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Abstract. We study the truthful facility assignment problem, where a
set of agents with private most-preferred points on a metric space are
assigned to facilities that lie on the metric space, under capacity con-
straints on the facilities. The goal is to produce such an assignment
that minimizes the social cost, i.e., the total distance between the most-
preferred points of the agents and their corresponding facilities in the
assignment, under the constraint of truthfulness, which ensures that
agents do not misreport their most-preferred points.

We propose a resource augmentation framework, where a truthful
mechanism is evaluated by its worst-case performance on an instance
with enhanced facility capacities against the optimal mechanism on the
same instance with the original capacities. We study a well-known mech-
anism, Serial Dictatorship, and provide an exact analysis of its per-
formance. Among other results, we prove that Serial Dictatorship has
approximation ratio g/(g − 2) when the capacities are multiplied by
any integer g ≥ 3. Our results suggest that even a limited augmen-
tation of the resources can have wondrous effects on the performance
of the mechanism and in particular, the approximation ratio goes to 1
as the augmentation factor becomes large. We complement our results

Ioannis Caragiannis was partially supported by a Caratheodory research grant E.114
from the University of Patras. Aris Filos-Ratsikas was partially supported by the
COST Action IC1205 on “Computational Social Choice” and by the ERC Advanced
Grant 321171 (ALGAME). Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen,
and Kristoffer Arnsfelt Hansen acknowledge support from the Danish National
Research Foundation and The National Science Foundation of China (under the
grant 61361136003) for the Sino-Danish Center for the Theory of Interactive Com-
putation and from the Center for Research in Foundations of Electronic Markets
(CFEM), supported by the Danish Strategic Research Council.

c© Springer-Verlag GmbH Germany 2016
Y. Cai and A. Vetta (Eds.): WINE 2016, LNCS 10123, pp. 236–250, 2016.
DOI: 10.1007/978-3-662-54110-4 17



Truthful Facility Assignment with Resource Augmentation 237

with bounds on the approximation ratio of Random Serial Dictatorship,
the randomized version of Serial Dictatorship, when there is no resource
augmentation.

1 Introduction

We study the facility assignment problem, in which there is a set of agents
and a set of facilities with finite capacities; facilities are located on a metric
space at points Fi and each agent has a most-preferred point Ai, which is her
private information. The goal is to produce an assignment of agents to facilities,
such that no capacity is exceeded and the sum of distances between agents and
their assigned facilities, the social cost, is minimized. A mechanism is a function
that elicits the points Ai from the agents and outputs an assignment. We will
be interested in truthful mechanisms, i.e., mechanisms that do not incentivize
agents to misreport their most-preferred locations and we will be aiming to
find mechanisms that achieve a social cost as close as possible to that of the
optimal assignment when applied to the true points Ai of the agents. Our setting
has various applications such as assigning patients to personal GPs, vehicles to
parking spots, children to schools and pretty much any matching environment
where there is some notion of distance involved.

Our work falls under the umbrella of approximate mechanism design without
money, a term coined by Procaccia and Tennenholtz [16] to describe problems
where some objective function is optimized under the hard constraints imposed
by the requirement of truthfulness. The standard measure of performance for
truthful mechanisms is the approximation ratio, which for our objective, is the
worst-case ratio between the social cost of the truthful mechanism in question
over the minimum social cost, calculated over all input instances of the problem.

However, it is arguably unfair to compare the performance of a mechanism
that is severely limited by the requirement of truthfulness to that of an omnipo-
tent mechanism that operates under no restrictions and has access to the real
inputs of the agents, without giving the truthful mechanism any additional capa-
bilities. This is even more evident in general settings, where strong impossibility
results restrict the performance of all truthful mechanisms to be rather poor. The
need for a departure from the worst-case approach has been often advocated in
the literature, but the suggestions mainly involve some average case analysis or
experimental evaluations.

Instead, we will adopt a different approach, that has been made popular
in the field of online algorithms and competitive analysis [13,17]; the approach
suggests enhancing the capabilities of the mechanism operating under some very
limiting requirement (such as truthfulness or lack of information) before compar-
ing to the optimal solution. Our main conceptual contribution is the adoption
of a resource augmentation approach to approximate mechanism design. In the
resource augmentation framework, we evaluate the performance of a truthful
mechanism on an input with additional resources, when compared to the opti-
mal solutions for the set of original resources. For our problem, we consider the
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social cost achievable by a truthful mechanism on some input with augmented
facility capacities against the optimal assignment under the original capacities
given as input.

More precisely, let I be an input instance to the facility assignment problem
and let Ig be the same instance where each capacity has been multiplied by some
integer constant g, that we call the augmentation factor. Then, the approximation
ratio with augmentation g of a truthful mechanism M is the worst-case ratio
of the social cost achievable by M on Ig over the social cost of the optimal
assignment on I, over all possible inputs of the problem. The idea is that if the
ratio achievable by a mechanism with small augmentation is much better when
compared to the standard approximation ratio, it might make sense to invest in
additional resources. At the same time, such a result would imply that the set
of “bad” instances in the worst-case analysis is rather pathological and not very
likely to appear in practice. To the best of our knowledge, this is the first time
that such a resource augmentation framework has been explicitly proposed in
algorithmic mechanism design.

1.1 Our Results

As our main contribution, we study the well-known truthful mechanisms for
assignment problems, Serial Dictatorship (SD) and Random Serial Dictatorship
(RSD). For SD, we provide an exact analysis, obtaining tight bounds on the
approximation ratio of the mechanism for all possible augmentation factors g.
Specifically, we prove that when n is the number of agents, while without any
augmentation, the approximation ratio of SD is 2n − 1, the approximation ratio
with augmentation factor g = 2 is exactly log(n + 1) whereas for g ≥ 3, the
approximation ratio is g/(g − 2), i.e., a small constant. In particular, our results
imply that as the augmentation factor becomes large, the approximation ratio of
SD with augmentation goes to 1 and the convergence is rather fast. Our results
for SD improve and extend some results in the field of online algorithms [12].

To prove the approximation ratios for all augmentation factors, we use an
interesting technique based on linear programming. Specifically, we first provide
a directed graph interpretation of the assignment produced by SD and the opti-
mal assignment, and then prove that the worst-case instances appear on g-trees,
i.e., trees where (practically) every vertex has exactly g successors. Then, we
formulate the problem of calculating the worst ratio on such trees as a linear
program and bound the ratio by obtaining feasible solutions to its dual. Such a
solution can be seen as a “path covering” of the assignment graph and we obtain
the bounds by constructing appropriate path coverings of low cost.

We also consider randomized mechanisms and the very well-known Random
Serial Dictatorship mechanism. We prove that for augmentation factor 1 (i.e., no
resource augmentation), the approximation ratio of the mechanism is between
n0.26 and n; the result suggests that even a small augmentation (g = 2) is a
more powerful tool than randomization.
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1.2 Related Work

Assignment problems are central in the literature of economics and computer
science. The literature on one-sided matchings dates back to the seminal paper
by Hylland and Zeckhauser [10] and includes many very influential papers
[5,18] in economics as well as a rich recent literature in computer science
[2,8,9,15]. Serial Dictatorships (or their randomized counterparts) have been in
the focus of much of this literature, mainly due to their simplicity and the frag-
ile nature of truthfulness, which makes it quite hard to construct more involved
truthful mechanisms. In a celebrated result, Svensson [18] characterized a large
class of truthful mechanisms by serial dictatorships. Random Serial Dictatorship
has also been extensively studied [1,15] and recently it was proven [8] that is
asymptotically the best truthful mechanism for one-sided matchings under the
general cardinal preference domain.

The facility assignment problem can be interpreted as a matching problem;
somewhat surprisingly, matching problems in metric spaces have only recently
been considered in the mechanism design literature. Emek et al. [7] study a
setting very closely related to ours, where the goal is to find matchings on met-
ric spaces, but they are interested in how well a mechanism that produces a
stable matching can approximate the cost of the optimal matching. In a con-
ceptually similar work, Anshelevich and Shreyas [3] study the performance of
ordinal matching mechanisms on metric spaces, when the limitation is the lack
of information. The fundamental difference between those works and ours is
that we consider truthful mechanisms and bound their performance due to the
truthfulness requirement; to the best of our knowledge, this is the first time
where truthful mechanisms have been considered in a matching setting with
metric preferences. Another difference between our work and the aforementioned
papers is that they do not consider resource augmentation and only bound the
performance of mechanisms on the same set of resources.1 However, given the
generality of the augmentation framework, the same idea could be applied to
their settings. In that sense, our paper proposes a resource augmentation app-
roach to algorithmic mechanism design that could be adopted in most resource
allocation and assignment settings.

As we mentioned earlier, the idea of resource augmentation was popularized
by the field of online algorithms and competitive analysis and is tightly related
to the literature on weak adversaries where an online competitive algorithm is
compared to the adversary that uses a smaller number of resources. The idea
for this approach originated in the seminal paper by Sleator and Tarjan [17] and
has been adopted by others ever since [14,19]; the term “resource augmentation”
was explicitly introduced by Kalyanasundaram and Pruhs [13].

Most closely related to our problem is the online transportation problem [12]
(also known as the minimum online metric bipartite matching). In particular,
results about the greedy algorithm in the online transportation problem imply
bounds for the facility assignment problem. However, contrary to [12], our analy-
sis is exact, i.e. our results involve no asymptotics. Furthermore, compared to the
1 With the exception of the bi-criteria result in [3].
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related result in [12], we remark that our analysis is substantially different due to
the use of linear programming; our primal-dual technique could be applicable for
greedy assignment mechanisms on other resource augmentation settings, beyond
the problem studied here. For a detailed discussion of the connection between
the two settings, the reader might refer to the full version of this paper.

Finally, there is some resemblance between our problem and the facility loca-
tion problem [16] that has been studied extensively in the literature of approxi-
mate mechanism design, in the sense that in both settings, agents specify their
most preferred positions on a metric space. Note that the settings are funda-
mentally different however, since in the facility location problem, the task is to
identify the appropriate point to locate a facility whereas in our setting, facilities
are already in place and we are looking for an assignment of agents to them.

2 Preliminaries

In the facility assignment problem, there is a set N = {1, . . . , n} of agents and
a set M = {1, . . . ,m} of facilities, where agents and facilities are located on a
metric space, equipped with a distance function d. Each facility has a capacity
ci ∈ N+, which is the number of agents that the facility can accommodate. We
assume that

∑m
i=1 ci ≥ n, i.e., all agents can be accommodated by some facility.

Each agent has a most preferred position Ai on the space and his cost di(j) from
facility j is the distance d(Ai, Fj) between Ai and the position Fj of the facility.
Let A = (A1, . . . , An) be a vector of preferred positions and call it a location
profile. Let F = (F1, . . . , Fm) be the corresponding set of points of the facilities.
A pair of agents’ most preferred points and facility points (A,F ) is called an
instance of the facility assignment problem and is denoted by I.

The locations of the facilities are known but the location profiles are not
known; agents are asked to report them to a central planner, who then decides
on an assignment S, i.e., a pairing of agents and facilities such that no agent
is assigned to more than one facility and no facility capacity is exceeded. Let
Si be the restriction of the assignment to the i’th coordinate, i.e., the facility
to which agent i is assigned in S and let S be the set of all assignments. The
social cost of an assignment S on input I is the sum of the agents’ costs from
their facilities assigned by S i.e.,

∑n
i=1 di(Si). A deterministic mechanism maps

instances to assignments whereas a randomized mechanism maps instances to
probability distributions over assignments.

A mechanism is truthful if no agent has an incentive to misreport his
most preferred location. Formally, this is guaranteed when for every location
profile A, any report A′

i, and any reports A−i of all agents besides agent
i, it holds that di(Si) ≥ di(S′

i), where S = M(I) and S′ = M(I ′), with
I = (A,F ) and I ′ = ((A′

i, A−i), F ). For randomized mechanisms, the corre-
sponding notion is truthfulness-in-expectation, where an agent can not decrease
her expected distance from the assigned facilities by deviating, i.e., it holds that
ES∼D[di(Si)] ≥ ES∼D′ [di(Si)], where D and D′ are the probability distributions
output by the mechanism on inputs I and I ′ respectively. A stronger notion of
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truthfulness for randomized mechanisms is that of universal truthfulness, which
guarantees that for every realization of randomness, there will not be any agent
with an incentive to deviate. Alternatively, one can view a universally truthful
mechanism as a mechanism that runs a deterministic truthful mechanism at
random, according to some distribution.

As our main conceptual contribution, we will consider a resource augmen-
tation framework where the minimum social cost of any assignment will be
compared with the social cost achievable by a mechanism on a location profile
with augmented facility capacities. Given an instance I, we will use the term
g-augmented instance to refer to an instance of the problem where the input is
I and the facility of each capacity has been multiplied by g. We will denote that
instance by Ig and we will call g the augmentation factor of I. For example,
when g = 2, we will compare the minimum social cost with the social cost of a
mechanism on the same inputs but with double capacities.

For the facility assignment problem, the optimal mechanism computes a min-
imum cost matching (which can be computed using an algorithm for maximum
weight bipartite matching) and it can be easily shown that it is not truthful;
in order to achieve truthfulness, we have to output suboptimal solutions. As
performance measure, we define the approximation ratio with augmentation of
a mechanism M as

ratiog(M) = sup
I

SCM (Ig)
SCOPT (I)

where SCM (Ig) =
∑n

i=1 di(M(Ig)i) is the social cost of the assignment pro-
duced by mechanism M on input instance I with augmentation factor g and
SCOPT (I) is the minimum social cost of any assignment on I i.e., SCOPT (I) =
minS∈S

∑n
i=1 di(Si). For randomized mechanisms, the definitions involve the

expected social cost and are very similar. Obviously, if we set g = 1, we obtain
the standard notion of the approximation ratio for truthful mechanisms [16]. For
consistency with the literature, we will denote ratio1(M) by ratio(M).

We will be interested in two natural truthful mechanisms that assign agents
to facilities in a greedy nature. A serial dictatorship (SD) is a mechanism that
first fixes an ordering of the agents and then assigns each agent to his most
preferred facility, from the set of facilities with non-zero residual capacities. Its
randomized counterpart, Random Serial Dictatorship (RSD), is the mechanism
that first fixes the ordering of agents uniformly at random and then assigns them
to their favorite facilities that still have capacities left. In other words, RSD runs
one of the n! possible serial dictatorships uniformly at random and hence it is
universally truthful.

3 Approximation Guarantees for Serial Dictatorships

In this section we provide our main results, the upper bounds on the approxima-
tion ratio with augmentation of Serial Dictatorship, for all possible augmentation
factors. In Sect. 4, we state the theorem that ensures that the bounds proven here
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are tight. At the end of the section, we also consider Random Serial Dictatorship,
when there is no resource augmentation.

Theorem 1. The approximation ratio of SD with augmentation factor g in
facility assignment instances with n agents is

1. ratio(SD) ≤ 2n − 1,
2. ratio2(SD) ≤ log(n + 1),
3. ratiog(SD) ≤ g

g−2 when g ≥ 3.

In order to prove the theorem,2 we first need to introduce a different interpre-
tation of the assignment produced by SD and the optimal assignment, in terms
of a directed graph. We begin with a roadmap of the proof of Theorem1.

1. We show how to represent an instance of facility assignment together with an
optimal solution and a solution computed by the SD mechanism as a directed
graph and argue that the instances in which the SD mechanism has the worst
approximation ratio are specifically structured as directed trees.

2. We observe that the cost of the SD mechanism in these instances is upper-
bounded by the objective value of a maximization linear program defined over
the corresponding directed trees.

3. We use duality to upper-bound the objective value of this LP by the value of a
feasible solution for the dual LP. This reveals a direct relation of the approx-
imation ratio of the SD mechanism to a graph-theoretic quantity defined on
a directed tree, which we call the cost of a path covering.

4. Our last step is to prove bounds on this quantity; these might be of indepen-
dent interest and could find applications in other contexts.

Consider an instance I of facility assignment. Recall the interpretation of
the problem as a metric bipartite matching and note that without loss of gen-
erality, each facility can be assumed to have capacity 1 and m ≥ n. Unless
otherwise specified, agents and facilities are identified by the integers in [n] and
[m], respectively.

Now, let O be any assignment on input I, and let S be an assignment returned
by the SD mechanism when applied on the instance Ig (where each facility has
capacity g). We use a directed graph to represent the triplet I, O, and S as
follows. The graph has a node for each facility. Each directed edge corresponds
to an agent. A directed edge from a node corresponding to facility j1 to a node
corresponding to facility j2 indicates that the agent corresponding to the edge
is assigned to facility j1 in O and facility j2 in S. Observe that there is at most
one edge outgoing from each node; this edge corresponds to the agent that is
assigned to the facility corresponding to the node in solution O. Furthermore, a

2 We point out here that statement 1 and a weaker version of statement 2 in Theorem 1
can be obtained as corollaries of results in the literature for the online transportation
problem (see [11,12]). However, we will prove the three statements of Theorem 1 as
part of our more general framework.
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node may have up to g incoming edges, corresponding to agents assigned to the
facility by the SD mechanism.

Representations as directed g-trees are of particular importance. A directed
g-tree T is an acyclic directed graph that has a root node r of in-degree 1 and
out-degree 0, leaves with in-degree 0 and out-degree 1, and intermediate nodes
with in-degree g and out-degree 1. We now show that it suffices to restrict our
attention to directed g-trees as graph representations of instances in which the
SD mechanism achieves its worst performance.

Lemma 1. Given a instance I with n agents, an optimal solution O for I and a
solution S consistent with the SD mechanism when applied to instance Ig, there
is another instance I ′ with at most n agents, with an optimal solution O′ and a
solution S′ consistent with the application of the SD mechanism on the instance
I ′
g such that the representation graph of the triplet (I ′, O′, S′) is a directed g-tree
and such that

cost(S, Ig)
cost(O, I)

≤ cost(S′, I ′
g)

cost(O′, I ′)
.

Proof. Let oi and si denote the facility to which agent i is connected in assign-
ments O and S, respectively. We say that agent i is optimal if oi = si. We say that
agent i is greedy if si �= oi and less than g agents are assigned to facility oi when
SD decides the assignment of agent i. This means that d(Ai, Fsi

) ≤ d(Ai, Foi
).

We say that agent i is blocked if g agents are already assigned to facility oi when
SD decides the assignment of agent i.

Starting from (I,O, S), we construct a new triplet (I ′, O′, S′) as follows:

– First, we remove all optimal agents. This corresponds to removing loops from
the representation graph.

– Then, we repeat the following process as long as there exists a blocked agent
i that is connected under S to a facility j that is the optimal facility of a
greedy agent. In this case, we introduce a new facility j′ at point Fj′ such
that d(Ai, Fj′) = d(Ai, Fj) and d(Fj′ ,X) = d(Ai, Fj′) + d(Ai,X) for every
other point X of the space. The second equality guarantees that the set of all
points corresponding to locations of agents and facilities that have survived
and the newly introduced point Fj′ is a metric. This can easily be achieved by
placing the new facility j′ such that it coincides with j on the metric space.
We assign agent i to facility j′ instead of j; by the first equality above, this is
consistent to the definition of the SD mechanism. In the representation graph,
this step adds a new node corresponding to the new facility j′ and modifies
the directed edge corresponding to blocked agent i so that it is directed to the
new node.

– Then, we remove all greedy agents that are not connected under S to optimal
facilities of blocked agents together with their optimal facilities.

– Then, for each facility j that is used by t ≥ 2 agents i1, i2, . . . , it in S
but is not used by any agent in O, we remove facility j and introduce t
new facilities j1, j2, . . . , jt such that d(Aik , jk) = d(Aik , j) for k = 1, . . . , t
and d(X, jk) = d(X,Aik) + d(Aik , jk) for every other point X of the space.
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Again, the second equality guarantees that the set of all points corresponding
to locations of agents and facilities that have survived and the newly intro-
duced points Fj1 , . . . , Fjt is a metric. For k = 1, . . . , t, we assign agent ik to
facility jk; by the first equality above, this is consistent to the definition of
the SD mechanism. In the representation graph, this step adds t nodes corre-
sponding to the new facilities j1, . . . , jt and, for k = 1, . . . , t, it modifies the
directed edge corresponding to blocked agent ik so that it is directed to the
new node jk, and removes node corresponding to facility j.

– Finally, we remove any facility that is not used by any of the non-removed
agents in any of the two solutions.

We denote by I ′ the resulting instance and by O′ the restriction of O to
the survived agents. Also, S′ is the assignment obtained by the modification of
S and considering the survived agents only. We remark that the representation
graph of (I ′, O′, S′) is a forest of directed g-trees. Indeed, the optimal facility of
a greedy agent is not used by any agent in S′; the corresponding node is a leaf in
the representation graph. Now, assume that the representation graph contains
a directed cycle; this should consist of directed edges corresponding to blocked
agents. By the definition above, this would mean that, for every agent j in this
cycle, the assignment of all agents that were assigned by the SD mechanism to the
optimal facility oj took place before the assignment of agent j to a facility; this
yields a contradiction and no such cycle exists. The optimal facility of a blocked
agent has out-degree 1 and in-degree g. Nodes with zero out-degree have degree
exactly 1; these are nodes corresponding to the newly added facilities and serve
as roots of the directed g-trees.

Let R be the set of (greedy and optimal) agents removed and observe that
d(Ai, Fsi

) ≤ d(Ai, Foi
) for each such agent i ∈ R. Hence, it is

cost(S, Ig)
cost(O, I)

=

∑
i∈[n] d(Ai, Fsi

)
∑

i∈[n] d(Ai, Foi
)

≤
∑

i∈[n] d(Ai, Fsi
) − ∑

i∈R d(Ai, Fsi
)

∑
i∈[n]\R d(Ai, Foi

) − ∑
i∈R d(Ai, Foi

)

=

∑
i∈[n]\R d(Ai, Fs′

i
)

∑
i∈[n]\R d(Ai, Fo′

i
)
.

Clearly, if the representation of triplet I ′, O′, S′ consists of more than one
g-trees, there is an instance I ′′ and assignments O′′ and S′′ corresponding to
the restriction of (I ′, O′, S′) in one of the g-trees which satisfies cost(S,Ig)

cost(O,I) ≤
cost(S′′,I′′

g )

cost(O′′,I′′) . If O′′ is indeed an optimal solution for instance I ′′, the proof is
complete. Otherwise, we repeat the whole process using instance I ′′ as I, solution
O to be the optimal solution for instance I ′′, and the SD solution S′′ until the
solution O′′ obtained is optimal for the g-tree instance obtained at the final step
(this condition will eventually be satisfied as the optimal cost decreases in each
application of the process). By setting Ĩ = I ′′, Õ = O′′, and S̃ = S′′ will then
yield the triplet with the desired characteristics. ��

So, in the following, we will focus on triplets (I,O, S) of a facility assignment
instance I with at most n agents, with an optimal solution O, and with an SD
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solution S for instance Ig that have a graph representations as a directed g-tree
T . Below, we use P to denote the set of all paths that originate from leaves.
Given an edge e of a g-tree, we use Pe (respectively, P̃e) to denote the set of all
paths that originate from a leaf and cross (respectively, terminate with) edge e.
We always use er to denote the edge incident to the root of a g-tree.

Our next observation is that cost(S, Ig) is upper-bounded by the objective
value of the following linear program.

maximize
∑

e∈T

ze

subject to: ze −
∑

a∈p\{e}
za ≤

∑

a∈p

d(Aa, Foa
), e ∈ T, p ∈ P̃e

ze ≥ 0, e ∈ T

To see why, interpret variable ze as the distance of agent corresponding to edge
e of T to the facility it is connected to under assignment S. Then, clearly, the
objective

∑
e∈T ze represents cost(S, Ig). Now, how high can cost(S, I) be? The

LP essentially answers this question (partially, becauses it does not use all con-
straints of the SD mechanism but sufficiently for our purposes). In particular, the
LP takes into account the fact that the distance of agent e to the facility to which
it is connected in S is not higher than the distance from the agent to any leaf
facility in its subtree; this follows by the definition of the SD mechanism since leaf
facilities are by definition available throughout the execution of the SD mecha-
nism. Indeed, consider agent e and a path p ∈ P̃e. Since agent e is connected to
facility se under SD and not to the facility corresponding to the leaf from which
path p originates from, this means that the distance d(Ae, Fse

) is not higher than
the distance of Ae from the location of the facility corresponding to that leaf.
Since d is a metric, this distance is at most d(Ae, Foe

) +
∑

a∈p\{e} d(Fsa
, Foa

) ≤
d(Ae, Foe

) +
∑

a∈p\{e} (d(Aa, Fsa
) + d(Aa, Foa

)). So, the constraint associated
with path p ∈ P̃e in the LP captures the inequality d(Ae, Fse

) ≤ d(Ae, Foe
) +∑

a∈p\{e} d(Fsa
, Foa

) ≤ d(Ae, Foe
) +

∑
a∈p\{e} (d(Aa, Fsa

) + d(Aa, Foa
)), by

replacing d(Ae, Fse
) with ze and d(Aa, Fsa

) with za and rearranging the terms.
By duality, the cost cost(Ig, S) of solution S is upper-bounded by the objec-

tive value of the dual linear program, defined as follows:

minimize
∑

p∈P
xp

∑

e∈p

d(Ae, Foe
)

subject to:
∑

p∈Per

xp ≥ 1

∑

p∈P̃e

xp −
∑

p∈Pe\P̃e

xp ≥ 1, e ∈ T, e �= er

xp ≥ 0, p ∈ P
Actually, for any feasible solution x of the dual LP, cost(S, Ig) is upper bounded
by the quantity

∑
p∈P xp

∑
e∈p d(Ae, Foe

). We will refer to any assignment x over
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the paths of P that satisfies the constraints of the dual LP as a path covering of
the directed g-tree T and will denote its cost by c(x) = maxe∈T

∑
p∈Pe

xp. We
repeat these definitions for clarity:

Definition 1. Let T be a directed tree. A function x : P → R
+ is called a path

covering of T if the following conditions hold:

–
∑

p∈Per
xp ≥ 1 for the edge er incident to the root of T ;

–
∑

p∈P̃e
xp − ∑

p∈Pe∩Pf
xp ≥ 1 if e �= er and f denotes the parent edge of e.

The cost c(x) of x is equal to maxe∈T

∑
p∈Pe

xp.

Lemma 2. Let g ≥ 2 be an integer, I be a facility assignment instance with
an optimal solution O, S be a solution of the SD mechanism when applied on
instance Ig, so that the triplet (I,O, S) is represented as a directed g-tree T which
has a path covering x. Then, cost(S, Ig) ≤ c(x) · cost(O, I).

Proof. Using the interpretation of the variables of the primal LP, duality, and
the definition of the cost of path covering x, we have that

cost(S, Ig) =
∑

e∈T

ze ≤
∑

p∈P
xp

∑

e∈p

d(Ae, Foe
) =

∑

e∈T

d(Ae, Foe
) ·

∑

p∈Pe

xp

≤ c(x) ·
∑

e∈T

d(Ae, Foe
) = c(x) · cost(O, I)

as desired. ��
In order to establish the upper bounds in Theorem1, it remains to show

that path coverings with low cost do exist; this is what we do in the next three
lemmas. We start with the Lemma for no augmentation. The proof of the lemma
is omitted due to lack of space.

Lemma 3. Let T be a 1-tree. Then, there is a path covering of T of cost 2n −1.

In the following, we identify path coverings of low cost for the case of g ≥ 3 and
g = 2. The next two lemmas complete the part of Theorem 1 that regards the
upper bounds.

Lemma 4. Let g ≥ 3 be an integer and T be a g-tree. Then, there is a path
covering of T of cost g

g−2 .

Proof. We prove the lemma using the following assignment x: for every path p
of length �, we set xp = 1

g−2g2−� if it contains and edge that is adjacent to the
root and xp = g−1

g−2g1−� otherwise.
We will first show that

∑
p∈Pe

xp = g
g−2 for every edge e using induction.

We will do so by visiting the edges in a bottom-up manner (i.e., an edge will be
visited only after its child-edges have been visited) and prove that the equality
for edge e using the information that the equality holds for its child-edges. As
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the basis of our induction, consider an edge e that is adjacent to a leaf at depth
� ≥ 1 from the root. If � = 1, this means that the tree consists of a single edge
and there is a single path p with xp = g

g−2 . If � ≥ 2, then the paths that contain
edge e are those who end at each ancestor of the leaf adjacent to e. Hence,

∑

p∈Pe

xp =
�−1∑

i=1

g − 1
g − 2

g1−i +
1

g − 2
g2−� =

g

g − 2
.

Now, let us focus on a non-leaf edge e and assume that
∑

p∈Pei
xp = g

g−2 for
each child-edge ei (for i ∈ [g]) of e (this is the induction hypothesis). Let u be
the node to which edges e and ei with i ∈ [g] are incident. The set of paths in Pe

consists of the following disjoint sets of paths: for each edge ei and for each path
p ∈ P̃ei

, set Pe contains all super-paths of p, i.e., paths originating from the leaf-
node reached by p and ending at each ancestor of node u; we use the notation
sup(p) to denote the set of super-paths of p. Observe that, the definition of x
implies that a super-path q of p that is longer than p by j has xq = 1

g−1g1−jxp if
q is adjacent to the root and xq = g−jxp otherwise. Hence, assuming that node
u is at depth � ≥ 1 from the root, we have that

∑

p∈Pe

xp =
g∑

i=1

∑

p∈P̃ei

∑

q∈sup(p)

xq =

⎛

⎝
�−1∑

j=1

g−j +
1

g − 1
g1−�

⎞

⎠
g∑

i=1

∑

p∈P̃ei

xp

=
1

g − 1

⎛

⎝
g∑

i=1

∑

p∈Pei

xp −
∑

p∈Pe

xp

⎞

⎠ ,

which yields
∑

p∈Pe
xp = g

g−2 as desired, since
∑

p∈Pei
xp = g

g−2 by the induction
hypothesis.

It remains to show feasibility. Clearly,
∑

p∈Pe
xp = g

g−2 ≥ 1 if e is adjacent
to the root. Otherwise, consider an edge e, its parent edge f , and their common
endpoint u. Assuming that u is at depth � from the root (and using definitions
and observations we used above), we have

∑

p∈Pe∩Pf

xp =
∑

p∈P̃e

∑

q∈sup(p)

xq =

⎛

⎝
�−1∑

j=1

g−j +
1

g − 1
g1−�

⎞

⎠
∑

p∈P̃e

xp =
1

g − 1

∑

p∈P̃e

xp,

which, together with the fact that g
g−2 =

∑
p∈Pe

xp =
∑

p∈Pe∩Pf
xp +

∑
p∈P̃e

xp

yields
∑

p∈Pe∩Pf
xp = 1

g−2 and
∑

p∈P̃e
xp = g−1

g−2 and, consequently,
∑

p∈P̃e
xp −

∑
p∈Pe∩Pf

xp = 1 as desired. ��
Finally, we state the lemma for augmentation factor g = 2. The proof is omitted
due to lack of space.

Lemma 5. Let T be an N -node 2-tree. Then, there is a path covering of T of
cost at most log N .
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We have shown that the performance of SD significantly improves even with a
small augmentation factor. A natural next question is to study its randomized
counterpart, RSD. Could randomization help in achieving much better ratios?
In the following, we state an approximation guarantee for RSD, when there is
no resource augmentation. The proof is omitted due to lack of space.

Theorem 2. The approximation ratio of RSD without resource augmentation
is ratio(RSD) ≤ n.

4 Lower Bounds

In this section, we provide lower bounds on the approximation ratio with aug-
mentation of the two mechanisms that we study. Interestingly, the constructed
instances are all on a simple metric space, the real line metric.

Theorem 3. The approximation ratio of Serial Dictatorship with augmentation
factor g in facility assignment instances with n agents is

1. ratio(SD) ≥ 2n − 1
2. ratio2(SD) ≥ log (n + 1)
3. ratiog(SD) ≥ g

g−2 − δ for any δ > 0 when g ≥ 3.

The approximation ratio of Random Serial Dictatorship is at least ratio(RSD) ≥
n0.26 (without resource augmentation).

We omit the proof of the theorem due to lack of space. The instances that
provide the lower bounds as well as the proofs are included in the full version of
the paper.

5 Discussion

We proposed a resource augmentation framework for algorithmic mechanism
design, where a mechanism, severely limited by the need for truthfulness is
given some additional allocative power before being compared to the optimal
mechanism, which operates under no restrictions. The framework is applicable
to other related problems as well; for example, the bi-criteria algorithms of [3]
can be seen as instances of resource augmentation. The framework can also be
applied to broader settings where the loss in performance is due to restrictions
other than truthfulness, such as fairness [6], stability [7] or ordinality [4,8]; all
the problems in those papers can be studied through the resource augmentation
lens. It is not hard to imagine that similar notions like the price of fairness [6],
could be redefined in terms of resource augmentation.

For the facility assignment problem, we took a positive step in the study of
Random Serial Dictatorship, proving approximation ratio bounds when there
is no augmentation. It seems like an interesting technical question to obtain
(tight) bounds for RSD and for different augmentation factors. It would also be



Truthful Facility Assignment with Resource Augmentation 249

meaningful to consider augmentation factors smaller than 2; note that a similar
construction to the one in our main lower bound can be used to show that
additive factors can not achieve significantly improved approximations. Finally,
it makes sense to consider other truthful mechanisms, beyond the greedy ones.
In the full version, we actually prove that for two facilities and no resource
augmentation, the approximation ratio of SD is 3, which is optimal among all
truthful mechanisms, even randomized ones.
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