Now, we observe that (for such observations, we follow the reasoning in the caption of
Figure 2) if player i∗ belongs to A, then λMi∗ (s) = v ′

i∗ (di∗ ), while if she belongs to B, then
λMi∗ (s) ≥ v ′

i∗ (di∗ ) and di∗ = 0. In any case, we have that v ′
i∗ (di∗ )(xi∗ − di∗ ) ≤ λMi∗ (s)(xi∗ − di∗ ),

and we obtain
δ (i∗) ≤ λMi∗ (s)(xi∗ − 1). (3)

• For all players i , i∗, observe that their value is always capped by their budget in GM (s, i∗).
For player i , i∗ belonging to A or to B we have that either λMi (s) = v ′

i (di ) (if i ∈ A), or
λMi (s) ≥ v ′

i (di ) and di = 0 (if i ∈ B). Hence, using the concavity of vi and the fact that x̃i = 0,
we obtain that

δ (i) ≤ vi (xi ) − c̃i −vi (di ) + c̃i ≤ vi (di ) + λ
M
i (s)(xi − di ) −vi (di ) ≤ λMi∗ (s)xi , (4)

where the last inequality follows since λMi (s) ≤ λMi∗ (s), due to the definition of player i∗.
Otherwise, if i ∈ Γ, we have

δ (i) = min{vi (xi ), ci } − c̃i − ci + c̃i ≤ 0. (5)
Hence, summing over all players, and using inequalities (3), (4) and (5) as well as the fact that∑

i xi ≤ 1, we obtain
∑

i δ (i) ≤ 0, and the proof is complete. □

We are now ready to prove the main result of this section.

Lemma 4.2. Let M be an n-player resource allocation mechanism with allocation and payment
functions дM and pM , respectively. Then, its liquid price of anarchy is

LPoA(M) ≤ sup
s∈Xn


∑

i≥2 p
M
i (s) + λM1 (s)∑

i≥2 p
M
i (s) + λM1 (s)дM1 (s)

: λM1 (s) = ©«
∂дM1 (y, s−1)
∂y

�����
y=s1

ª®¬
−1

·
∂pM1 (y, s−1)
∂y

�����
y=s1

.
(6)

If, in addition, s ∈ Xn is always an equilibrium of game GM (s, 1), (6) holds with equality.

Proof. Let weq(GM ) be the set of equilibria of minimum liquid welfare in game GM . Using the
definition of the liquid price of anarchy, Lemma 4.1, and the anonymity of resource allocation
mechanisms, we have

LPoA(M) = sup
GM

LPoA(GM ) = sup
GM

sup
s∈weq(GM )

LW∗(GM )

LW(дM (s),GM )
= sup

s∈Xn
sup

GM :s∈weq(GM )

LW∗(GM )

LW(дM (s),GM )

≤ sup
s∈Xn

max
i∗∈[n]

∑
i,i∗ p

M
i (s) + λMi∗ (s)∑

i,i∗ p
M
i (s) + λMi∗ (s)д

M
i∗ (s)

= sup
s∈Xn

∑
i≥2 p

M
i (s) + λM1 (s)∑

i≥2 p
M
i (s) + λM1 (s)дM1 (s)

.

Now, if s ∈ eq(GM (s, 1)) for every s ∈ Xn , by just considering the games GM (s, 1) induced by
mechanismM , we have

LPoA(M) ≥ sup
s∈Xn

LPoA(GM (s, 1)) ≥ sup
s∈Xn

∑
i≥2 p

M
i (s) + λM1 (s)∑

i≥2 p
M
i (s) + λM1 (s)дM1 (s)
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and (6) holds with equality. The last inequality follows by comparing the liquid welfare at s to the
liquid welfare of the allocation which gives the whole resource to player 1. Recall that all players
besides player 1 have always their value capped by their budget in game GM (s, 1). □

Lemma 4.2 is extremely powerful. It says that no game-theoretic reasoning is needed anymore
for proving upper bounds on the LPoA and, instead, all we have to do is to solve the corresponding
mathematical program. Furthermore, it can be used to prove lower bounds on the LPoA without
providing any explicit construction. In this case, we just need to show that the condition s ∈

eq(GM (s, 1)) holds; then the tight lower bound follows by solving the same mathematical program.
Before we continue with the rest of our results, we define the class C of mechanismsM that use

concave allocation functions дM and convex payment functions pM . Observe that both Kelly and
SH (as well as the E2-PYS mechanism presented in Section 6) are members of this class. With our
next lemma, we prove that the condition s ∈ eq(GM (s, 1)) is satisfied for any C mechanismM . This
will allows us to prove lower bounds in the upcoming sections.

Lemma 4.3. For any n-player resource allocation mechanismM ∈ C and s ∈ Xn , s ∈ eq(GM (s, 1)).

Proof. Consider any C mechanismM that uses a concave allocation function дM and a convex
payment function pM . By the definition of game GM (s, 1), the utility of any player i , as a function
of her signal y, is uMi (y, s−i ) = λMi (s) · дMi (y, s−i ) + κMi (s) − pMi (y, s−i ) and its derivative is

∂uMi (y, s−i )
∂y

= λMi (s)
∂дMi (y, s−i )
∂y

−
∂pMi (y, s−1)
∂y

.

Observe that, by the definition of λMi (s), the signal si nullifies the utility derivative of player i , and
since

∂2uMi (y, s−i )
∂y2

= λMi (s)
∂2дMi (y, s−i )
∂y2

−
∂2pMi (y, s−1)
∂y2

≤ 0,

this signal actually maximizes the player’s utility. □

5 PAY-YOUR-SIGNAL MECHANISMS
In this section, we will use Lemma 4.2 to prove tight bounds on the liquid price of anarchy of
the Kelly and SH mechanisms. Our LPoA bounds are 2 for Kelly (Theorem 5.1) and 3 for SH
(Theorems 5.2 and 5.3). Recall that both of these mechanisms belong to class C and, by Lemma 4.3,
the condition s ∈ eq(GM (s, 1)) is satisfied.

Theorem 5.1. The liquid price of anarchy of the Kelly mechanism is 2.

Proof. Let s ∈ Xn and C =
∑

i≥2 si . Since Kelly is PYS, we have that
∑

i≥2 p
Kelly
i (s) = C and

∂pKelly1 (y,s−1)
∂y = 1. Recall that the allocation function is дKelly1 (y, s−1) =

y
y+C , which gives ∂дKelly1 (y,s−1)

∂y =
C

(y+C)2 . Also, since the mechanism belongs to class C, by Lemma 4.3, we have that s ∈ eq(GKelly(s, 1)).
Hence, λKelly1 (s) = (s1 +C)

2/C and Lemma 4.2 yields

LPoA(Kelly) = sup
s1,C≥0

C + (s1 +C)
2/C

C + (s1 +C)s1/C
= sup

s1,C≥0

2C2 + 2s1C + s21
C2 + s1C + s

2
1
= sup

s1,C≥0

(
2 −

s21
C2 + s1C + s

2
1

)
= 2,

as desired. □

Notice that our proof of Theorem 5.1 is surprisingly short. The proof exploits Lemma 4.2 with (6)
holding with equality and, as such, it simultaneously provides a tight (upper and lower) bound. In
contrast, our analysis for the SH mechanism is slightly more involved. This is mainly due to the
more complicated definition of the allocation function (see Section 2), which requires to distinguish
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between two cases, depending on whether s1 < maxℓ sℓ or not. Both cases lead to inequalities that
provide only an upper bound on the LPoA of the SH mechanism in the proof of Theorem 5.2. Then,
in Theorem 5.3, we easily prove a matching lower bound by restricting our attention to the 2-player
version of the mechanism. Actually, the proof can be thought of as providing a tight (i.e., not only
lower, but also upper) bound on the LPoA of the 2-player version of the SH mechanism.

Theorem 5.2. The liquid price of anarchy of the SH mechanism is at most 3.

Proof. We will use Lemma 4.2 and upper-bound the ratio in the RHS of (6) by 3. Define C =∑
i≥2 si . First, let s ∈ Xn with s1 < maxℓ sℓ . Let argmaxℓ sℓ = i∗ , 1. Then, by the definition of SH

and the definition of λSH1 (s) in (6), we have

λSH1 (s) =
si∗∫ 1

0
∏

i≥2

(
1 − si

si∗
t
)
dt

(7)

and using the Bernoulli inequality stating that 1 − γ t ≥ (1 − t)γ for t ≤ 1 and γ ∈ [0, 1], (7) yields

λSH1 (s) ≤
si∗∫ 1

0
∏

i≥2 (1 − t)
si
si∗ dt

=
si∗∫ 1

0 (1 − t)
C
si∗ dt

= si∗ +C .

Since SH is PYS,
∑

i≥2 p
SH
i (s) = C . Using this observation together with the last inequality, we

obtain ∑
i≥2 p

SH
i (s) + λSH1 (s)∑

i≥2 p
SH
i (s) + λSH1 (s)дSH1 (s)

≤
2C + si∗

C
≤ 3. (8)

The inequalities follow since λSH1 (s)дSH1 (s) ≥ 0, s1 ≥ 0, and si∗ ≤ C .
Now, let s ∈ Xn with s1 = maxℓ sℓ . In this case, дSH1 (s) is defined as

дSH1 (s) =
∫ 1

0

∏
i≥2

(
1 − si

s1
t

)
dt

and
∂дSH1 (y, s−1)
∂y

�����
y=s1

=

∫ 1

0

∑
i≥2

si

s21
t
∏
j,1,i

(
1 −

sj

s1
t

)
dt ≥

∑
i≥2

si

s21

∫ 1

0
t
∏
j,1,i

(1 − t)
cj
s1 dt

=
∑
i≥2

si

s21

∫ 1

0
t(1 − t)

C−si
s1 dt =

∑
i≥2

si
(C − si + s1)(C − si + 2s1)

≥
C

(C + s1)(C + 2s1)
.

Using the definition of λSH1 (s) in (6), this last inequality implies that

λSH1 (s) ≤
(C + s1)(C + 2s1)

C
. (9)

Also, by applying the Bernoulli inequality at the RHS of the definition of дSH1 (s), we obtain

дSH1 (s) ≥
∫ 1

0

∏
i≥2

(1 − t)
si
s1 dt =

∫ 1

0
(1 − t)

C
s1 dt = s1

C + s1
. (10)

Now, we have∑
i≥2 p

SH
i (s) + λSH1 (s)∑

i≥2 p
SH
i (s) + λSH1 (s)дSH1 (s)

≤
C2 + (C + s1)(C + 2s1)

C2 + (C + s1)(C + 2s1)дSH1 (s)
≤

2C2 + 3s1C + 2s21
C2 + s1C + 2s21

≤ 3. (11)
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The two first inequalities follow by (9) and (10), respectively, and the last one is obvious since
s1,C ≥ 0.

Now, the upper bound follows by Lemma 4.2 using (8) and (11). □

Theorem 5.3. The liquid price of anarchy of the SH mechanism is at least 3.

Proof. It suffices to restrict our attention to the 2-player version of the mechanism. Let s ∈ X2
with s1 ≤ s2. In this case дSH1 (s) = s1

2s2 which implies that λSH1 (s) = 2s2. Since the SH mechanism
belongs to class C, by Lemma 4.3, we have that s ∈ eq(GSH(s, 1)). Using Lemma 6, we obtain

LPoA(SH) ≥ sup
s∈X2:s1≤s2

3s2
s2 + s1

= 3.

The proof is complete. □

6 TWO-PLAYER MECHANISMS
As we saw in Theorem 5.1, the Kelly mechanism has an LPoA of exactly 2 even in the case of two
players. In contrast, our lower bound of 3/2 for 2-player mechanisms in Theorem 3.1 seems to leave
room for improvements. Such improvements are indeed possible as we show with the mechanisms
that we present in this section. Interestingly, the E2-PYS mechanism that is defined in the following
is also proved to have optimal LPoA among all 2-player PYS mechanisms with concave allocation
functions.
Let β ≈ 1.792 be the solution of the equation 1

β − 1
β exp

(
−

β
β−1

)
= 1

2 and define mechanism
E2-PYS to be the PYS 2-player mechanism that uses the allocation function

дE2-PYSi (s) =


1
β − 1

β exp
(
−

β
β−1 ·

si
s3−i

)
si ≤ s3−i

β−1
β +

1
β exp

(
−

β
β−1 ·

s3−i
si

)
si > s3−i

for player i ∈ {1, 2} and (non-zero) signal vector s = (s1, s2). Due to the definition of β , E2-PYS is a
well-defined resource allocation mechanism: it is anonymous, with an increasing and differentiable
allocation function, which allocates the whole resource when some player has non-zero signal.
Moreover, E2-PYS belongs to class C: the allocation function can be seen to be concave (see also
Figure 3) and the payment function is, of course, convex. The LPoA bound statement for E2-PYS
follows.

Theorem 6.1. The liquid price of anarchy of the E2-PYS mechanism is β ≈ 1.792.

Proof. We will prove the theorem using Lemma 4.2. Let s ∈ X2. Due to Lemma 4.3, we have
that s ∈ eq(GE2-PYS(s, 1)). We distinguish between two cases. First, assume that s1 ≤ s2; in this case,

дE2-PYS1 (s1, s2) =
1
β
−

1
β
exp

(
−

β

β − 1 ·
s1
s2

)
and

∂дE2-PYS1 (y, s2)

∂y

�����
y=s1

=
1

(β − 1)s2
exp

(
−

β

β − 1 ·
s1
s2

)
.

Using (6), λE2-PYS1 (s) is defined as λE2-PYS1 (s) = (β − 1)s2 exp
(

β
β−1 ·

s1
s2

)
. Then, it can be easily verified

that
pE2-PYS2 (s) + λE2-PYS1 (s)

pE2-PYS2 (s) + λE2-PYS1 (s)дE2-PYS1 (s)
= β . (12)
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Now, assume that s1 > s2; in this case,

дE2-PYS1 (s1, s2) =
β − 1
β
+

1
β
exp

(
−

β

β − 1 ·
s2
s1

)
and

∂дE2-PYS1 (y, s2)

∂y

�����
y=s1

=
s2

(β − 1)s21
exp

(
−

β

β − 1 ·
s2
s1

)
.

Now, (6) yields λE2-PYS1 (s) = (β−1)s21
s2

exp
(

β
β−1 ·

s2
s1

)
. By substitutingpE2-PYS2 (s), λE2-PYS1 (s), andдE2-PYS1 (s),

we have

pE2-PYS2 (s) + λE2-PYS1 (s)

pE2-PYS2 (s) + λE2-PYS1 (s)дE2-PYS1 (s)
= β

1 + (β − 1)
(
s1
s2

)2
exp

(
β

β−1 ·
s2
s1

)
β + (β − 1)2

(
s1
s2

)2
exp

(
β

β−1 ·
s2
s1

)
+ (β − 1)

(
s1
s2

)2 ≤ β . (13)

The inequality follows since the quantity at its left is decreasing in s1/s2 (its derivative with respect
to s1/s2 can be shown by tedious calculations to be non-positive for s1/s2 ≥ 1) and, hence, it is
upper-bounded by its value for s1/s2 = 1; this is equal to β by its definition.

The theorem follows by Lemma 4.2 using (12) and (13). □

We remark that a preliminary analysis similar to the first half of the proof of Theorem 6.1 inspired
the design of the E2-PYS mechanism (as well as that of E2-SR mechanism that is defined later) at
first place. By keeping the allocation function as the unknown and requiring that the RHS of (6)
is equal to some value α for all signal vectors s ∈ X2 with s1 ≤ s2 (this is essentially what (12)
captures), we obtained a first-order differential equation which, using the appropriate conditions so
that the resulting mechanism is valid, led to E2-PYS (for α = β). Luckily, for signal vectors s ∈ X2
with s1 > s2, we were able to show that the RHS of (6) is at most α ; see inequality (13).

We now show that E2-PYS has optimal LPoA among 2-player PYS mechanisms in class C. The
proof makes use of Lemma 4.2 and a simple differential inequality that involves the allocation
function.

Theorem 6.2. Any 2-player PYS mechanism with concave allocation function has liquid price of
anarchy at least β ≈ 1.792.

Proof. For the sake of contradiction, assume that there exists a PYS mechanismM that has liquid
price of anarchy β ′ < β . Denote by f : R≥0 → [0, 1] the function defined as f (y) = дM1 (y, 1). Then,
by applying Lemma 4.2 with s = (y, 1) ∈ X2 to M we have λM1 (y, 1) = 1/f ′(y) and LPoA(M) ≥
1+1/f ′(y)

1+f (y)/f ′(y) for every y ∈ [0, 1]. By our assumption LPoA(M) ≤ β ′, we get the differential inequality

(β ′ − 1)f ′(y) + β ′ f (y) ≥ 1

for every y ∈ [0, 1]. Using Grönwall’s inequality, f (y) is lower-bounded by the solution of the
corresponding differential equation. Due to the condition f (0) = 0, this yields

f (y) ≥
1
β ′

−
1
β ′

exp
(
−

β ′

β ′ − 1y
)

and, hence,
1
2 = f (1) ≥ 1

β ′
−

1
β ′

exp
(
−

β ′

β ′ − 1

)
>

1
β
−

1
β
exp

(
−

β

β − 1

)
,
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which contradicts the definition of β . The last inequality follows since the function 1
z −

1
z exp

(
− z
z−1

)
is decreasing in the interval [1, 2]. □

Let us now define a non-PYS mechanism that has considerably better LPoA than E2-PYS and
almost matches the lower bound of 3/2 from Theorem 3.1 for 2-player mechanisms. Let γ ≈ 1.529
be the solution of the equation 1

γ − 1
γ exp

(
−

γ
2(γ−1)

)
= 1

2 and define mechanism E2-SR to be the
2-player mechanism that uses the allocation function (see Figure 3 for a comparison of the allocation
functions of Kelly, SH, E2-PYS, and E2-SR)

дE2-SRi (s) =


1
γ − 1

γ exp
(
−

γ
2(γ−1) ·

(
si
s3−i

)2)
si ≤ s3−i

γ−1
γ +

1
γ exp

(
−

γ
2(γ−1) ·

(
s3−i
si

)2)
si > s3−i

and the payment function pE2-SRi (s) = si/s3−i for player i ∈ {1, 2} and (non-zero) signal vector
s = (s1, s2). Recall that we follow the general conventions from Section 2; hence, the payments are 0
when some of the signals is equal to zero. Due to the definition of γ , E2-SR is a well-defined resource
allocation mechanism. However, observe that E2-SR does not belong to class C (the allocation
function is not concave; see Figure 3) and the condition s ∈ eq(GE2-SR(s, 1)) is not guaranteed to be
satisfied. Next, we will prove an upper bound on the LPoA of E2-SR. The proof follows in a very
similar way to the proof of Theorem 6.1 with the exception that it does not provide a tight bound.

0 10

1/2

signal ratio

al
lo
ca
tio

n

Fig. 3. A comparison of the allocation function дMi used by E2-PYS (in green), (the 2-player version of) Kelly
(in blue), SH (dashed), and E2-SR (in red) as a function of si/s3−i for si ≤ s3−i . Among these mechanisms,
E2-SR is the only one with a non-concave allocation function.

Theorem 6.3. The liquid price of anarchy of the E2-SR mechanism is at most γ ≈ 1.529.

Proof. We will prove the theorem by mimicking the proof of Theorem 6.1. Let s ∈ X2. We
distinguish between two cases. First, assume that s1 ≤ s2; in this case

дE2-SR1 (s1, s2) =
1
γ
−

1
γ
exp

(
−

γ

2(γ − 1) ·
(
s1
s2

)2)
and

∂дE2-SR1 (y, s2)

∂y

�����
y=s1

=
s1

(γ − 1)s22
exp

(
−

γ

2(γ − 1) ·
(
s1
s2

)2)
.
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Also,
∂pE2-SR1 (y, s2)

∂y

�����
y=s1

=
1
s2
.

Using (6), λE2-SR1 (s) is defined as λE2-SR1 (s) = (γ − 1) s2s1 exp
(

γ
2(γ−1) ·

(
s1
s2

)2)
. Then, it can be easily

verified that
pE2-SR2 (s) + λE2-SR1 (s)

pE2-SR2 (s) + λE2-SR1 (s)дE2-SR1 (s)
= γ . (14)

Now, assume that s1 > s2; in this case,

дE2-SR1 (s1, s2) =
γ − 1
γ
+

1
γ
exp

(
−

γ

2(γ − 1) ·
(
s2
s1

)2)
and

∂дE2-SR1 (y, s2)

∂y

�����
y=s1

=
s22

(γ − 1)s31
exp

(
−

γ

2(γ − 1) ·
(
s2
s1

)2)
.

The payment derivative is again equal to 1/s2 and (6) yields

λE2-SR1 (s) = (γ − 1)
(
s1
s2

)3
exp

(
γ

2(γ − 1) ·
(
s2
s1

)2)
.

By substituting pE2-SR2 (s), λE2-SR1 (s), and дE2-SR1 (s), we have

pE2-SR2 (s) + λE2-SR1 (s)

pE2-SR2 (s) + λE2-SR1 (s)дE2-SR1 (s)
= γ

1 + (γ − 1)
(
s1
s2

)4
exp

(
γ

2(γ−1) ·
(
s2
s1

)2)
γ + (γ − 1)2

(
s1
s2

)4
exp

(
γ

2(γ−1) ·
(
s2
s1

)2)
+ (γ − 1)

(
s1
s2

)4 ≤ γ . (15)

The inequality follows because the quantity at its left is decreasing in s1/s2 (its derivative with
respect to s1/s2 can be shown by tedious calculations to be non-positive for s1/s2 ≥ 1) and, hence,
it is upper-bounded by its value for s1/s2 = 1; this is equal to γ by its definition.
The theorem follows by Lemma 4.2 using (14) and (15). □

Interestingly, a simpler 2-player mechanism that uses the allocation function of SH and the
signal-ratio payment function of E2-SR has a slightly worse LPoA of ϕ = 1.618. In fact, this bound
is tight since this particular mechanism belongs to class C. The proof is left as an exercise to the
reader.

7 OPEN PROBLEMS AND EXTENSIONS
Even though we have revealed an almost complete picture on the liquid price of anarchy of resource
allocation mechanisms, our work leaves an interesting open problem: is the 2−1/n bound achievable
(as opposed to 2), preferably by a simple mechanism? In particular, is there a mechanism with
proportional allocation function and appropriate non-PYS payments that achieves this LPoA bound?
This question seems technically challenging even for the case of two players only.

Regarding the liquid price of anarchy over more general equilibrium concepts (e.g., correlated
equilibria) or settings with incomplete information (and Bayes-Nash equilibria), is the Kelly mecha-
nism still optimal within low-order terms? We are far from answering this question. The papers
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by Caragiannis and Voudouris [2] and by Christodoulou et al. [3] present LPoA bounds for Kelly,
but these are not known to be tight. We conjecture that the proof of tight LPoA bounds over more
general equilibrium concepts for any resource allocation mechanism should exploit the structure of
worst-case games and equilibria as we did in the current paper for pure Nash equilibria. Unfortu-
nately, extending our characterization from Section 4 to more general equilibrium concepts seems
elusive at this point.
There are several interesting extensions of our setting that could be considered. Budget-aware

mechanisms, which have access to the budget value of each player, constitute a first such extension.
Of course, our analysis for mechanisms Kelly, SH, E2-PYS, and E2-SR carries over to this case. In
contrast, our lower bound (Theorem 3.1) is not true anymore. The proof constructs two games, in
which almost every player has different budgets. The main property we have exploited in that proof
(for non-budget-aware mechanisms) is that the strategic behavior of the players results in the same
set of equilibria in both games. This argument fails for budget-aware mechanisms; a small change
in the budget of a single player could be enough to alter the set of equilibria. So, in principle, one
might hope even for full efficiency at equilibria (i.e., LPoA equal to 1) in this case, analogously to
the results of Maheswaran and Basar [17], Johari and Tsitsiklis [9], and Yang and Hajek [22] in the
no-budget setting. Interestingly, our next statement rules out this possibility.

Theorem 7.1. For n ≥ 2, every n-player budget-aware resource allocation mechanism has liquid
price of anarchy at least 4/3.

Proof. LetM be any n-player budget-aware resource allocation mechanism that uses an allo-
cation function дM and a payment function pM . Let s = (s1, ..., sn) be an equilibrium of the game
GM
1 induced byM for players with valuations vi (x) = x for i ∈ {1, 2} and vi (x) = 0 for i ≥ 3, and

budgets ci = 1 for every i ∈ [n]. Assume that the allocation returned by M at this equilibrium is
d = (d1, ...,dn). Without loss of generality, we may assume that one of the first two players (say,
player 1) gets a resource share of at most 1/2.

Recall that, for every signal vector y, the utility of any player i is defined as uMi (y) = vi (дMi (y)) −
pMi (y). Now, consider the game GM

2 where player 2 has the modified valuation function ṽ2(x) = 1+x
while all other players are as in GM

1 ; the budgets are the same in both games and are known to
the mechanism. Observe that the modified utility of player 2 is now ũM2 (y) = ṽ2(дM2 (y)) − pM2 (y) =
uM2 (y) + 1. Hence, s is an equilibrium in GM

2 as well andM returns the same allocation d again.
Clearly, due to the definition of the valuation functions, the contribution of players i ≥ 3 in

the liquid welfare (in any state of the game) is zero. Hence, the liquid welfare at equilibrium is
min{ṽ1(d1), c1} + min{ṽ2(d2), c2} = d1 + 1 ≤ 3/2, while the optimal liquid welfare is equal to 2,
achieved at the allocation according to which the whole resource is given to player 1. We conclude
that the liquid price of anarchy ofM is LPoA(M) ≥ LPoA(GM

2 ) ≥ 4/3, as desired. □

In spite of the lower bound in Theorem 7.1, whether budget-aware resource allocation mech-
anisms can have an LPoA better than 2 − 1/n is an important open problem. This seems to be a
technically non-trivial and extremely challenging task though.

Another possible extension of our setting could be to allow the players to declare their budgets
to the mechanism in addition to their scalar signal. Taking this approach to its extreme, one could
imagine resource allocation mechanisms which ask the players to submit multi-dimensional signals.
At first glance, this seems to lead to much more powerful mechanisms than the ones we have
considered here. Surprisingly, this higher level of expressiveness has no consequences to the LPoA at
all and our lower bound of 2 − 1/n captures such mechanisms as well. Indeed, by inspecting the
two games used in the proof of Theorem 3.1, we can verify that the same signal vector (no matter
whether signals are single- or multi-dimensional) leads to the same allocation by the mechanism
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and the same strategic behavior of the players in both games. This observation applies to the proof
of Theorem 7.1 as well.

Finally, we believe that the liquid welfare is an appropriate efficiency benchmark for auctions with
budget-constrained players. The recent paper by Azar et al. [1] studies the LPoA of simultaneous
first-price auctions; obtaining similar results for other auction formats (e.g., see the recent survey
of Roughgarden et al. [19]) is certainly important. Needless to say, we do not expect that the liquid
welfare is unique as a measure of efficiency in settings with budgets. Defining alternative efficiency
benchmarks and studying the price of anarchy with respect to them would shed extra light to the
strengths and weaknesses of auction mechanisms.
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