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Abstract. A dynamics retains a specific information about the start-
ing state of a networked multi-player system if this information can be
computed from the state of the system also after several rounds of the
dynamics. Information retention has been studied for the function that
returns the majority of the states in systems in which players have states
in {0, 1} and the system evolves according to the majority dynamics: each
player repeatedly updates its state to match the local majority among
neighbors only. Positive and negative results have been given for prob-
abilistic settings in which the initial states of the players are chosen at
random and in worst-case settings in which the initial state is chosen
non-deterministically.

In this paper, we study the (lack of) retention of information on the
majority state (that is, which states appear in more players) for a gen-
eralization of the majority dynamics that we call heterogeneous majority
dynamics. Here, each player x changes its state from the initial state
b(x) ∈ {0, 1} to the opposite state 1 − b(x) only if there is a surplus
greater than ax of neighbors that express that opinion. The non-negative
player-dependent parameter ax is called the stubbornness of x. We call
stubborn the players which never change opinion when they are part of the
majority. We give a complete characterization of the graphs that do not
retain information about the starting majority; i.e., they admit a starting
state for which the heterogeneous majority dynamics takes the system
from a majority of 0’s to a majority of 1’s. We call this phenomenon
“minority becomes Majority” (or mbM) and our main result shows that
it occurs in all graphs provided that at least one player is non-stubborn.
In other words, either no player in the majority will ever change its state
(because they are all stubborn) or there is a starting configuration in
which information regarding the majority is not retained and minority
becomes Majority.

Our results are closely related to discrete preference games, a game-
theoretic model of opinion formation in social networks: an interplay
of internal belief (corresponding to the initial state of the player) and of
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social pressure (described by the heterogeneous majority dynamics). Our
results show that, because of local strategic decisions, the global majority
can be subverted.

1 Introduction

In this paper we study the information retention problem with respect to the
asynchronous heterogeneous majority dynamics. In the homogeneous majority
dynamics (or, simply, majority dynamics) players sit at the vertices of a social
graph, each player starts with an opinion in {0, 1} and repeatedly updates it
to match the opinion of the majority of its neighbors. After some number of
rounds, an election by majority takes place and we ask whether the information
regarding the starting majority is retained in the election outcome, hence the
name of information retention. To avoid ties it is assumed that the number
of players is odd. The retention of information in majority dynamics has been
studied in a probabilistic setting in which the initial opinions are independently
conditioned on the majority and biased towards it. Positive and negative results
have been given by [18] and, more recently, in [21] both for the synchronous
model, in which all opinions are updated simultaneously, and the asynchronous
model, in which at each round a single player updates her opinion. The retention
of information in the majority dynamics in a worst-case setting has been first
studied by Berger [9] that constructed a series of graphs in which the majority
dynamics always results in the adoption of the opinions of the players in a small
minority group. Actually, the phenomenon of a minority becoming Majority (or,
the mbM phenomenon) is not restricted to some families of graphs but instead
is a feature of the majority dynamics. Roughly speaking, every graph, except
essentially for the complete graph and for the empty graph, admits an initial
distribution of opinions which leads the minority opinion to become majority [3]
(see also [6] for experimental results about this phenomenon).

Our contribution. In this paper we study the retention of information of majority
in the worst-case (or the mbM phenomenon) for the asynchronous heterogeneous
majority dynamics played on a graph G with vertices {1, . . . , n}, each corre-
sponding to a player with a binary state. In the heterogeneous majority dynamics,
each player x is described by its stubbornness ax that measures the willingness
of the player to adopt (and keep) an opinion that differs from its initial opinion.
More precisely, we distinguish between the initial opinion of a player x, called
the belief b(x), and its current opinion s(x). The belief is internal to the player
and is never explicitly revealed whereas the opinion is publicly known. A player
x with belief b(x) can make a move from its current opinion s(x) = b(x) to its
revised opinion s(x) = 1 − b(x) only if d1−b(x)(x) − db(x)(x) > ax where, for
c = 0, 1, dc denotes the number of neighbors with opinion c. Similarly, x makes
a move from s(x) = 1 −b(x) to s(x) = b(x) if d1−b(x)(x) − db(x)(x) ≤ ax. A set
of opinions is in equilibrium if no player can make a move.

We say that a pair (G, (a1, . . . , an)) consisting of a graph G (we assume that
n is odd so that majority is well-defined) and stubbornness values for the players,
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is subvertable if there exist beliefs (b(1), . . . ,b(n)) with a majority of 0’s and a
sequence of moves that goes from the initial truthful state, in which s(x) = b(x)
for each vertex x, to an equilibrium state with a majority of 1’s. We call such a
belief assignment subvertable.

Our main contribution is a characterization of the subvertable pairs and
shows that a pair (G, (a1, . . . , an)) is subvertable unless all players are stubborn.
Roughly speaking, a stubborn player never changes its initial opinion if it hap-
pens to be in the starting majority. In order to formalize this definition, let us
consider vertex x with b(x) = 0 and d0(x) neighbors with opinion 0 and d1(x)
neighbors with opinion 1, and suppose that the majority (that is at least (n+1)/2
vertices) has belief 0 (and, thus, d1(x) ≤ (n − 1)/2). Clearly, if its degree d(x)
satisfies d(x) ≤ ax, then player x cannot make a move from s(x) = 0 to s(x) = 1.
If d(x) ≥ n − ax − 1 then d1(x) − d0(x) = 2d1(x) − d(x) ≤ n − 1 − d(x) ≤ ax

and thus vertex x cannot make a move from s(x) = 0 to s(x) = 1. Instead, it
is not hard to see that if d(x) ∈ [ax + 1, n − ax − 2], there are values of d0(x)
and d1(x) such that vertex x can move from s(x) = 0 to s(x) = 1 The same
reasoning applies for vertices x with b(x) = 1 in case majority is 1. We have
thus the following definition.

Definition 1 (Stubborn vertex). Vertex x with degree d(x) and stubbornness
ax is stubborn if ax ≥ min {d(x), n − d(x) − 1} .

Clearly, if all vertices are stubborn then majority cannot be subverted as no
vertex x in the majority will ever make a move from s(x) = b(x) to s(x) =
1 − b(x). The main result of this paper shows that:

if there is at least one non-stubborn vertex then there is a subvertable belief
assignment.

We find that this sharp phase transition is highly surprising, since it implies
that a minority could become majority (for some stubbornness levels) even in
very dense graphs (e.g., clique minus a single edge) and in very sparse graphs
(e.g., a graph consisting of a single edge plus isolated nodes). Hence, it highlights
an interesting lack of robustness of social networks with respect to information
retention. This weakness may be relevant to explain some phenomena arising on
social media, such as the wide diffusion of misinformation.

To prove this result we design a polynomial-time algorithm that takes as
input the social network G and players’ stubbornness a1, . . . , an, such that there
is at least one non-stubborn vertex, and returns a subvertable belief assignment
for this instance. Actually, the algorithm considers the simplest belief assignment
from which minority becomes Majority, namely one in which the minority con-
sists of n−1

2 vertices. However, we remark that our characterization does not rule
out that the subvertable belief assignment can have smaller minorities (even if
there are instances on which only very large minorities can become majority, e.g.
when there is a single non-stubborn vertex), and our algorithm can be adapted
and optimized in order to find these minorities (see, e.g., [6]).
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A possible interpretation of our result comes from a game theoretic model
of how opinions are formed in societies (see the discussion on discrete prefer-
ence games below). Within this context, the heterogeneous majority dynamics
describes the social pressure on opinions expressed by the players in a social net-
work. Our result shows that social networks are extremely vulnerable to social
pressure since there always exists a subvertable majority unless all vertices are
stubborn and never change their mind (in which case we do not have much of a
social network). This is particularly negative as an external adversary might be
able to orchestrate a sequence of steps of the underlying dynamics so as to reach
the state in which majority is subverted. In principle, though, this could be very
difficult since there could be different sequences of updates that lead to different
equilibria with different majorities and the adversary has to be very careful in
scheduling the best response moves.

Our characterization instead proves that, as long as we consider subvertable
belief assignments with a minority of n−1

2 players, a stronger result is possible:
there is always one single swing player whose best response in the initial state is
to change its opinion and this leads to a state in which any sequence of moves
leads to an equilibrium in which majority has been subverted. In other words,
the adversary that wants to subvert the majority only has to influence the swing
player and then the system will evolve without any further intervention towards
an equilibrium in which majority is subverted. More precisely:

Definition 2. A vertex u is said to be a swing vertex for subvertable belief
assignment b with n+1

2 vertices with belief 0 if

1. b(u) = 0;
2. d1(u) − d0(u) > au, that is, in the initial state, u can move from s(u) = 0 to

s(u) = 1;
3. For every x with b(x) = 1, it holds that d′

x(0) − d′
x(1) ≤ ax, where d′

x(c) is
the number of neighbors y of x with s(y) = c after u’s move from s(u) = 0
to s(u) = 1. That is, after u’s move no vertex with belief 1 can make a move
from 1 to 0.

Note that the definition above does not imply that the majority at equilibrium
consists of only n+1

2 vertices with belief 1 (the initial n−1
2 plus the swing vertex).

It may be indeed the case that other vertices with belief 0 will make moves from
0 to 1 after the move of the swing vertex u. Still, the third condition above
implies that, after u’s move, the number of vertices with opinion 1 is a majority
and the size of this majority does not decrease.

Our main result then can be improved as follows:

if there exists at least one non-stubborn vertex, then there exists a subvertable
belief assignment with a swing vertex.

It is natural to ask whether the characterization can be strengthened to
take into account strong initial majorities (i.e., initial majorities of size at least
(1+δ)n+1

2 for some 0 < δ < 1). That is, to characterize the pairs (consisting of a
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social network and stubbornness levels) that admit at least a subvertable strong
initial majority. We prove that no such characterization can be given by showing
that there exists δmax ≈ 0.85 such that for all 0 < δ < δmax it is NP-hard to
decide whether a given G and given stubbornness a1, . . . , an admit a subvertable
majority of size at least (1 + δ)n+1

2 . That is, unless P = NP,

no polynomial-time algorithm exists that characterizes subvertable belief
assignments for large initial majorities.

Related work. The majority dynamics and its generalizations are related to a
line of research in social sciences that tries to model how opinions are formed
and expressed in a social context. A simple classical model has been proposed by
Friedkin and Johnsen [16] (see also [14]). Its main assumption is that each indi-
vidual has a private initial belief and that the opinion she eventually expresses
is the result of a repeated averaging between her initial belief and the opinions
expressed by other individuals with whom she has social relations. The recent
work of Bindel et al. [12] assumes that initial beliefs and opinions belong to
[0, 1] and considers the dynamics that repeatedly averages the opinions of the
neighbors.

Ferraioli et al. [15] and Chirichetti et al. [13] considered a variant of this
model, named discrete preference games, in which beliefs and opinions are dis-
crete. These games are directly connected to the work in this paper. For this
reason, below we give a more formal description of the games, highlight the con-
ceptual link with the heterogeneous majority dynamics and briefly discuss the
significance of our results in this context.

Previous results about these games focused on the rate of convergence of
the game under different dynamics [15], and on the price of stability and price
of anarchy [13]. Moreover, extensions of the model have been proposed along
two main directions: some works assume that connections between nodes evolve
over time so that players with similar opinions are more likely to be connected
[10,11]; other works consider dynamics that try to capture more complex social
relations (e.g., to allies and competitors or among more than two players) [1,4].

The problem of majority retention has been recently investigated even with
respect to different dynamics: e.g., in [17], various negative results are proved
with respect to a 3-state population protocol introduced in [2]. Similar problems
have also been considered in the distributed computing literature, motivated by
the need to control and restrict the influence of failures in distributed systems;
e.g., see the survey by Peleg [19] and the references therein.

Discrete preference games. A discrete preference game consists of a n-vertex
undirected graph G (the social network), coefficients α1, . . . , αn ∈ (0, 1) and
beliefs b(1), . . . ,b(n) ∈ {0, 1}. Player i’s strategy set consists of two possible
opinions s(i) ∈ {0, 1} and the cost ci(s) of player i in state s = (s(1), . . . , s(n)) ∈
{0, 1}n is defined as ci(s) = αi·|s(i) − b(i)|+(1 − αi)·

∑
j∈N(i) |s(i) − s(j)|, where

N(i) is the set of neighbors of vertex i in G (i.e., friends in the social network).
Note that the cost is the convex combination through αi of two components that
depend on whether the opinion coincides with the belief and on the strategies
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of the neighbors, respectively, and this models players that try to balance social
acceptance (which would make the player pick the opinion that is the majority
among its neighbors) and faithfulness to her own principles (which would make
the player pick opinion equal to belief). Different values of αi correspond to the
different individual behaviors and reflect the heterogeneity of the society.

An equilibrium state is defined to be a state s = (s(1), . . . , s(n)) for which
there is no player i whose best response is to adopt strategy 1 − s(i). More
precisely, s is an equilibrium if for all i ci(s) ≤ ci(1 − s(i), s−i), where we have
used the standard game theoretic notation by which (t, s−i) denotes the vector
(s(1), . . . , s(i − 1), t, s(i + 1), . . . , s(n)).

It is not difficult to see that the best-response dynamics of a discrete
preference game with stubbornness coefficients α1, . . . , αn ∈ (0, 1) coincides
with the heterogeneous majority dynamics with stubbornness a1, . . . , an where
ax =

⌊
αx

1−αx

⌋
. The fact that the heterogeneous majority dynamics does not

retain information about the majority state in the belief of the players trans-
lates to the possibility that the social network will express through opinions a
majority that differs from the majority of the beliefs. It is thus possible that the
local behavior of the players affects the global behavior of the network and that
the social pressure felt by individual members of a social network has effects on
the entire network.

2 Definitions and Overview

In this section we introduce the concepts of a bisection and of a good bisection
and give an overview of the proof of our main result. Due to page limit most of
the proofs are omitted. We refer the reader to the full version [5].

Good bisections yield subvertable belief assignments. A bisection S = (S, S) of
a graph G with an odd number n of vertices is a partition of the vertices of G
into two sets S and S of cardinality n+1

2 and n−1
2 , respectively. We define the

advantage advS(x) of a vertex x with respect to bisection S = (S, S) as follows:

advS(x) =

{
W (x, S) − W (x, S), if x ∈ S;
W (x, S) − W (x, S), if x ∈ S,

where W (x,A) denotes the number of neighbors of x in the set A.
We say that a bisection S = (S, S) is good if

1. for every x ∈ S, advS(x) ≥ −ax;
2. there is u ∈ S with advS(u) ≥ au + 1.

Vertices u ∈ S with advS(u) ≥ au + 1 are called the good vertices of S and
vertices y ∈ S with advS(y) < −ay are called the obstructions of S. The next
lemma proves that if G has a good bisection then one can easily construct a
subvertable belief assignment for G.
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Lemma 1. Let S = (S, S) be a good bisection for graph G and let u be a good
vertex of S. Then G admits a subvertable belief assignment b such that u is a
swing vertex for b.

Minimal bisections. The technical core of our proof is the construction of a good
bisection starting from a bisection S of minimal potential Φ. We define the poten-
tial Φ of a bisection (S, S) as Φ(S, S) = W (S, S)+ 1

2

(∑
x∈S ax −

∑
y∈S ay

)
. We

say that a bisection S has k-minimal potential if S minimizes the potential
among all the bisections that can be obtained from S by swapping at most k
vertices between S and S. That is, S has k-minimal potential if, for all A ⊆ S and
for all B ⊆ S, with 1 ≤ |A| = |B| ≤ k, Φ(S, S) ≤ Φ(S\A ∪ B,S\B ∪ A). We will
simply write that S has minimal potential whenever S has 1-minimal potential.

The next lemma proves some useful properties of minimal bisections.

Lemma 2. Let S = (S, S) be a bisection of minimal potential. Then for all
x ∈ S and y ∈ S, advS(x) + advS(y) + 2W (x, y) ≥ ax − ay.

Swapping vertices. To turn a minimal bisection S into a good bisection T =
(T, T ), we need at least one vertex in T with high advantage. One way to increase
the advantage of a vertex u ∈ S is to move vertices that are not adjacent to
u away from S and to bring the same number of vertices that are adjacent
to u into S. We define the rank of a vertex u with respect to bisection S as
rankS(u) =

⌈
au+1−advS(u)

2

⌉
. It is not hard to see that the rank is exactly the

number of vertices that need to be moved. Note that a vertex u of rankS(u) has
advantage advS(u) such that au −2rankS(u)+1 ≤ advS(u) ≤ au −2rankS(u)+2.
We next formalize the notion of swapping of vertices and prove that it is always
possible to increase the advantage of a non-stubborn vertex x to ax + 1.

Given a bisection S = (S, S) and a vertex u, a u-pair for S is a pair of sets
(Au, Bu) such that:

– if u ∈ S, then Au ⊆ S ∩ N(u) and Bu ⊆ S ∩ N(u) with |Au| = |Bu| =
rankS(u);

– if u ∈ S, then Au ⊆ S ∩ N(u) and Bu ⊆ S ∩ N(u) with |Au| = rankS(u) and
|Bu| = rankS(u) − 1.

The bisection T associated with the u-pair (Au, Bu) for S is defined as

– if u ∈ S, T = (S\Au ∪ Bu, S\Bu ∪ Au);
– if u ∈ S, T = (S\Bu ∪ Au, S\Au ∪ Bu).

Note that our choice for the size of Au and Bu implies that in both cases |T | =
n+1
2 as desired. The next lemma shows that u is a good vertex in the bisection

associated with a u-pair.

Lemma 3. For each bisection S, let u be a vertex of the graph, (Au, Bu) be a u-
pair for S, and T be the bisection associated to (Au, Bu). Then advT (u) ≥ au+1.

The problem now is to understand which vertex we have to choose for making
it good. The next lemma says that stubborn vertices cannot be good vertices.
But they are sort of neutral: indeed, they cannot be obstructions either.
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Lemma 4. For every bisection S = (S, S) and every stubborn vertex x ∈ S it
holds that −ax ≤ advS(x) ≤ ax.

However, for every bisection S and every vertex u, a u-pair for S exists if
and only if vertex u is non-stubborn, as showed by the next lemma.

Lemma 5. For every bisection S = (S, S) and every vertex u, a u-pair for S
exists if and only if u is non-stubborn.

Hence, if there is a non-stubborn vertex u, there is a u-pair (Au, Bu) for S,
and u is certainly a good vertex for the bisection T associated to this u-pair.
Therefore, if T is not good then it must be that there is a vertex y that is an
obstruction for T . In the last case, we will say that the vertex u, the u-pair
(Au, Bu) and the bisection T are obstructed by y. Most of the proof will be
devoted to dealing with these obstructions.

3 Main Theorem

Our main result is the following.

Theorem 1. Every graph G with an odd number of vertices and at least one
non-stubborn vertex has a subvertable belief assignment b and a swing vertex u
for b. Moreover, b and u can be computed in polynomial time.

We prove the theorem by exhibiting a polynomial-time algorithm (see Algo-
rithm 1) that, given a graph G with an odd number of vertices, and at least one
of which that is non-stubborn, returns a good bisection S and a good vertex u
for S. The theorem then follows from Lemma 1.

Input: A graph G = (V,E) with |V | odd and at least one non-stubborn vertex
Output: A pair (S, u) where S is a good bisection and u is its good vertex

1 S = (S, S) is a bisection of G of 3-minimal potential
2 M= non-stubborn vertices of minimum rank in S
3 if there is u ∈ S with advS(u) ≤ −au − 1 then

4 Let T = (S ∪ {u}, S \ {u})
5 return (T , u)

6 if there is u ∈ S with advS(u) ≥ au + 1 then
7 return (S, u)

8 if there is u ∈ S with advS(u) ≥ au + 1 then

9 Pick w ∈ S and let T = (S ∪ {w}, S \ {w})
10 return (T , u)

11 if there is u ∈ S ∩ M with advS(u) < 0 then

12 Let S ′ = (S ∪ {u}, S \ {u})
13 Pick u-pair (Au, Bu) for S ′

14 Let T be the associated bisection
15 return (T , u)

16 if M ∩ S �= ∅ then return MinRankInNotS(S)
17 else return MinRankInS(S)

Algorithm 1. Returns a good bisection and a good vertex
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First, we note that the algorithm runs in time that is polynomial in the size of
the input. Indeed, a bisection of 3-minimal potential at Line 1 can be efficiently
computed through a local search algorithm [20], and all remaining steps only
involve computationally easy tasks.

Next we prove that the algorithm is correct; that is, it outputs (T , u) where
T is a good bisection and u is a good vertex for T . Recall that, by Lemma 4,
it is sufficient to check that advT (u) ≥ au + 1 and that non-stubborn vertices
x ∈ S have advT (x) ≥ −ax.

The analysis of the algorithm can be divided in three parts: the warm-up
cases, i.e., if Algorithm 1 stops before reaching Line 16; the case there is a non-
stubborn vertex u ∈ S of minimum rank; and the case that every non-stubborn
vertex u of minimum rank belongs to S. Due to the page limit, we only sketch
the proof for the last and most interesting case, i.e. when the algorithm invokes
procedure MinRankInS (described in the full version of the paper [5]).

Suppose then that the algorithm invokes procedure MinRankInS. In this case,
all non-stubborn vertices of minimum rank belong to S. Moreover, all such
vertices have non-negative advantage for otherwise the Algorithm would have
stopped at Line 15.

Clearly, if MinRankInS stops at Line 5, Line 18, Line 26, Line 32, Line 39 or
Line 49, then the bisection output is good and u is a good vertex for it.

Suppose now that MinRankInS stops at Line 9, Line 30, Line 36, Line 44,
Line 47 or at Line 52. Since in all cases the algorithm returns a pair (T , v) where
T is the bisection associated to a v-pair, then, by Lemma 3, advT (v) ≥ av + 1.
Thus, we only need to prove that advT (x) ≥ −ax for every non-stubborn x ∈ T .

3.1 Properties of the Obstructions

Most of the work will be devoted to dealing with obstructions. Therefore, before
proceeding, we give some useful properties of the obstructions, whose proof can
be found in the full version.

Lemma 6. Let u ∈ S be a vertex of minimum rank for the bisection S and let y
be an obstruction for u. Then y ∈ S. Similarly, let u ∈ S be a vertex of minimum
rank for the bisection S and assume there is no vertex of minimum rank in S.
If y is an obstruction for u, then y ∈ S.

Lemma 7. Let S be a bisection and let u be a vertex of minimum rank in S.
Let T be the bisection associated with a u-pair (Au, Bu) for S. If vertex y is
an obstruction for T , then advS(y) ≤ −ay + 2rankS(u) − 3. Moreover, for every
non-stubborn v ∈ S if advS(v)+advS(y)+2W (v, y) ≥ av −ay, then v is adjacent
to y, v has minimum rank and advS(y) ≥ −ay + 2rankS(u) − 4.

Lemma 8. Let S be a bisection and suppose that there is no vertex in S with
minimum rank. Let u be a vertex of minimum rank in S. Let T be the bisection
associated with a u-pair (Au, Bu) for S. Suppose there is an obstruction y for
T with advS(y) < 0 and rankS(y) > rankS(u). Let S ′ = (S ∪ {y}, S\{y}). Then
rankS′(y) ≤ rankS(u).
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Lemma 9. Let S be a bisection and let u be a vertex of minimum rank in S.
Let T be the bisection associated with a u-pair (Au, Bu) for S. Suppose there is
an obstruction y for T with advS(y) ≥ 0. Then y has minimum rank � =

⌈
ay+1

2

⌉

and advS(y) = 0.

3.2 MinRankInS stops at Line 9

In this case, we have that u is a vertex of S with minimum rank �. Vertex y is
an obstruction of bisection T associated with u-pair (Au, Bu), and advS(y) < 0.
By Lemma 6, y ∈ S. Observe that rankS(y) > �, for otherwise Algorithm 1
would have stopped at Line 15. From Lemma 8, we obtain that rankS0(y) ≤ �.
We remind the reader that S0 = (S ∪ {y}, S\{y}) and T0 = (S ∪ {y}\Ay ∪
By, S\{y} ∪ Ay\By).

For every non-stubborn x ∈ T0\{y}, advT (x) can be written as: W (x, S) −
W (x, S) + 2W (x, y) − 2W (x,Ay) + 2W (x,By).

If x ∈ S\Ay, then

advT (x) = advS(x) + 2W (x, y) − 2W (x,Ay) + 2W (x,By)
≥ advS(x) + 2W (x, y) − 2|Ay|
= advS(x) + 2W (x, y) − 2rankS′(y) ≥ advS(x) + 2W (x, y) − 2�.

Since rankS(y) > �, then advS(y) ≤ ay − 2�. By applying Lemma 2 to y ∈ S
and x ∈ S we obtain that advS(x)+2W (x, y) ≥ −advS(y)+ay −ax ≥ −ax +2�.
Hence advT (x) ≥ −ax.

Finally, if x ∈ By, then x ∈ S and, by definition of y-pair, W (x, y) = 1.
Therefore we have

advT (x) = −advS(x) + 2W (x, y) − 2W (x,Ay) + 2W (x,By)
≥ −advS(x) − 2W (x,Ay) + 2
≥ −advS(x) − 2rankS′(y) + 2 ≥ −advS(x) − 2� + 2

Since � is the minimum rank, it must be the case that rankS(x) ≥ � which implies
that advS(x) ≤ ax + 2 − 2�. Therefore, advT (x) ≥ −ax.

3.3 MinRankInS reaches Line 19

We remind the reader that in this case u ∈ S is a non-stubborn vertex of min-
imum rank � and y is an obstruction to bisection T associated with u-pair
(Au, Bu) for S. By Lemma 6, y ∈ S. Note also that advS(y) ≥ 0, for other-
wise MinRankInS would have stopped at Line 9. From Lemma 9, it then follows
that advS(y) = 0 and rankS(y) = � =

⌈
ay+1

2

⌉
. Moreover, given a y-pair (Ay, By)

of S1 = (S ∪ {y}, S\{y}), y1 is either a vertex of
(
S ∪ {y}\Ay

)
∩ N(y) with

advS(w) = ay − ay1 or it is an obstruction to bisection T1 associated with this
pair. Note that, by Lemma 6, even in this last case y1 ∈ S ∪ {y}\Ay.

Properties of y and y1. We need to state some properties of y and y1 before
proving that the bisections returned by MinRankInS after Line 19 are good.
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Lemma 10. W (y, y1) = 0.

Lemma 11. If advS(y1) 	= ay −ay1 , then ay is even and advS(y1) = ay −ay1 +1.

Lemma 12. If advS(y1) 	= ay − ay1 , then advS(w) ≥ ay − aw + 1 − W (w, y) for
every w ∈ S.

Lemma 13. rankS2(y) = rankS2(y1) = �.

Lemma 14. For every u ∈ S2 and every v ∈ S2\{y}, we have that if advS(y1) =
ay−ay1 or u = y1, then advS2(u)+advS2(v)+2W (u, v) ≥ au−av, else advS2(u)+
advS2(v)+2W (u, v) = au−av +c+2W (y, v)+2W (u, y1)−2W (u, y)−2W (v, y1),
for c ≥ max {0, 2W (u, v) − 2W (y1, u) − W (y, v)}.

Lemma 15. For every u ∈ S\{y1} and v ∈ S\{y}, if W (u, y) = 1 and
W (u, y1) = 0, then advS2(u) + advS2(v) + 2W (u, v) ≥ au − av − 1.

MinRankInS stops at Line 30. Therefore there is v ∈ S2, whose rank in S2 is less
than rankS2(y) = �. Note that, since advS2(v) = advS(v)+2W (v, y1)−2W (v, y),

rankS2(v) =
⌈

av + 1 − advS(v) − 2W (v, y1) + 2W (v, y)
2

⌉

=
⌈

av + 1 − advS(v)
2

⌉

− W (v, y1) + W (v, y)

= rankS(v) − W (v, y1) + W (v, y).

Hence, rankS2(v) < � if and only if rankS(v) = � (that is, v has minimum rank
in S), W (v, y1) = 1 and W (v, y) = 0. From this we obtain that for every vertex
v with rankS2(v) < �, it holds that advS(v) ≥ 0 (since v has minimum rank in S
and no vertex of minimum rank in S with negative advantage can exist, otherwise
a good bisection was returned at Line 15 of Algorithm 1), and, advS2(v) ≥ 2. We
also observe that every vertex x ∈ S2 = S∪{y}\{y1} has rankS2(x) ≥ �. If x = y,
then this follows from Lemma 13. If x 	= y, then it follows since rankS(x) ≥ �+1,
and the rank decreases of at most one when two vertices are swapped.

Moreover, if MinRankInS stops at Line 30, then the bisection T2 associated to
v-pair (Av, Bv) for S2 has an obstruction y2. By Lemma 6, y2 ∈ S2\Av. Suppose
that advS2(y2) ≥ 0, then, from Lemma 9, it follows that advS2(y2) = 0 and has
minimum rank, i.e., rankS2(y2) = � − 1. However, this is a contradiction, since
we showed that if rankS2(y2) = � − 1, then advS2(y2) ≥ 2.

It must be then the case that advS2(y2) < 0 and rankS2(y2) ≥ �. Then, by
Lemma 8, rankS3(y2) ≤ � − 1, where S3 = (S2 ∪ {y2}, S2 ∪ {y2}). It must be
also the case that either rankS(y2) ≥ � + 1 or rankS(y2) = �, W (y2, y) = 1
and W (y2, y1) = 0. Indeed, rankS(y2) ≥ �, since � is the minimum rank in S. If
rankS(y2) = �, then advS(y2) ≥ 0. Thus, if W (y2, y) = 0 and W (y2, y1) = 1, then
rankS2(y2) = � − 1, a contradiction. If W (y2, y) = W (y2, y1), then advS2(y2) =
advS(y2) ≥ 0, still a contradiction.
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We now can prove that the bisection T3 returned at Line 30 is good. Recall
that T3 is associated to y2-pair (Ay2 , By2) for S3, i.e., T3 = (S2 ∪ {y2}\Ay2 ∪
By2 , S2\{y2} ∪ Ay2\By2), where |Ay2 | = |By2 | = rankS3(y2) ≤ � − 1.

We first prove that for every x ∈ S2∪{y2}\Ay2 , we have that advT3(x) ≥ −ax.
If x 	= y, we distinguish two cases. If rankS(y2) ≥ �+1, then by applying Lemma 2
to y2 ∈ S and x ∈ S, we have that advS(x)+2W (x, y2) ≥ −advS(y2)+ay2 −ax ≥
−ax + 2�, where we used that rankS(y2) ≥ � + 1 and thus advS(y2) ≤ ay2 − 2�.
Then, advS2(x) = advS(x)+2W (x, y)−2W (x, y1) ≥ −ax +2�−2. If rankS(y2) <
�+1, then, as stated above, it must be the case that rankS(y) = �, W (y2, y) = 1
and W (y2, y1) = 0. Then, from Lemma 15, it holds that advS2(x)+2W (x, y2) ≥
−advS2(y2) + ay2 − ax − 1 ≥ −ax + 2� − 1, where we used that rankS2(y2) =
rankS(y2) + 1 = � + 1 and thus advS(y2) ≤ ay2 − 2�.

Hence, in both cases, we have advT3(x) ≥ advS3(x)−2W (x,Ay2) ≥ advS2(x)+
2W (x, y2)−2(�−1) ≥ −ax +2�−1−2(�−1) ≥ −ax +1. If x = y, then, by using
that advS2(y) = −advS(y) since W (y, y1) = 0, we have advT3(y) ≥ advS3(y) −
2(� − 1) = advS2(y) + 2W (y, y2) − 2(� − 1) = −advS(y) + 2W (y, y2) − 2(� − 1).
We showed above that advS(y) = 0 and � =

⌈
ay+1

2

⌉
≤ ay+2

2 . Hence, advT3(y) ≥
−ay + 2W (y, y2) ≥ −ay.

Finally, we prove that for all x ∈ By2 , advT3(x) ≥ −ax. Recall that By2 ⊆
S2\{y2} and W (x, y2) = 1 for all x ∈ By2 . We have two cases. If x 	= y1,
then advT3(x) ≥ −advS3(x) − 2(� − 1) = −advS2(x) + 2W (x, y2) − 2(� − 1) =
−advS(x) + 2W (x, y) − 2W (x, y1) − 2(� − 2) ≥ −ax + 2� − 2 + 2W (x, y) −
2W (x, y1) + 2 − 2(� − 1) ≥ −ax, where we used that rankS(x) ≥ � and thus
advS(x) ≤ ax − 2� + 2. If x = y1, then advT3(y1) ≥ −advS3(y1) − 2(� − 1) =
−advS2(y1)+2W (y1, y2)−2(�−1) = advS(y1)+2−2(�−1), where we used that
advS2(y1) = −advS(y1) since W (y, y1) = 0 and W (y1, y2) = 1 because y1 ∈ By2 .
Since advS(y1) ≥ ay − ay1 ≥ 2(� − 1) − ay1 , then advT3(y1) ≥ −ay1 + 2 ≥ −ay1 .

MinRankInS stops at Line 36. In this case y and y1 have minimum rank in
S2 and there is a vertex w ∈ S\{y} ∪ {y1} of minimum rank � and negative
advantage in S2. Note that if rankS2(w) ≤ rankS(w), then advS2(w) ≥ advS(w).
Thus, since in S all vertices of minimum rank have non-negative advantage, it
must be the case that rankS(w) = � + 1, and W (w, y) = 0 and W (w, y1) = 1.
Thus the w-pair defined at Line 35 can be constructed.

Consider now the bisection S4 defined at Line 34. Observe that advS4(w) =
−advS2(w) and therefore

rankS4(w) =
⌈

aw + 1 − advS4(w)
2

⌉

=
⌈

aw + 1 + advS4(w)
2

⌉

− advS4(w)

=
⌈

aw + 1 − advS2(w)
2

⌉

+ advS2(w) = rankS2(w) + advS2(w),

that is at most � − 1 since w has rank � and negative advantage in S2.
Now, for every x ∈ S2\Aw, we have advT5(x) ≥ advS2(x) + 2W (x,w) −

2rankS4(w) ≥ −advS2(w)+aw −ax −2(�−1), where we used that, by Lemma 14,
advS2(x)+2W (x,w) ≥ −advS2(w)+aw−ax+2W (y, x)+2W (w, y1)−2W (w, y)−
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2W (x, y1) ≥ −advS2(w) + aw − ax. Since rankS2(w) = �, then advS2(w) ≤ aw −
2� + 2, from which we achieve that advT5(x) ≥ −ax.

Finally, take x ∈ Bw ⊆ S2. We have advT5(x) ≥ −advS2(x) − 2rankS4(w) ≥
−advS2(x) − 2(� − 1). However, by hypothesis, w has minimum rank among the
non-stubborn vertices and thus it must be the case that rankS2(x) ≥ rankS2(w) =
� which implies that advS2(x) ≤ ax − 2� + 2. Therefore, advT (x) ≥ −ax.

There is still a missing case, for which we refer the reader to the full version.

4 Lower Bound

We next show that deciding if it is possible to subvert the majority when starting
from a weaker minority is a computationally hard problem, even if we start with
a minority of size very close to n−1

2 . The main result of this section is given by
the following theorem.

Theorem 2. For every constant 0 < ε < 133
155 , it is NP-hard to decide whether

in a graph G with n vertices there exists a subvertable belief assignment with at
most n−1

2 (1 − ε) vertices in the initial minority.

The proof of Theorem 2 uses essentially the same gadgets as a similar proof in
[3], but tuned for the current setting.

5 Open Problems

While this work proves information retention for the heterogeneous majority
dynamics in unweighted social network when only one player is allowed to update
her state at each time step, it would be interesting to understand what happens
if one considers weighted graphs or concurrent updates. Preliminary experimen-
tal results along this direction have been given in [6]. It would be also interesting
to investigate the extent at which the mbM phenomenon occurs if one considers
noisy variants of the heterogeneous majority dynamics, see, e.g., [7,8]. Finally,
one can be interested in understanding how probable the minority becomes
majority phenomenon is, and how is this frequency related to the topological
properties of the network.
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