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Abstract

Nowadays, several crowdsourcing projects exploit social
choice methods for computing an aggregate ranking of alter-
natives given individual rankings provided by workers. Mo-
tivated by such systems, we consider a setting where each
worker is asked to rank a fixed (small) number of alternatives
and, then, a positional scoring rule is used to compute the
aggregate ranking. Among the apparently infinite such rules,
what is the best one to use? To answer this question, we as-
sume that we have partial access to an underlying true rank-
ing. Then, the important optimization problem to be solved is
to compute the positional scoring rule whose outcome, when
applied to the profile of individual rankings, is as close as
possible to the part of the underlying true ranking we know.
We study this fundamental problem from a theoretical point
of view and present positive and negative complexity results.
Furthermore, we complement our theoretical findings with
experiments on real-world and synthetic data.

1 Introduction

Social choice theory (Brandt et al. 2016) studies voting
rules (also known as social choice or social welfare func-
tions) that compute a winning alternative or a ranking of
the available alternatives from voter preferences. Typically,
the preference of each voter is supposed to be a ranking
over all available alternatives. We deviate from this as-
sumption and, instead, we focus our attention to settings
in which each voter (or, better, agent for our purposes)
ranks only a small subset of the alternatives. Such incom-
plete rankings seem to be non-standard in the literature;
(de Weerdt, Gerding, and Stein 2016; Dwork et al. 2001;
Sculley 2007) are some notable exceptions.

The setting we have in mind is motivated by crowdsourc-
ing (Law and von Ahn 2011) and rating applications. For ex-
ample, assume that a requester would like to rank a huge set
of alternatives using expert opinions from a crowd of work-
ers. Asking each worker for her opinion on the whole set
of alternatives (i.e., for a full ranking) would possibly result
in poor information. Most probably, the worker will not be
aware of most of the alternatives. Even if she tries to obtain
additional information, coming up with consistent compar-
isons between alternatives that she knows well and alterna-
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tives that she has no idea about would be rather impossible,
given their huge number. Instead, this task would be much
easier if workers focused on small sets of alternatives. The
requester could give each worker a different set of few al-
ternatives to rank. Then, processing smaller inputs would be
easier for the requester as well.

This approach has been recently exploited in the context
of ordinal peer grading in MOOCs; see (Caragiannis, Krim-
pas, and Voudouris 2015; 2016; Raman and Joachims 2014;
Shah et al. 2013) for approaches of this flavour. In such set-
tings, the task of grading an exam with many participating
students is outsourced to the students themselves. Each stu-
dent is given a small number of exam papers to rank and
the final grading (a ranking of all students) is obtained by
aggregating the inputs provided by the students.

In a rating application we envision, users of a hotel book-
ing system are asked to rank hotels they have stayed recently
in a specific city and the rating application aims to compute
a full ranking of the hotels (or, possibly, different rankings
for different relevant criteria). Clearly, each user can pro-
vide meaningful feedback for just a few hotels. Again, in
this scenario, the system might ask each user to focus only
on a subset of the hotels she knows.

Besides the different sets of alternatives each individual
is asked to rank in the above scenarios, another implicit fea-
ture is that there is an underlying true ranking of all alter-
natives (e.g., the ranking of exam papers in terms of their
quality or the ranking of hotels in terms of their facilities)
that we would like to compute when aggregating the indi-
vidual preferences. Can we do so using simple voting-like
rules? We follow an optimization approach which can be de-
scribed with the following question: Assuming that we have
partial knowledge of the underlying true ranking and access
to sampled profiles, which is the rule that yields an outcome
that is as consistent as possible to (our partial knowledge
of) the underlying true ranking when applied to the sampled
profiles?

We study the above question for positional scoring rules
(or, simply, scoring rules), which have played a central role
in social choice theory. Two factors that have led to this de-
cision are their simplicity and effectiveness; simplicity fol-
lows by their definition and effectiveness is justified by our
experimental results. In particular, we consider settings in
which each agent is asked to rank the same number d of
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alternatives. A positional scoring rule in our setting is de-
fined by a scoring vector (s1, s2, ..., sd). It takes as input
the incomplete individual rankings of the agents and com-
putes scores for alternatives as follows. An alternative gets
sk points each time it is ranked k-th by an agent and its score
is its total number of points. The final ranking is obtained
by ordering all alternatives in terms of their scores, in non-
increasing order. Now, given a profile of individual incom-
plete rankings and desired relations for pairs of alternatives
(to be thought of as parts of the underlying true ranking) with
corresponding weights indicating the importance of each re-
lation, we would like to compute the positional scoring rule
whose outcome, when applied on the profile, maximizes the
total weight of the desired pairwise relations it satisfies. This
is related to learning-theoretic studies where a scoring rule
that is as consistent as possible to given examples is sought;
e.g., see the paper by Boutilier et al. (2015) and Procaccia et
al. (2009). The key difference of the current paper (besides
our assumption on profiles with incomplete rankings) is its
optimization flavour. We refer to this seemingly fundamental
optimization problem as OptPSR.

Our technical contribution is as follows. We present an
exact algorithm that solves OptPSR in time that depends
exponentially only on the parameter d (Section 3). Hence,
our algorithm runs in polynomial time when d is constant.
For instances with high values of d, we show that a simple
t-approval voting rule (that uses the scoring vector with t
1s followed by d− t 0s) yields a 1/d-approximate solution.
We show that this bound is tight by constructing an instance
in which any approval voting rule is 1/d-approximate. We
prove that OptPSR is hard to approximate and present an
explicit inapproximability bound of 23/24. This result fol-
lows by an approximation-preserving reduction from the
problem MAX-3LIN-2 of maximizing the number of satis-
fied equations in an over-determined system of linear equa-
tions modulo 2 and exploits a famous inapproximability re-
sult due to Håstad (2001). These results can be found in Sec-
tion 4. In Section 5, we describe experiments on real-world
and synthetic profiles. Our experimental results show that
scoring rules perform remarkably well and recover almost
100% of the desired constraints in many interesting scenar-
ios; this justifies our choice to study scoring rules (and the
optimization problem OptPSR) in the first place.

We begin with preliminary definitions in Section 2 and
conclude with open problems in Section 6. Due to lack of
space, the full proof of our inapproximability result is omit-
ted.

2 Problem statement

We consider settings with a set of agents N and a set of al-
ternatives A. Agent i expresses her preference over a subset
Ai ⊆ A of alternatives; her preference is a (strict) ranking
of the alternatives in Ai. A preference profile (or simply, a
profile) consists of the preferences of all agents. In this work,
we assume that all agents have the same number d ≥ 2 of al-
ternatives in their preference, i.e., |Ai| = d for each agent i.
However, different agents may have different alternatives in
their preferences.

A social welfare function takes as input a profile Π and
it outputs a ranking of all alternatives in A. A positional
scoring rule (or, simply, a scoring rule) is a social welfare
function that uses a scoring vector s = (s1, ..., sd) with
si ≥ si+1 for i = 1, ..., d − 1 and sd ≥ 0; the alterna-
tive at position k in each vote is assigned sk points and the
ranking of the alternatives is produced by ordering them in
monotone non-increasing order in terms of their total points
(or score). Formally, for an alternative x, let νj(x,Π) denote
the number of agents that rank x at position j in profile Π.
Then, given a scoring rule s, the score of alternative x is
defined as

scs(x,Π) =

d∑
j=1

νj(x,Π) · sj .

We also assume that we have access to a set of con-
straints C that represents our (possibly partial) knowledge
to an objective set of pairwise relations between the alter-
natives. Each constraint in C is given by an ordered pair of
alternatives (x, y), has a corresponding non-negative weight
(of importance) w(x, y), and requires that alternative x is
ranked higher than alternative y in the outcome of the scor-
ing rule s. For a pair of alternatives (x, y), let δj(x, y,Π) =
νj(x,Π)− νj(y,Π). Now, observe that, in order for alterna-
tive x to be ranked above y with certainty in the final rank-
ing, it must be scs(x,Π) > scs(y,Π) and, equivalently,

d∑
j=1

δj(x, y,Π) · sj > 0.

Using δ(x, y,Π) = (δ1(x, y,Π), ..., δd(x, y,Π)), the above
expression can be compactly written as the dot product
δ(x, y,Π) · s > 0.

For our purposes, instead of thinking of a profile Π as the
set of rankings provided by the agents, it is convenient to de-
scribe it using the quantities δ(x, y,Π) for every constraint
(x, y) in C; we use the notation δ(Π) to denote the set of
these quantities and will simply refer to it as the profile.

Now, problem OptPSR (standing for “optimizing posi-
tional scoring rules”) is defined as follows. We are given a
profile δ(Π) and a set C of constraints. The goal of OptPSR
is to find the scoring rule s that produces a ranking of all al-
ternatives so that the total weight (or gain)

g(s, δ(Π), C) =
∑

(x,y)∈C

w(x, y) · II {δ(x, y,Π) · s > 0} ,

of satisfied constraints is maximized. The quantity II {X}
takes value 1 if X is true and 0 otherwise.

Let us now give an equivalent view of OptPSR. A scor-
ing rule s can be thought of as a point in R

d, and, in par-
ticular, in the region R0 of R

d formed by the inequalities
si − si+1 ≥ 0 for i = 1, ..., d − 1 and sd ≥ 0 that define
all valid scoring vectors. We can define subregions of R0 by
considering any subset C ′ ⊆ C of constraints and the in-
equality δ(x, y,Π) · s > 0 for every constraint associated
with the pair of alternatives (x, y) ∈ C ′ and the inequality
δ(x, y,Π)·s ≤ 0 for every constraint (x, y) ∈ C \C ′. In this
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way, the collection of all subsets of constraints in C partition
R0 into disjoint subregions (of course, some of them may be
infeasible). Hence, in order to maximize g(s, δ(Π), C), it
suffices to find any point s in the non-empty subregion of
R0 that satisfies the subset of constraints with maximum to-
tal weight.

To do so, we can enumerate all subsets of constraints of
C, check feasibility of the corresponding regions using lin-
ear programming, and report any point in the subregion that
yields the highest gain. This algorithm takes time polyno-
mial in 2|C| and d, assuming that it receives δ(Π) and C as
input. In the next section, we will present an algorithm that
uses a more clever enumeration of the feasible subregions in
order to get the one that yields the maximum gain.

3 An improved OptPSR algorithm

We will present another (exact) OptPSR algorithm whose
running time depends exponentially only on the parameter d
and, hence, is polynomial when d is a constant.

The algorithm computes a pool of non-empty subregions
of R0, each of which satisfies a different subset of con-
straints. Initially, the pool consists of region R0 only and
is updated as new constraints of C are considered. When a
new constraint is considered, each region in the current pool
can be split into two subregions consisting of the points that
satisfy the constraint and those that do not satisfy it, respec-
tively; the whole region is retained in the pool if all its points
satisfy or (exclusively) do not satisfy the constraint.

In particular, the algorithm considers the constraints of C
one by one. At each step t of the algorithm, a pool P of re-
gions is kept; at the beginning of each step, all regions in the
pool are active. For each region R in P , the algorithm keeps
the gain val(R) that is obtained by the constraints which
have been considered until step t and are satisfied by scor-
ing vectors of region R. The algorithm begins its execution
having only region R0 in the pool. When a new constraint
(x, y) with weight w(x, y) is considered, the algorithm at-
tempts to update each active region R of P as follows. It
defines the candidate regions Rxy and R¬xy such that

• Rxy is defined by the inequalities that form R, together
with inequality δxy · s > 0 (that defines the set of points
that satisfy constraint (x, y)), and

• R¬xy is defined by the inequalities that form R, together
with inequality δxy · s ≤ 0 (that defines the set of points
that do not satisfy constraint (x, y)).

If both Rxy and R¬xy are non-empty (i.e., the correspond-
ing sets of inequalities are feasible), the algorithm includes
both Rxy and R¬xy in P as inactive, sets their gains
val(Rxy) := val(R) + w(x, y) and val(R¬xy) :=
val(R), and removes region R from the pool. If only Rxy

is feasible (and R¬xy is infeasible), val(R) is increased by
w(x, y). If only R¬xy is feasible, the algorithm does noth-
ing. In the last two cases, no new region is added to the pool.
Clearly, it cannot be the case that both Rxy and R¬xy are in-
feasible. Note that feasibility can be checked efficiently by
solving linear programs with d variables and up to |C| con-
straints. At the end of step t (i.e., when there is no other

(a) (b)

(c) (d)

(e)

Figure 1: An example of how the algorithm works on a sim-
ple instance Π with d = 2. The set C has three constraints
(x1, y1), (x2, y2), and (x3, y3) with corresponding weights
3, 1 and 2. The profile is such that δ(x1, y1,Π) = (−2, 3),
δ(x2, y2,Π) = (4,−2), and δ(x3, y3,Π) = (5,−6). So,
the constraints define the inequalities −2s1 + 3s2 > 0,
4s1−2s2 > 0, and 5s1−6s2 > 0. (a) Initially, the algorithm
has region R0 in the pool. (b) At the next step, the algorithm
considers constraint (x1, y1) and replaces R0 with regions
R1 (which is the subregion of R0 with −2s1 + 3s2 > 0
that satisfies the first constraint and has gain 3) and R2 (with
gain 0). (c) Next, constraint (x2, y2) leaves both regions R2

and R3 in the pool. (d) Finally, the third constraint (x3, y3)
replaces region R1 by regions R3 and R4. In (e), the evo-
lution of the content of the pool, together with the gains of
the corresponding subregions are illustrated. The region with
the maximum gain is R3 and the algorithm will output some
scoring vector from this region.

active region in the pool to be considered), the inactive re-
gions become active and the algorithm proceeds with step
t+ 1.

When all constraints of C have been considered, the
algorithm computes the active region R∗ with maximum
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val(R∗) and returns any scoring vector in R∗. An exam-
ple of an execution of the algorithm with d = 2 is depicted
in Figure 1.
Theorem 1. Given an instance of OptPSR consisting of a
set of constraints C and a profile δ(Π), the algorithm above
correctly returns a solution in time O(|C|d · poly(|C|, d)).
Proof. The correctness of the algorithm should be apparent.
It considers the whole space of points in R

d which corre-
sponds to scoring vectors and divides it into all (sub)regions
defined for every inclusion-maximal subset of constraints
that are satisfied simultaneously. Among all these regions, it
finds the one with points that correspond to scoring vectors
that satisfy constraints of C with maximum total weight.

Expanding R0 into the regions in the pool when the last
constraint of C is considered can be thought of as a non-
complete binary tree T with nodes corresponding to regions
(see Figure 1 for an example). T is rooted at a node cor-
responding to R0 and is such that each node at level t − 1,
corresponding to a region R, has two children at level t if the
region R was split in and replaced by two subregions at step
t and has one child otherwise (indicating that the region was
retained in the pool during step t). The total time required
to find all regions is proportional to the size of T . Since all
non-leaf nodes have at least one child, the size of T is at
most its height |C| times the number of leaves. The number
of leaves is essentially the number of different non-empty
regions, which is upper-bounded by the number of different
sign patterns that the quantities δxy · s define for each con-
straint (x, y) in C. Since these |C| quantities are linear func-
tions over the d coordinates of vector s, a result due to Alon
(1996) (see also Warren (1968)) yields that the total number

of different sign patterns is at most
(

8e|C|
d

)d

. For each of
the nodes of T , feasibility can be checked by solving two
linear programs with d variables and at most |C| constraints
in time poly(|C|, d). The theorem follows.

By Theorem 1, we obtain the following corollary. For
comparison, the naive algorithm presented at the end of the
previous section is polynomial in the very special case where
|C| is at most logarithmic in d.
Corollary 2. The algorithm solves instances of OptPSR
with constant d in polynomial time.

4 Approximating OptPSR
As the running time of the exact algorithm of the previous
section depends exponentially on d, our aim here is to design
much faster (i.e., polynomial-time) algorithms that compute
approximate OptPSR solutions. As we will see, an ex-
tremely simple scoring rule achieves a 1/d-approximation,
i.e., the total weight of the constraints it satisfies is at least
1/d times the total weight satisfied by an optimal OptPSR
solution. For t ∈ [d], the t-approval rule is a positional scor-
ing rule that uses the scoring vector that has 1 in the first t
positions and 0 in the remaining ones.
Theorem 3. For every instance of OptPSR with parameter
d, there exists some t ∈ [d] so that t-approval is a 1/d-
approximate solution. This bound is tight.

Proof. For the lower bound, consider a profile δ(Π) and set
of constraints C. We partition the constraints of C into d
disjoint sets C1, C2, ..., Cd so that the t-th set is defined as

Ct =

{
(x, y) ∈ C :

�∑
k=1

δk(x, y,Π) ≤ 0 for all � ≤ t− 1

and
t∑

k=1

δk(x, y,Π) > 0

}
,

for t = 1, 2, ..., d. Observe that the t-approval rule satis-
fies all constraints in the set Ct. Actually, set Ct is defined
as the set of constraints that are satisfied by t-approval but
not by �-approval for � < t. Hence, the sets C1, ..., Cd

are disjoint and there exists t∗ ∈ [d] (with t∗ being the
scoring vector of t∗-approval) such that g(t∗, δ(Π), C) ≥∑

(x,y)∈Ct∗
w(x, y) ≥ 1

d

∑
(x,y)∈C w(x, y). As the max-

imum possible gain cannot exceed
∑

(x,y)∈C w(x, y), we
have that t∗-approval is 1/d-approximate as desired.

For the upper bound, we will present an OptPSR in-
stance such that any t-approval, with t ∈ [d], is (at most)
1/d-approximate. The instance has d pairs of alternatives
(xt, yt) as constraints with w(xt, yt) = 1 for t ∈ [d].
We will build a profile Π∗ so that the t-approval rule sat-
isfies only constraint (xt, yt), while there exists a scoring
rule that simultaneously satisfies all constraints. Consider
quantities a1, a2, ..., ad with positive integer values such that∑d

j=1
1

1+aj
< 1. The profile is defined as follows:

• Alternative x1 appears a1 times in position 1, and alter-
native y1 appears 1 + a1 times in position 2. This means
that δ1(x1, y1,Π

∗) = a1, δ2(x1, y1,Π
∗) = −1 − a1 and

δj(x1, y1,Π
∗) = 0 for j ≥ 3.

• For 2 ≤ t ≤ d − 1, alternative xt appears 1 + at times
in position t, and alternative yt appears once in posi-
tion 1 and 1 + at times in position t + 1. This means
that δ1(xt, yt,Π

∗) = −1, δt(xt, yt,Π
∗) = 1 + at,

δt+1(xt, yt,Π
∗) = −1 − at and δj(xt, yt,Π

∗) = 0 for
j �∈ {1, t, t+ 1}.

• Alternative xd appears 1 + ad times in position d, and
alternative yd appears once in position 1. This means
that δ1(xd, yd,Π

∗) = −1, δd(xd, yd,Π
∗) = 1 + ad and

δj(xd, yd,Π
∗) = 0 for 2 ≤ j ≤ d− 1.

• The rest of the positions in the votes are filled with addi-
tional alternatives that do not appear in the constraints.

Observe that, for t ∈ [d], we have that∑t
j=1 δj(xt, yt,Π

∗) = at > 0,
∑t−1

j=1 δj(xt, yt,Π
∗) = −1

and
∑�

j=1 δj(xt, yt,Π
∗) = −1 for � > t. Hence, the

t-approval rule satisfies only constraint t for a total weight
of 1.

Now we will show that there exists a scoring rule s =
(s1, s2, ..., sd) that satisfies all constraints. Let ε > 0 be
some arbitrary small constant and consider the scoring vec-

tor s with s1 =
ε
∑d

j=1
1

1+aj

1−∑d
j=1

1
1+aj

, s2 = a1s1−ε
1+a1

, and si =

si−1 − s1+ε
1+ai−1

for i ≥ 3. First, observe that this is a valid
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scoring rule since, it is clear that si ≥ si+1 for all i ∈ [d−1]
and, furthermore, it can be easily seen that sd ≥ 0 as well.
Moreover, this scoring rule satisfies all constraints since∑d

j=1 δj(xt, yt,Π
∗) · sj = ε for every t ∈ [d]. Hence, any

t-approval is 1/d-approximate.

On the negative side, we show that our problem is not only
hard, but also hard to approximate within some constant.

Theorem 4. For every constant η > 0, OptPSR is hard to
approximate within 23/24 + η.

Due to lack of space, we just sketch the proof of The-
orem 4 here. We use a reduction from MAX-3LIN-2, the
problem of maximizing the number of satisfied equations
in an over-determined system of linear equations modulo 2.
An instance of MAX-3LIN-2 consists of n binary variables
xi ∈ {0, 1} and m equations of the forms xi ⊕ xj ⊕ xk = 0
and xi ⊕ xj ⊕ xk = 1, where ⊕ denotes addition modulo 2
and its objective is to find an assignment to the variables so
that the number of satisfied equations is maximized.

Given an instance of MAX-3LIN-2, our reduction con-
structs in polynomial-time an instance of OptPSR that has a
scoring rule that satisfies constraints of total weight 11m+L
if and only if the MAX-3LIN-2 instance has an assignment
satisfying L equations. A famous result by Håstad (2001)
states that it is hard to distinguish in time polynomial in n
and m whether a given instance of MAX-3LIN-2 has an as-
signment that satisfies at least (1 − η′)m equations or any
assignment satisfies at most (1/2 + η′)m equations, for any
constant η′ > 0. As a consequence of our reduction, we
obtain that it is hard to distinguish between instances of
OptPSR that have a scoring rule that satisfies constraints of
total weight at least (12 − η′)m and instances of OptPSR
in which the total weight of the constraints satisfied by any
scoring rule is at most (23/2 + η′)m. An inapproximability
bound of 23/24 + η (for every constant η > 0) then follows
by standard arguments.

Without loss of generality, we can assume that the scoring
vectors s = (s1, s2, ..., sd), that we seek for, have s1 = d
and the remaining scores are defined in terms of d− 1 vari-
ables a1, a2, ...ad−1 ≥ 0 as si+1 = si−ai for i = 1, ..., d−1
so that

∑d−1
i=1 ai ≤ d. Hence, a constraint can be expressed

as a linear inequality of the variables aj with j ∈ [d − 1].
The assumption that s1 = d allows for inequalities that have
non-zero constant terms. We only define linear inequalities
corresponding to constraints here; in the full proof, we also
construct the profile and specify the constraints as pairs of
alternatives and corresponding weights that are consistent to
these linear inequalities. Let mi be the number of equations
in which variable xi participates. The instance of OptPSR
is then as follows:

• For every variable xi, we have the four inequalities ai >
0, ai < ε, ai > 1 and ai < 1 + ε of weight mi each.

• For every equation, there are four inequalities of unit
weight each:

– if the equation is of the form xi ⊕ xj ⊕ xk = 0, the
inequalities are ai + aj + ak > 0, ai + aj + ak < ε,
ai + aj + ak > 2 and ai + aj + ak < 2 + ε, and

– if the equation is of the form xi ⊕ xj ⊕ xk = 1, the
inequalities are ai+aj +ak > 1, ai+aj +ak < 1+ ε,
ai + aj + ak > 3 and ai + aj + ak < 3 + ε.

The parameter ε is (polynomially) small but strictly positive.
The crucial observation is that for every quadruple of in-

equalities corresponding to a variable or an equation, any
value of the variables involved satisfy at least two and at
most three of them. For example, values of ai in (0, ε) or
(1, 1+ ε) satisfy three among the inequalities corresponding
to variable xi, while any other value satisfies exactly two of
them. In a sense, these two ranges of values simulate the as-
signment of values 0 and 1 to variable xi in the MAX-3LIN-
2 instance. The weight mi for these inequalities guarantees
that variable ai will never take any value outside these inter-
vals. Similarly, the quadruple of inequalities for an equation
aims to control the fact that the equation is satisfied or not.

5 Experiments

We have conducted experiments for two different scenarios;
we refer to them as ppl and col. In these two scenarios, we
used as alternatives 48 countries and 36 cities, respectively.
In both cases, the alternatives were used to define 392 differ-
ent sets consisting of six alternatives each. The alternatives
have been distributed to the different sets almost uniformly;
each country appears in at least 47 and at most 52 sets and
each city appears in at least 57 and at most 70 sets.

We used both real-world and synthetic data. Real-world
data were collected as input from 392 participants in a tech-
nology exhibition at our home institution. Each of them was
given two distinct sets of six countries and six cities. They
were asked to rank the countries in terms of their popula-
tion and the cities in terms of their cost of living. Synthetic
data were obtained by simulating 392 agents who use the
Plackett-Luce and Bradley-Terry noise models in order to
compute random rankings.

The Bradley-Terry model (Bradley and Terry 1952) (BT,
in short) is used by an agent in order to decide relations be-
tween all pairs of alternatives in her set as follows. Consider
a pair of alternatives (x, y) with corresponding utilities (pop-
ulations or cost of living indices) ux and uy . The agent de-
cides to rank x above y with probability ux

ux+uy
and y above

x with probability uy

ux+uy
. If the relative ranks of all pairs

of alternatives (that have been computed separately) do not
define a ranking, the whole process is repeated.

In the Plackett-Luce model (Luce 1959; Plackett 1975)
(PL, in short), an agent decides the ranking of the alterna-
tives in her set sequentially. Let B be the set of alternatives
the agent has to rank. Starting from the first position, the
next undetermined position in the ranking is filled by alter-
native x ∈ B with probability ux∑

y∈B uy
. After a random

selection, the chosen alternative is removed from B and the
process continues for the next undetermined position and the
remaining alternatives until all positions are filled.

The set of constraints were defined using population data
for the 48 countries from en.wikipedia.org and cost
of living index data from numbeo.com. In particular, in
the ppl scenario, we have a constraint for each pair of coun-
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tries x and y so that x is more populous than y. We con-
sider two different weightings for constraints using weight
that is either 1 or equal to the population difference between
countries x and y. Unit weights are used when we care only
about maximizing the number of correctly recovered popu-
lation comparison between countries. However, there might
be pairs that are really important to recover correctly, while
some others are not that important. For example, it is im-
portant to conclude that China is ranked above Switzerland
(their population difference is 1.3 billions) but an error in
the comparison between Cuba and Belgium (both with pop-
ulations around 11 millions) would not be that severe. Anal-
ogously, in the col scenario, we have a constraint for every
pair of cities x and y so that x has higher cost of living index
than y. The weight of the corresponding constraint is either
1 or equal to the cost of living index difference between the
two cities.

Since all the profiles we experimented with have d = 6,
one would expect that the exact algorithm presented in Sec-
tion 3 would be the obvious choice in order to come up
with the optimal scoring rule. Unfortunately, for the size of
OptPSR instances we considered (with 1128 constraints for
ppl and 630 constraints for col), this algorithm turned out
to be really slow, even after implementing several heuristics
that yield minor improvements to performance. This rather
disappointing outcome, together with the fact that d is small,
forced us to consider scoring vectors with discretized scores
(e.g., which are multiples of 0.05 or 0.02) in order to come
up with approximations of the optimal scoring rule. This ap-
proach has yielded the vectors (1, 0.5, 0.35, 0.2, 0.15, 0.05)
and (1, 0.65, 0.65, 0.35, 0.3, 0.25) for the ppl profile with
unweighted and weighted constraints and the vectors
(1, 0.9, 0.3, 0.3, 0.24, 0) and (1, 0.68, 0.68, 0.5, 0.22, 0.22)
for the col profile with unweighted and weighted constraints,
respectively.

We compare the optimal OptPSR solution (obtained in
this way) to several well-known scoring rules such as the
Borda count (defined by the scoring vector (d, d− 1, ..., 1)),
the harmonic rule (also known as Dowdall; defined by the
scoring vector (1, 1/2, ..., 1/d)), and t-approval rules. Ta-
bles 1 and 2 show the performance of these scoring rules in
all OptPSR instances we experimented with.

In Table 1, which contains data for instances with un-
weighted constraints, we observe that Borda and Harmonic
outperform all approval rules in all cases besides the col
scenario with PL agents, where 4-approval is slightly better
than Harmonic. Also, there are cases (e.g., ppl profile with
BT agents) where Borda performs better than Harmonic and
vice versa (e.g., see the results for real-world data). In all
scenarios, the values of Borda, Harmonic and the best ap-
proval rule have an average difference of 2.3%, 2.36% and
3.1%, respectively, from the optimal values (with maximum
difference values of 3.43%, 5.07% and 4.32% that are all
observed for the col profile with PL agents). Interestingly,
approval rules have amazingly better performance than what
their worst-case analysis from Theorem 3 indicates.

Clearly, Table 2 shows significantly better results from
(almost) all scoring rules on OptPSR instances with
weighted constraints. This is to be expected since solutions

improve significantly when heavy pairwise relations are cor-
rectly recovered. Here, Borda, Harmonic and the best ap-
proval are closer to the optimal performance. Now, the aver-
age distance is 1.05%, 1.08%, and 1.2%; again, the largest
differences are observed for the col profile with PL agents.

real data synthetic (BT) synthetic (PL)
rule ppl col ppl col ppl col
opt. 81.83 83.97 94.54 93.74 93.19 88.20

borda 79.87 81.43 93.16 91.03 91.59 84.67
harm. 80.94 82.54 92.84 91.34 90.50 83.13
1-app. 77.75 78.09 83.69 87.89 83.90 75.72
2-app. 78.19 79.36 89.71 90.65 88.72 81.29
3-app. 79.43 80.48 91.69 90.93 90.30 83.73
4-app. 77.57 79.68 90.00 89.44 89.70 83.88
5-app. 73.14 72.86 81.08 84.45 82.83 80.66
6-app. 32.53 51.43 32.54 51.43 32.54 51.43

Table 1: Performance (as percentage of the total weight of all
constraints) of scoring rules on instances with unweighted
constraints. For synthetic profiles with BT and PL agents,
the simulation was repeated 500 times; the values shown
here are averages.

real data synthetic (BT) synthetic (PL)
rule ppl col ppl col ppl col
opt. 95.98 92.93 99.66 98.69 99.48 96.02

borda 94.56 91.57 99.49 97.66 99.23 93.96
harm. 95.42 92.01 99.42 97.80 99.02 92.58
1-app. 94.85 89.84 98.59 96.48 97.86 86.34
2-app. 95.24 90.40 99.29 97.67 98.86 91.50
3-app. 93.68 90.83 99.05 97.70 99.04 93.37
4-app. 92.63 90.06 97.46 96.91 98.38 93.51
5-app. 84.61 82.00 87.94 93.81 91.69 90.99
6-app. 39.66 57.04 39.88 56.96 39.88 56.96

Table 2: Performance of scoring rules on instances with
weighted constraints. Again, for synthetic profiles with BT
and PL agents, the values indicate average performance from
500 simulations.

6 Open problems

Our work reveals several open problems. First, we would
like to determine the approximability of OptPSR. Is there
a polynomial time algorithm with constant approximation
ratio? Second, we would like to design an exact algorithm
that is practical. Our ambitious goal is to be able to solve
OptPSR instances like the ones we considered in our ex-
periments. Third, we would like to analyze theoretically
scoring rules in random profiles that have been produced
by Plackett-Luce or Bradley-Terry agents. Also, considering
agents following other noise models that are close to real-
world agents definitely deserves investigation.
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