
How Effective Can Simple Ordinal Peer Grading Be?

IOANNIS CARAGIANNIS, University of Patras
GEORGE A. KRIMPAS, University of Patras
ALEXANDROS A. VOUDOURIS, University of Patras

Ordinal peer grading has been proposed as a simple and scalable solution for computing reliable information
about student performance in massive open online courses. The idea is to outsource the grading task to the
students themselves as follows. After the end of an exam, each student is asked to rank — in terms of
quality — a bundle of exam papers by fellow students. An aggregation rule will then combine the individual
rankings into a global one that contains all students. We define a broad class of simple aggregation rules
and present a theoretical framework for assessing their effectiveness. When statistical information about
the grading behaviour of students is available, the framework can be used to compute the optimal rule from
this class with respect to a series of performance objectives. For example, a natural rule known as Borda is
proved to be optimal when students grade correctly. In addition, we present extensive simulations and a field
experiment that validate our theory and prove it to be extremely accurate in predicting the performance of
aggregation rules even when only rough information about grading behaviour is available.
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1. INTRODUCTION
Educational platforms such as Coursera, Udacity, and EdX provide easy access to high
level education to everyone who has a decent Internet access. In September 2015, these
platforms had more than 24 million users — essentially, students attending the offered
courses — and this number is expected to further increase in the near future. The term
“massive open online course”, or simply MOOC, is very descriptive of the service these
platforms offer. A MOOC is the result of their partnership with a faculty member in a
top university, whose role is to design the course and organize the course material so
that it takes advantage of the most popular Internet apps that the platform utilizes.
Courses offered include literally everything.

Even though the service provided is certainly useful, the viability of MOOCs will
strongly depend on their revenue sources. Currently, investments from VCs have se-
cured their survival for a short term, but what about their future? A feature that could
be the main source of revenue for MOOCs is the so-called verified certificate which the
students can get at a cost of a few dozens of dollars. The verified certificate keeps in-
formation about the performance of a student in a course (or in a chain of courses) and
can be used to justify a student’s quality to potential employers. So, the verified cer-
tificate should have reliable information about the student performance in the courses
she has participated in. Even though the means to guarantee this in the traditional
University system is well-established, achieving this in a MOOC is a challenge.
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The big issue is in the massive student participation. Of course, the Internet pro-
vides tools so that organizing exams with huge numbers of students is possible. But
what about assessment and grading? As the most popular courses attract 50 000 stu-
dents or more and the vision of MOOCs enthusiasts is for millions of students per
course, is grading of assignments or exams possible? No doubt, professional graders
would be extremely costly. Organizing the material using multiple-choice questions
and answers that could be graded automatically cannot be an option when the stu-
dents are asked to prepare an essay or a formal mathematical proof or express their
critical thinking over some issue. Grading is a typical example of a human computa-
tion [Law and von Ahn 2011] task in these cases.

The only solution that seems consistent to the MOOCs vision is known as peer
grading [Kulkarni et al. 2013; Piech et al. 2013; Walsh 2014], according to which
the grading task is outsourced to the students that participated to the exam them-
selves. This approach has been already implemented in some MOOCs and stan-
dalone experimental tools such as crowdgrader.org [de Alfaro and Shavlovsky 2014],
peergrading.org [Raman and Joachims 2014], and our own co-rank1 [Caragiannis
et al. 2016] are already available. Even though the approach seems straightforward,
there are subtle implementation issues. For example, allowing the students to use car-
dinal scores is problematic, since they participate both in the exam and in grading
and they may have incentives to assign low grades in order to improve their personal
relative performance. Even if we assume that they grade honestly, their experience in
doing so is very limited and the result will most probably be unreliable.

In this paper, we focus our attention on ordinal peer grading, which has recently
received attention in the AI and machine learning community [Caragiannis et al. 2015;
Raman and Joachims 2014; Shah et al. 2013]. Following the setting that we considered
in our previous work [Caragiannis et al. 2015], each student gets a bundle of a small
number (our favourite number that we have extensively used recently is 6) of exam
papers so that each exam paper is given to the same number of students. Each student
has to rank the exam papers in her bundle (in terms of quality) and an aggregation
rule will then combine the (partial) rankings submitted by the students and come up
with a final ranking of all exam papers; this will be the grading outcome. Information
about the position of a student in the final ranking (e.g., top 10% out of 33 000 students)
can be included in her verified certificate.

In [Caragiannis et al. 2015], we formally proved that a simple aggregation rule,
inspired from Borda’s rule from social choice theory [Brandt et al. 2016], recovers cor-
rectly an expected fraction of 1 − O(1/k) of the pairwise relations in the underlying
ground truth ranking, when bundles of size k are used and students make no mis-
takes when grading. The assumption for a ground truth and the comparison of the
grading outcome to it is similar in spirit to recent approaches that combine voting and
learning [Caragiannis et al. 2013, 2014; Chierichetti and Kleinberg 2014; Conitzer
and Sandholm 2005; Lu and Boutilier 2011; Pivato 2013; Xia 2014; Young 1988]. The
new aspect in [Caragiannis et al. 2015] (as well as in the current paper) is the re-
laxed requirement of recovering the ground truth only approximately. Experimental
results show that Borda has very good performance in an imperfect grading scenario
inspired by a noisy model of generating random rankings that has been proposed by
Mallows [1957]. Note that, unlike other studies [Raman and Joachims 2014; Shah
et al. 2013], we investigate the potential of applying ordinal peer grading exclusively,
without involving any professionals in grading.

In this paper, we follow a different approach. To explain our rationale, we remark
that theoretical analysis requires to handle with extra care dependencies between sev-

1Available at co-rank.ceid.upatras.gr.
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eral random variables that appear due to the distribution of exam papers to bundles.
The analysis of Borda was possible only due to its particular definition; we have not
managed to extend the analysis to any other aggregation rule. Also, the O notation in
the theoretical guarantee for Borda above hides large constant terms that constitute
the bound of theoretical interest only. We would like to develop a “theory” for deter-
mining the performance of Borda with the highest possible accuracy. And, of course,
why should we restrict our study only to Borda?

Instead, we define and study a large class of simple aggregation rules, which we
call type-ordering aggregation rules. A type-ordering rule determines the position each
exam paper has in the final ranking based only on the ranks each paper has in the bun-
dles that contain it. This class includes Borda. We present a theoretical framework for
assessing the performance of each member of this class with respect to a series of per-
formance objectives. A crucial step in our study is that we have completely neglected
the dependencies between the random variables that make the rigorous analysis dif-
ficult. This sacrifice of mathematical rigor is formally incorrect unless the number of
students tends to infinity; this can be justified by the massive participation in MOOCs.
But the best justification of our approach is that the theoretical predictions of perfor-
mance are experimentally shown to be exact, which means that the dependencies have
no positive or negative impact on performance. Furthermore, once (statistical) infor-
mation about the grading behaviour of students and the desired performance objec-
tives are known, our framework can serve as an optimization toolkit for selecting the
optimal type-ordering aggregation rule. This requires an exact solution to an instance
of the feedback arc set problem which, albeit NP-hard in general, can be solved exactly
for the instances that do arise.

Our theoretical framework allows us to obtain a series of results. For example, we es-
tablish that Borda is the optimal type-ordering aggregation rule when students act as
perfect graders. This is rather surprising, since Borda is among the simplest aggrega-
tion rules in the class we consider. Even though it was not observed to be optimal in any
other scenario we considered, its performance is always extremely close to optimality.
Furthermore, as mentioned above, the optimization task of deciding the optimal ag-
gregation rule strongly depends on the information about grading behaviour. We study
how inaccuracies of this information affect the choice of the optimal aggregation rule
and its performance for the Mallows model. The results suggest a very minor impact
and, essentially, a tiny sample of a student population is enough for building a fairly
accurate model of grading behaviour.

Overall, our approach combines theory, simulations, and experimentation and is pre-
sented graphically in Figure 1. The lower chain of the figure describes what one would
expect from a simulated exam. There is a student population and some of them partic-
ipate in an exam. The preparation level of the students that determines their perfor-
mance in the exam is a random variable following a uniform probability distribution.
After the exam, each student acts as the grader of a small number of exam papers
submitted by other students. The grading performance can depend on the preparation
level as well. The grades are combined using the aggregation rule and the final ranking
is compared to the ground truth to come up with the observed performance.

The most interesting part of Figure 1 is the upper chain. First, a field experiment can
be used to extract information about the student population, translated into a noise
model. We have performed such a field experiment with students in our home institu-
tion; we describe it in detail and present the collected data later in the paper. These
data are used to build a noise model which, together with the desired performance
objective, are given as input to the optimization engine. The optimal aggregation rule
for the particular scenario is then constructed, and a theoretical prediction about the
performance the rule is expected to have is reported. The optimal aggregation rule
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Fig. 1. A graphical overview of our approach.

can also be applied to the grades from our simulated exams (hence, the downward ar-
row in Figure 1) and a comparison of the theoretically predicted performance with the
observed performance of the simulated exam will validate our theory.

The rest of the paper is structured as follows. We begin with preliminary definitions
and useful notation in Section 2. The type-ordering aggregation rules and our theoret-
ical framework are presented in Section 3. The field experiment and the validation of
our framework are discussed in Section 4.

2. PRELIMINARIES
We assume that n students have participated in an exam and have submitted their
exam papers. Our approach to ordinal peer grading has three distinct tasks: the dis-
tribution of papers to students, the grading task by each student, and the aggregation
of the grades into a final result.

Distributing the exam papers
All students that participated in the exam will have to participate in grading as well.
The goal of the first task is to balance their grading load. This is done by distributing
(copies of) each paper to the students so that each exam paper is given to exactly k
students and each student receives exactly k (distinct) exam papers. The k papers that
a student receives form her bundle. These are the exam papers which the student has
to grade. Crucially, the bundle of a student should not contain her own exam paper.

A k-regular bipartite graph G = (U, V,E) with n nodes on each side of the bipartition
(called an (n, k)-bundle graph in [Caragiannis et al. 2015]) can be used to represent
the distribution of exam papers to students. Each node of sets U and V represents a
student. An edge of the graph G between a node u ∈ U and a node v ∈ V indicates that
the exam paper of the student corresponding to node u is in the bundle of the student
corresponding to node v. The restriction on the degree of the nodes of set U means that
each exam paper is given to exactly k students and the restriction on the degree of the
nodes of V means that all bundles have size k.

In our previous work, we considered bundle graphs that satisfy a particular struc-
tural property, namely they contain no cycle of length 4. This was a technical con-
straint, required only in our theoretical analysis. Experimental results in that paper
indicate that uniformly random k-regular bipartite graphs are almost as good as bun-
dle graphs. These are the bundle graphs we considered in the current work. A random
k-regular graph can be built as follows. Starting from the complete bipartite graph
Kn,n with node sets U and V , first remove the edges between nodes corresponding to
the same students in U and V . Then, draw a perfect matching uniformly at random
among all perfect matchings of Kn,n that do not include previously removed edges. The
edges in the k perfect matchings obtained by repeating the above step k times form the
bundle graph.
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Modelling the grading task
Throughout the paper, we assume that there is an underlying strict ranking of the
exam papers, the ground truth, which we aim to recover. As it will shortly become
apparent, the setting we consider is so restrictive that we should not expect to recover
the ground truth exactly. Instead, we aim to recover the ground truth approximately.

A restriction of our setting is that each student is given only k exam papers to grade.
Another restriction is that the grading task for each student is simply to rank the exam
papers in her bundle, in decreasing order of quality. We consider different scenarios for
the grading behaviour of the students. In a first scenario, assume that, after the end of
the exam, the instructor announces indicative solutions and gives detailed instructions
that the students can use during grading. Here, we assume that students will act as
perfect graders. Admittedly, this is an unrealistic assumption but we include it as an
extreme case in our study together with many others.

Our most realistic scenario poses another challenging restriction. In general, we as-
sume that students make mistakes when grading. For modelling purposes, we assume
that a student grades as follows. When she receives a bundle of papers, she draws a
random ranking according to a probability distribution that characterizes the grading
behaviour of all students participating in the exam. So, the behaviour of a student in
an imperfect grading scenario is characterized by a k × k noise matrix P = (pi,j)i,j∈[k],
where pi,j denotes the probability that the exam paper with correct rank j among the
k exam papers in a bundle is ranked at position i by the grader. Clearly, a noise matrix
is doubly stochastic, i.e., the sum of the entries in any column and any row is equal to
1. Observe that the corresponding noise matrix for perfect grading is the k× k identity
matrix. The term “noise model” is often used as a synonym for the term “noise matrix”.

Note that a noise matrix provides only aggregate information over all students of a
population. Actually, it is not hard to see that a doubly stochastic matrix may corre-
spond to many different probability distributions over rankings. This kind of informa-
tion will be the only tool we will use in our theoretical analysis. On the other hand,
in our simulations, we will use more refined models of grader behaviour, assuming
that it strongly depends on the level of preparation of the student for the exam and
her success in it. A particular such model is the following. Each student has a quality
drawn uniformly at random from the interval [1/2, 1] and affects her position in the
ground truth and her ability to grade as well. The ground truth is the ranking of the
students in decreasing order of quality. A student b of quality q performs the grading
task as follows: she considers every pair of exam papers x and y in her bundle, such
that x appears ahead of y in the ground truth, and temporarily determines x �b y with
probability q and y �b x with probability 1− q; the pairwise relation �b will evolve into
her ranking of the exam papers in her bundle. If, after considering all pairs of exam
papers in the bundle, the pairwise relation �b is cyclic, the whole process is repeated
from scratch. Otherwise, the ranking of the exam papers in the bundle induced by �b
is the grading outcome of student b.

The above process has been implemented and is used in our simulations with bun-
dles of size k = 6. In our theoretical analysis, we have computed the corresponding
noise matrix Pmallows by sampling 109 students with uniform qualities and simulating
the grading behaviour described above. For ease of reference, we present it here.

Pmallows =


0.6337 0.1753 0.0824 0.0494 0.0339 0.0253
0.1753 0.5112 0.1549 0.0768 0.0479 0.0339
0.0824 0.1549 0.4865 0.1500 0.0768 0.0494
0.0494 0.0768 0.1500 0.4865 0.1549 0.0824
0.0339 0.0479 0.0768 0.1549 0.5112 0.1753
0.0253 0.0339 0.0494 0.0824 0.1753 0.6337

 (1)
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Due to its similarities with the well-known Mallows model [Mallows 1957] for gener-
ating random rankings, we refer to this grading behaviour as Mallows grading.

Aggregation rules
The third important task is to aggregate the partial rankings provided by the graders
into a final output ranking. This is done using an aggregation rule. A simple but very
compelling aggregation rule is inspired by the Borda count voting rule. In our context,
Borda computes a score for each exam paper by examining the positions it has in the
rankings of the graders that have this exam paper in their bundles. A first position
by an exam paper contributes k points to its score, a second position contributes k −
1 points, and so on. The outcome of Borda is a ranking of the exam papers in non-
increasing order of their Borda scores. When we use Borda, we assume that ties are
broken uniformly at random but other tie-breaking schemes could be considered as
well.

In our previous paper [Caragiannis et al. 2015], we also considered several other
aggregation rules such as a rule that we call Random Serial Dictatorship (RSD) as
well as rules that are based on appropriately defined Markov chains, motivated by
early work on rank aggregation on the web [Dwork et al. 2001; Page et al. 1999]. RSD
is very slow in the computation of the final outcome and, even though it performs
remarkably well with perfect graders, it has a poor performance in simulated exams
with Mallows graders. We will not consider it in the current paper; actually, applying it
with input from 10 000 graders, which is the typical scenario we consider in this paper,
is a computational challenge. The aggregation rules that are based on Markov chains
were defined in an unsuccessful attempt to distinguish between high and low quality
graders and put more weight on the partial rankings of the former. These ideas are not
considered in this work either. Instead, we focus on much simpler aggregation rules.

3. TYPE-ORDERING AGGREGATION RULES
We will use the term type to refer to the grading result of an exam paper. The grading
result for it consists of the ranks it gets from the k graders that have it in their bundles.
So, the type is a vector of k integers from [k] = {1, 2, ..., k}. We follow the convention
that the k entries in types appear in monotone non-decreasing order. We use

Tk = {σ = (σ1, σ2, ..., σk)|1 ≤ σ1 ≤ σ2 ≤ ... ≤ σk ≤ k}
to denote the set of all types for bundle size k. It is not hard to see that Tk contains(
2k−1
k

)
different types.

As an example with k = 6, an exam paper of type (1, 2, 2, 2, 2, 5) is ranked first by one
of its graders, second by four graders, and fifth by one grader. Now, consider another
exam paper of type (2, 2, 2, 2, 3, 3) and observe that Borda would give to both exam
papers the same Borda score of 28. Is there some particular reason for which these two
exam papers should be very close in the final ranking? Now, consider the two types
(1, 1, 1, 2, 5, 6) and (2, 2, 2, 3, 3, 3) of Borda scores 26 and 27, respectively. Borda indicates
that an exam paper with the second type is better. But looking carefully at the ranks,
we could come up with the following interpretation. The first exam paper is very good
(and most probably in one of the two top positions in any bundle) and the two low
ranks are due to poor judgement by the graders. In contrast, the second exam paper is
just above average and this is reflected in all grades. Of course, such interpretations
are valid only when they can be supported by information about the graders. But,
certainly, there are cases where such interpretations are indeed valid.

So, it seems that Borda is restrictive; then, one would think that this is due to
the particular scores that Borda uses. We will not consider the task of investigat-
ing whether different scores could yield better results but will instead define a much
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broader class of aggregation rules. A type-ordering aggregation rule uses a strict or-
dering � of the types in Tk. Then, the final ranking of the exam papers follows the
ordering � of their types, breaking ties uniformly at random. In general, rules of this
class seem to be very powerful. Compared to Borda which partitions the set of exam
papers into only k2 different scores, a type-ordering aggregation rule can distinguish
between exponentially many (in terms of k) different types. In the following, we use
the term Borda ordering to refer to any ordering of the types in non-increasing order
of Borda score. We also use B(σ) to denote the Borda score of an exam paper with type
σ = (σ1, ..., σk). Clearly, B(σ) =

∑k
i=1 (k + 1− σi) = k2 + k −

∑k
i=1 σi.

We remark that the use of types in the definition of a broad class of aggregation
rules has been possible due to the regularity that we imposed on the bundles and
the distribution of exam papers to them. Of course, this creates issues related to the
theoretical analysis of these rules (such as dependencies between the random variables
involved in the distribution to bundles and in grading) and it should be expected that
their rigorous analysis will be much more involved than the analysis of Borda (which
is already quite complicated; see [Caragiannis et al. 2015]). In the next section, we
discuss how to overcome such issues.

3.1. A framework for theoretical analysis
For the analysis of type-ordering aggregation rules, we will assume an infinite num-
ber of students. This is close to the vision of MOOCs with huge numbers of enrolled
students and is the important assumption that constitutes the theoretical analysis
possible. So, the positions of students in the ground truth ranking can be thought of
as occupying the continuum of the interval [0, 1]. We will usually identify an exam
paper as a real number x ∈ [0, 1], i.e., by its rank in the ground truth ranking. Fur-
thermore, we will assume that in each of the k bundles to which exam paper x belongs,
the remaining k − 1 exam papers are selected uniformly at random from the student
population. Our assumption of infinitely many students allows us to ignore subtleties
such as the requirement that all students in a bundle should be distinct and also dif-
ferent than the student that acts as the grader of the bundle (the probability that this
requirement will not be satisfied in some bundle is zero).

Consider an aggregation rule that uses an ordering � of the types defined by bun-
dles of size k and is applied to partial rankings provided by graders whose behaviour
follows the noise model P . Let us focus on computing the expected number of pairwise
relations in the ground truth ranking that are correctly recovered in the outcome of
the rule. It suffices to consider every pair of exam papers x, y ∈ [0, 1] with x < y (i.e.,
exam paper x has a better rank in the ground truth compared to exam paper y) and
add one point if x has a better type than y according to the ordering �, and half a point
if both exam papers have the same type. In this last case, the tie is resolved uniformly
at random and the probability that the correct pairwise relation will be recovered is
1/2. Hence, denoting by C the expected fraction of pairwise relations recovered by the
rule (we will refine this notation in a while) and the event that exam paper x gets type
σ after grading by x� σ, we have

C =

∫ 1

0

∫ 1

x

 ∑
σ,σ′:σ�σ′

Pr[x� σ and y � σ′] +
1

2

∑
σ

Pr[x� σ and y � σ]

 dy dx

=
∑

σ,σ′:σ�σ′

∫ 1

0

∫ 1

x

Pr[x� σ and y � σ′] dy dx+
1

2

∑
σ

∫ 1

0

∫ 1

x

Pr[x� σ and y � σ] dy dx
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The first sum runs over all pairs of different types σ, σ′ with order σ � σ′ and the second
sum runs over all types. The scary (at first glance) double integral can be hidden under
the notation W (σ, σ′) to obtain

C =
∑

σ,σ′:σ�σ′

W (σ, σ′) +
1

2

∑
σ

W (σ, σ). (2)

We will use the term weight to refer to the quantity W (σ, σ′). Our assumption for an
infinite number of students nullifies any dependencies between the rank vectors that
exam papers x and y get after grading. So, the events x� σ and y� σ′ are independent
and the definition of the weight W (σ, σ′) becomes

W (σ, σ′) =

∫ 1

0

∫ 1

x

Pr[x� σ] · Pr[y � σ′] dy dx. (3)

Let us now compute the probability that exam paper x gets type σ = (σ1, ..., σk). By
considering all ways to distribute the entries of the type vector as ranks of an exam
paper by the graders that handle it (ignoring symmetries), there are N(σ) = k!

d1!·...·dk!
ways that the exam paper can get type σ, where di is the number of graders that
have the exam paper ranked i-th. Again, due to our assumption for infinitely many
students and the uniform inclusion of them into bundles, the quality of each exam
paper included in a bundle does not affect the quality of other exam papers (in the same
or different bundles). Clearly, the grading by different students is performed without
dependencies either. Denoting by E(x, σi) the event that exam paper x is ranked σi-th
in a bundle, the probability that x is of type σ is

Pr[x� σ] = N(σ)
k∏
i=1

Pr[E(x, σi)].

To compute Pr[E(x, σi)], it suffices to consider all possible true ranks that exam paper x
may have in a bundle and account for the probability of having such a rank and being
ranked σi-th by the grader handling the bundle. Let us denote by E∗(x, j) the event
that the true rank of x in a bundle is j. Then,

Pr[x� σ] = N(σ)

k∏
i=1

k∑
j=1

pσi,j Pr[E∗(x, j)].

Now, the probability Pr[E∗(x, j)] is equal to the number of ways we can choose j − 1
exam papers to be ahead of x times the probability that all of them will indeed be
ahead of x in the bundle times the probability that the rest k − j exam papers in the
bundle will have true ranks worse than j. We use Lk to denote the set of all k-entry
vectors ` = (`1, ..., `k) with `i ∈ [k] and, for compactness of notation, we abbreviate∑k
i=1 `i by |`|1. We have

Pr[x� σ] = N(σ)
k∏
i=1

k∑
j=1

pσi,j

(
k − 1

j − 1

)
xj−1(1− x)k−j (4)

= N(σ)
∑
`∈Lk

k∏
i=1

pσi,`i

(
k − 1

`i − 1

)
x`i−1(1− x)k−`i

= N(σ)
∑
`∈Lk

( k∏
i=1

pσi,`i

(
k − 1

`i − 1

))
x|`|1−k(1− x)k

2−|`|1 ,
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where the second equality is obtained by exchanging the sum and product operators.
Using the fact that (1− x)m =

∑m
j=0

(
m
j

)
(−1)jxj for m = k2 − |`|1, we obtain

Pr[x� σ] = N(σ)
∑
`∈Lk

( k∏
i=1

pσi,`i

(
k − 1

`i − 1

))
x|`|1−k

k2−|`|1∑
j=0

(
k2 − |`|1

j

)
(−1)jxj

= N(σ)
∑
`∈Lk

k2−|`|1∑
j=0

( k∏
i=1

pσi,`i

(
k − 1

`i − 1

))(
k2 − |`|1

j

)
(−1)jx|`|1−k+j . (5)

Interestingly, Pr[x � σ] is a univariate polynomial of degree k2 − k. Then, the double
integral can be computed analytically. The computation is tedious but straightforward.

3.2. Computing optimal type-ordering aggregation rules
The approach in Section 3.1 suggests a general way of evaluating the performance of
any type-ordering aggregation rule. In order to compute the expected number of cor-
rectly recovered pairwise relations, it suffices to use equations (2), (3), and (5). Equa-
tion (5) can be used to obtain Pr[x � σ], which is then used in equation (3) to compute
the weights (for any possible pair of types σ and σ′). Finally, equation (2) returns the
expected number of correctly recovered pairwise relations.

Of course, the expected number of correctly recovered pairwise relations is not the
only performance objective one would like to measure. For example, we could simply
ignore exam papers that are very close in the ground truth ranking. The ground truth
ranking is mostly a modelling assumption and it should not be very restrictive in the
evaluation of an aggregation rule. So, we could just measure the expected number of
correctly recovered pairwise relations between pairs of exam papers with ranks in the
ground truth that differ by at least a% (for small values such as 5%). Another possi-
bility would be to ignore pairwise relations between pairs of exam papers that have
both very low rank in the ground truth. For example, why is it important to recover
correctly the pairwise relation between the students that have true ranks 80% and
95%? A general objective in this direction would be to measure the correctly recovered
relations between pairs of exam papers that involve one with true rank in the top a%
(e.g., 20%).

Our theoretical framework can be easily extended to handle such cases. In general,
a performance objective is defined by a bivariate function f : [0, 1]2 → [0, 1] which
returns the importance of measuring a correctly recovered relation between two stu-
dents x and y with x ≤ y. In the presentation of our framework in Section 3.1, we have
assumed such a function with f(x, y) = 1 for every student pair. The two scenarios of
the previous paragraph can be captured by the function (i) f(x, y) = 1 when y−x ≥ a%
and f(x, y) = 0 otherwise, and (ii) f(x, y) = 1 when x ≤ a% (and x ≤ y) and f(x, y) = 0
otherwise. Many other performance objectives can be defined including ones in which
the function f returns fractional values between 0 and 1.

The only modification in the computation of Section 3.1 is in the computation of the
weights which should become

W (σ, σ′) =

∫ 1

0

∫ 1

x

f(x, y) Pr[x� σ] · Pr[y � σ′] dy dx. (6)

In order to capture the generality of the scenarios considered, we overload the notation
for the performance measure C to specify the bundle size k, the aggregation rule �, the
noise matrix P describing the grading behaviour, and the performance objective f .
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THEOREM 3.1. Consider a type-ordering aggregation rule � that is applied on k-
sized partial rankings from an infinite population of students with grading behaviour
that follows a noise matrix P . Then, the fraction of correctly recovered pairwise relations
that satisfy the performance objective given by the bivariate function f is

C(k,�, P, f) =
∑

σ,σ′:σ�σ′

W (σ, σ′) +
1

2

∑
σ

W (σ, σ), (7)

where W (σ, σ′) is given by (6) and Pr[x� σ] is in turn given by (5).

Note that the weights do not depend on the aggregation rule at all. They depend
on the grading behaviour and the performance objective. Instead, the aggregation rule
determines only the particular weights that should be summed up in order to compute
C(k,�, P, f). This means that, once we have information about the bundle size, the
grading behaviour, and the desired performance objective, we can seek for the type-
ordering aggregation rule that is optimal for this particular scenario. All we have to
do is to compute the type-ordering aggregation rule � that maximizes C(k,�, P, f)
which, actually, translates to computing an ordering of the types so that the leftmost
summation in the definition (7) is maximized.

It is not hard to see that the problem is equivalent to solving the feedback arc set
problem on an edge-weighted complete directed graph. In particular, the input is a
complete directed graph that has a node for each type σ ∈ Tk. A directed edge from
a node corresponding to type σ towards a node corresponding to type σ′ has weight
W (σ, σ′). Now, the objective is to find an ordering of the nodes so that the total weight
of “consistently directed” edges from a node to a node of higher rank in the ordering is
maximized. The next statement should now be obvious.

THEOREM 3.2. Computing the optimal type-ordering aggregation rule for a sce-
nario involving specific bundle size, grading behaviour, and desired performance ob-
jective is equivalent to solving feedback arc set on an edge-weighted complete directed
graph.

Feedback arc set (FAS) is NP-hard even in its very simple variant on unweighted
tournaments [Alon 2006]. The particular weighted version we consider here admits
a PTAS [Kenyon-Mathieu and Schudy 2007]. Unfortunately, the solutions that such
a PTAS can guarantee in reasonable time are sufficiently far from optimality and the
resulting type-ordering aggregation rule will consequently have highly suboptimal per-
formance. Fortunately, the FAS instances that we had to solve in order to compute op-
timal rules have a very nice structure for all the scenarios considered . This structure
allows us to compute the optimal FAS solution (almost) exactly by a straightforward
algorithm that we present in the following. We strongly believe that this nice property
holds in any scenario that can appear in practice.

Let us assume that we would like to solve FAS on an edge-weighted complete di-
rected graph G = (V,E,w) and to compute an ordering of the nodes of V so that the
total weight of edges in the direction that is consistent to the ordering is as high as
possible. First observe that if two opposite directed edges have the same weight, the
ordering of its endpoints does not affect the contribution of the consistently directed
edge. So, the decision about the relative order of such non-critical node pairs can be
postponed until the very end of the algorithm and any decision about them will be just
fine. Now, consider two nodes u and v of G such that w(u, v) > w(v, u); then, the con-
sistently directed edge that we would like to have in the final solution is (u, v). We will
call such pairs of nodes critical pairs. Decisions about the ordering of critical pairs of
nodes have to be taken first. An ideal situation would be if after deciding the critical
node pairs, we came up with a partial ordering of all nodes that participate in at least
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one critical pair. The ordering could then be completed by appropriate decisions about
non-critical node pairs. And, luckily, this process would have resulted in an optimal
solution for FAS since every pair of nodes has the maximum possible contribution to
the objective. Of course, things are not as easy in general since the decisions about
critical pairs may lead to cycles of nodes, which cannot be part of the final ordering.

Our algorithm proceeds as follows. It takes as input an edge-weighted complete di-
rected graph G = (Tk, E,W ) with Tk as the node set and weight W (σ, σ′) (computed
using (6)) for every directed edge from type σ to type σ′. Our algorithm builds an aux-
iliary unweighted directed graph H = (Tk, A) again over the types. For every critical
pair of types σ, σ′ with W (σ, σ′) > W (σ′, σ), the auxiliary graph has a directed edge
from type σ to type σ′. The next step is to compute all strongly connected components
of H; two types σ and σ′ belong to the same strongly connected component if H con-
tains a directed path from σ to σ′ and a directed path from σ′ to σ. This computation
can be easily done by computing breadth first search trees rooted at every node of H.
After this step, the ordering of the types in different strongly connected components is
irrevocably decided. In order to decide the ordering of types within the same strongly
connected component, we use brute force on the corresponding subgraph of G. If the
size of a strongly connected component is so large that brute forcing is prohibitive, we
just order the types within the component according to a Borda ordering (breaking ties
uniformly at random). As a final step, we decide the order of non-critical node pairs.

The approach to use Borda ordering when brute forcing is very costly in terms of run-
ning time might give the impression that the outcome of the above algorithm is always
very close to a Borda ordering. Surprisingly, our algorithm returns Borda orderings
(or orderings that are very close to Borda) only when this is absolutely necessary. One
such situation is presented in the next section where we show that Borda is indeed
the optimal aggregation rule in all scenarios that involve perfect graders. For imper-
fect graders, brute forcing has been proved extremely useful as the vast majority of
strongly connected components are very small. We report statistical information from
the size distribution of strongly connected components in Section 4.

3.3. Borda is optimal for perfect graders
We will now exploit our theoretical framework to obtain our first concrete result.

THEOREM 3.3. For every scenario that involves perfect graders, Borda (with any
tie-breaking rule) is the optimal type-ordering aggregation rule.

PROOF. Assume that we have a scenario with a bundle size of k, perfect grading
(i.e., a k × k identity noise matrix), and a bivariate function f that represents the
performance objective.

We first compute the probability that exam paper x gets type σ using (4) and the fact
that pσi,` = 1 if σi = ` and pσi,` = 0 otherwise. Hence,

Pr[x� σ] = N(σ)
k∏
i=1

(
k − 1

σi − 1

)
xσi−1(1− x)k−σi

= N(σ)

(
k∏
i=1

(
k − 1

σi − 1

))
xk

2−B(σ)(1− x)B(σ)−k.
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Now, consider two exam papers with ranks x and y in the ground truth such that
x < y and let σ and σ′ be two types. Using the above equality, we obtain

Pr[x� σ] Pr[y � σ′]

Pr[x� σ′] Pr[y � σ]
=

(
y(1− x)
x(1− y)

)B(σ)−B(σ′)

. (8)

Since y > x, it is also 1−x > 1−y and the right hand side of the last equation is above,
equal, or below 1 if and only if the quantity B(σ)− B(σ′) is positive, zero, or negative.
Hence, the quantity

Pr[x� σ] Pr[y � σ′]− Pr[x� σ′] Pr[y � σ]

and the Borda score difference B(σ) − B(σ′) between the two types σ and σ′ have the
same sign. Now, let sgn : R→ {−1, 0, 1} be the signum function. Then, we have that

sgn (W (σ, σ′)−W (σ′, σ))

= sgn

(∫ 1

0

∫ 1

x

f(x, y)(Pr[x� σ] Pr[y � σ′]− Pr[x� σ′] Pr[y � σ]) dy dx

)
= sgn (B(σ)−B(σ′))

This implies that any Borda ordering � of the types maximizes the quantity∑
σ,σ′:σ�σ′ W (σ, σ′) and, consequently, the quantity C(k,�, I, f), and the theorem fol-

lows.

The statement of Theorem 3.3 is rather surprising as Borda is among the simplest
type-ordering aggregation rules. For example, when k = 6, Borda classifies the exam
papers into only 31 different levels (based on their Borda scores) while there are type-
ordering rules that exploit a more refined classification of the papers into 462 different
levels; the gap is much higher for larger values of k. Theorem 3.3 essentially says
that this extra power is not at all necessary and Borda is always a better choice when
perfect grading is used.

4. VALIDATION OF OUR FRAMEWORK
4.1. Building a realistic noise model using a field experiment
We have run a field experiment with the students that attended the course on Compu-
tational Complexity in our home institution during the Spring 2015 semester. This is
a course that the first author teaches during the last few years and usually includes
an optional mid term exam. As it is typically the case in Greek universities, cardinal
integer and half-integer scores between 0 and 10 are used in such exams and they rep-
resent how correct the answers of the students to the exam questions are. Hence, these
cardinal scores represent the success of the students in the exam in absolute terms.

In our experiment, our goal has been to investigate how effective the students can
be in ordinal grading. For this purpose, we created a hypothetical exam with three
questions and prepared several answers for them. In particular, we prepared 16 dif-
ferent answers to question 1, 12 answers to question 2, and 8 answers to question 3.
Combinations of these answers into all different ways resulted in a pool of 1536 differ-
ent exam papers. We created bundles of size 6 from this pool. Each student was given
a bundle of exam papers which was asked to rank (for a bonus grade). Note that the
selection of papers in each bundle was not arbitrary. The answers for the questions
belonged to different levels of correctness and included excellent ones, almost excel-
lent ones with a minor issue not fully resolved, answers in the right direction but with
sloppy write-up, completely incorrect answers, no answer at all, etc. Specifically, we
had 7, 6, and 5 different levels of correctness for the answers in questions 1, 2, and

334



3, respectively. When bundles were formed, we imposed the following constraint for
any pair of exam papers A and B in a bundle: if the correctness level of paper A in
an answer is strictly higher than that in paper B, then paper B cannot have a strictly
higher correctness level than A in any other answer. Furthermore, there was at least
one question for which the answers had different levels of correctness. This guaranteed
a strict ranking of the exam papers in each bundle and, furthermore, that this ranking
would be well-defined and independent of any assumptions about the importance of
the different questions.

In addition to this ranking exercise, the students also participated in the traditional
mid term exam. This allowed us to quantify the correlation between their grading
behaviour and their success in the traditional exam. The results are depicted in Figure
2(a). Even though students that were excellent in the traditional exam did very well as
graders, the grading performance of the majority of the remaining students seems to be
uniformly distributed between average and excellent, with just a few under-performing
outliers.2
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Fig. 2. Correlation between (cardinal) grade of students in the traditional exam and grading error (Kentall-
tau distance from the correct ranking). Data refer (a) to the 136 students that participated in our study and
(b) to 136 random students/graders drawn from the Mallows distribution. Each bubble corresponds to a
number of students that is proportional to its area.

For comparison, we have plotted the same small number of randomly chosen stu-
dents according to the Mallows distribution in Figure 2(b). Here, in contrast to Figure
2(a), the correlation between student quality (to be thought of as equivalent to the
success in the traditional exam) and grading performance is clear. The data depicted
in Figure 2(a) have been used extensively in “realistic” exams. In these exams, we
simulate a large population of students, whose quality and grading behaviour is de-
termined by randomly drawing a bubble from those in Figure 2(a) with probability
proportional to the area of the bubbles. Essentially, each of our 136 students in the ex-
periment serves as the support of the realistic distribution while the quality is slightly
perturbed to result in a strict ground truth ranking. The above information has also
been distilled in the noise matrix Preal = (pi,j)i,j∈[k] with

2An explanation for this grading behaviour is that, even though the students have participated in many
exams like the mid term in the past and have a very good idea of what they are expected to do, this was the
very first time they were asked to rank.
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Preal =


0.463 0.257 0.102 0.058 0.058 0.058
0.205 0.316 0.227 0.110 0.066 0.073
0.161 0.191 0.257 0.205 0.132 0.051
0.102 0.117 0.191 0.242 0.279 0.066
0.044 0.066 0.139 0.220 0.301 0.227
0.022 0.051 0.080 0.161 0.161 0.522

 (9)

which represents a “realistic” noise model. The information in the matrix was obtained
by measuring the frequency that the i-th ranked exam paper by students should be cor-
rectly ranked at position j. For example, 28 out of 136 students ranked third an exam
paper in their bundles which should have been ranked fourth; thus, p3,4 = 0.205. This
matrix is used in the computation of the optimal type-ordering aggregation rules for
realistic scenarios according to the methodology developed in Sections 3.1 and 3.2. Ob-
serve that matrix Preal does not include any information about the correlation between
the grading behaviour and the quality of the student that acts as grader; actually, this
is a feature that our framework completely neglects. Surprisingly, the experimental
results that we present in the following indicate that storing information about this
relation is not necessary for making accurate performance predictions.

4.2. On the accuracy of theoretical performance predictions
Our next step was to compute the optimal type-ordering aggregation rules for several
scenarios. We have kept the same bundle size of k = 6 in all scenarios and distinguish
between the realistic and Mallows3 noise models by using the corresponding matrices
Preal and Pmallows defined in equations (9) and (1), respectively. As performance objec-
tives, we have considered the following:

— all2all: the total number of all correctly recovered pairwise relations;
— th-10% and th-50%: the total number of correctly recovered relations between pairs

that include an exam paper that is ranked in the top 10% and top 50% in the ground
truth, respectively;

— acc-2% and acc-5%: the total number of correctly recovered relations between pairs
with positions that differ by at least 2% and 5% in the ground truth, respectively.

We have used the theoretical framework presented in Sections 3.1 and 3.2; of course,
computations have been automated.4 A first remark is that the algorithm that we have
used to solve FAS exactly is very fast. This is due to the fact that strongly connected
components have very small size. In all cases we considered, among the 462 different
types that we can have for bundles of size 6, more than 97% of them form singleton
components and the maximum component size never exceeded 26 (for the 100-sample
approximation of Mallows that we discuss in Section 4.3). Their distribution for scenar-
ios with realistic and Mallows noise models for all performance objectives is depicted
in Table I.

Recall that our theoretical framework assumes an infinite number of students and,
hence, neglects apparent dependencies between random variables that certainly exist
in scenarios with finite number of students. So, the information in Table II is rather

3Notice that our framework could easily host any non-Mallows synthetic noise matrix, e.g., a noise matrix
following some generalized random utility model (see [Azari et al. 2012]).
4All our computational results have been obtained using an Intel 12-core i7 machine with 32Gb of RAM
running Windows 7. Our methods have been implemented in C using the GNU Multiple Precision Arith-
metic Library (GMP) and in Matlab R2013a. High precision is absolutely necessary in order to compute the
weights even for bundles of size 6 since, by inspecting equations (5) and (6) carefully, we can see that the
computations involve products with more than 30 factors and factorials of integers up to 30.

336



Table I. Distribution of the size of strongly connected components. Results for th-10% are not
shown since all strongly connected components are singletons for such scenarios.

realistic model mallows model
size all2all th-50% acc-2% acc-5% all2all th-50% acc-2% acc-5%

1 448 460 449 451 453 459 449 449
3–7 13 2 12 10 6 3 10 12

8–11 1 0 1 1 2 0 2 0
≥ 12 0 0 0 0 1 0 1 1
max 10 3 10 10 20 4 20 20

surprising and shows that, besides our assumptions, our theory provides extremely
accurate predictions for the performance of aggregation rules in practice. Note that
the values in Table II are percentages and we never observed differences beyond the
second decimal point between the theoretically predicted value and the experimental
one. Also, note that we have used 10 000 students in our experiments. This number
is lower than the vision for the most popular courses that will be offered by MOOCs
in the near future; the predictions become even more accurate for higher numbers of
students.

Table II. Performance of Borda and optimal type-ordering aggregation rules for scenarios with perfect, real-
istic, and Mallows grading with respect to the five different objectives. The values presented are theoretical
predictions (theory) and experimental measurements with 10 000 students (n = 104).

noise perfect grading realistic grading mallows grading
setting theory n = 104 theory n = 104 theory n = 104

method borda borda opt borda opt borda opt borda opt borda
all2all 92.01 92.02 80.01 79.57 80.09 79.57 85.15 84.38 85.16 84.39
th-10% 96.94 96.95 87.61 87.18 87.60 87.17 92.05 90.52 92.07 90.54
th-50% 94.13 94.14 83.62 83.43 83.62 83.43 88.39 87.80 88.40 87.81
acc-2% 93.57 93.57 81.27 80.73 81.27 80.74 86.52 85.72 86.52 85.73
acc-5% 95.47 95.47 82.97 82.42 82.97 82.42 88.42 87.61 88.42 87.62

Table II contains the expected values (from 1000 simulations) of the performance
measure for each grading scenario and corresponding optimal aggregation rule (as
well as for Borda). Even though Borda is never optimal in any imperfect grading sce-
nario that we considered, its performance is always very close to the optimal rule. In
particular, Borda is never more than 0.55% worse than the optimal rule in realistic
scenarios (for the acc-5% performance objective); such differences can be up to 1.53%
in scenarios with Mallows noise (and the th-10% objective). Figure 3 reports detailed
information for all these simulations. Clearly, the performance of the aggregation rules
for all the objectives that we considered is sharply concentrated around the expected
values. The clouds of points are very close to the diagonal (corresponding to values
with equal coordinates) in the realistic scenarios and only marginally further from it
in the Mallows scenarios.

4.3. The effect of inaccuracies in the noise model
The realistic noise model that we built in Section 4.1 is, by definition, an approximation
of the students in our home institution. Besides limitations that have to do with our
modelling assumptions, it has the obvious drawback that it has been built using a
very small fraction of our students. So far, the reader should have been convinced that
the aggregation rules we have built are indeed optimal for a large population that
inherits the quality and grading performance of this small fraction of students; this
has been the focus of our experiments with realistic grading. What is far from clear is
whether these aggregation rules will perform equally well for the whole population of
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Fig. 3. Performance of Borda compared to the optimal rule for the realistic and Mallows noise scenarios
and the performance objectives all2all, acc-5%, and th-10%.

the students in our home institution. To see the importance of this question, imagine
it in the planetary scale that MOOCs envision. Can we make safe predictions for huge
student populations by sampling a tiny fraction of them, building a noise model as we
did in Section 4.1, and then select optimal type-ordering aggregation rules as we did
in Section 4.2?

We give a positive answer to this question by considering Mallows grading scenar-
ios. With Mallows, we have the luxury of a well-defined noise model for the grading
behaviour of a huge student population and we have used it in order to compute opti-
mal aggregation rules for this model. This information will be used only for assessing
the approach presented in the following. Instead, we will pretend that no information
about grading behaviour is available and all we can do is to apply (actually, to simu-
late) a field experiment like the one we presented in Section 4.1 on a tiny fraction of
the students in order to come up with a noise matrix. In this way, we will compute an
approximation of the true noise model.

We have followed this approach using samples of Mallows graders of size 100 and
1000. The two noise model matrices we obtained are as follows:

P100 =


0.59 0.19 0.07 0.08 0.06 0.01
0.19 0.44 0.18 0.09 0.04 0.06
0.10 0.19 0.43 0.19 0.07 0.02
0.05 0.05 0.15 0.45 0.19 0.11
0.06 0.10 0.09 0.14 0.46 0.15
0.01 0.03 0.08 0.05 0.18 0.65

P1000 =


0.639 0.186 0.066 0.058 0.031 0.020
0.193 0.534 0.150 0.055 0.032 0.036
0.073 0.149 0.501 0.147 0.076 0.054
0.039 0.075 0.155 0.497 0.147 0.087
0.033 0.038 0.071 0.163 0.517 0.178
0.023 0.018 0.057 0.080 0.197 0.625


The matrices have been used to compute the optimal type-ordering aggregation rules
for the five performance objectives. Interestingly, the instances of FAS that we had
to solve were slightly harder now, particularly for the 100-sample noise model, where
strongly connected components of size up to 26 emerged in the auxiliary graph. Still,
our methodology was applied smoothly and allowed us to compute optimal rules.

338



Table III. Perfomance of the optimal type-ordering aggregation rules for approxi-
mations of the Mallows model. The data for Mallows are presented again here for
direct comparison.

# samples 100 1000 Mallows
setting theory n = 104 theory n = 104 theory n = 104

all2all 84.95 84.95 85.14 85.15 85.15 85.16
th-10% 91.82 91.85 92.05 92.04 92.05 92.07
th-50% 88.21 88.21 88.39 88.38 88.39 88.40
acc-2% 86.31 86.31 86.51 86.51 86.52 86.52
acc-5% 88.19 88.20 88.41 88.41 88.42 88.42

Table III shows the theoretical prediction and observed performance values of these
rules (by applying the rules on 1000 simulated exams with 10 000 Mallows students).
The performance of the aggregation rules that were computed using the 100-sample
approximation of Mallows are already amazingly close to those for Mallows. For the
rules that we computed using the 1000-sample approximation, it is almost impossible
to distinguish them from the Mallows-optimal ones in terms of performance.

A more refined graphical representation of these findings is given in Figure 4 (best
viewed in color). Each plot contains a blue and a red cloud of 1000 points each cor-
responding to a single simulated exam with 10 000 students. The blue points (respec-
tively, red points) measure the performance of the optimal rule for the 1000-sample
(respectively, 100-sample) Mallows approximation versus the Mallows-optimal rule.
The blue cloud almost coincides with the diagonal in each plot, indicating an opti-
mal approximation of the Mallows-optimal rule. The red cloud is distinct (there is a
negligible “intersection” of blue and red points only for the th-10% performance objec-
tive) but very close. To realize how close the two clouds are, almost the whole cloud
of points for Borda (from Figures 3(d), 3(e), and 3(f)) would be located outside the plot
area of Figure 4 (if we attempted to plot it).

84.6 84.8 85 85.2 85.4 85.6

84.6

84.8

85

85.2

85.4

85.6

Mallows

Ap
pr

ox
im

at
io

n

(a) all2all

91 91.2 91.4 91.6 91.8 92 92.2 92.4 92.6 92.8 93
91

91.2

91.4

91.6

91.8

92

92.2

92.4

92.6

92.8

93

Mallows

Ap
pr

ox
im

at
io

n

(b) th-10%

87.8 88 88.2 88.4 88.6 88.8 89

87.8

88

88.2

88.4

88.6

88.8

89

Mallows

Ap
pr

ox
im

at
io

n

(c) acc-5%

Fig. 4. A comparison of the optimal rule for Mallows and its approximations with respect to the objectives
(a) all2all, (b) acc-5%, and (c) th-10% (experimental results from 1000 executions of the aggregation rules on
10 000 students).
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