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Abstract. We study the problem of allocating optical bandwidth to
sets of communication requests in all–optical networks that utilize Wave-
length Division Multiplexing (WDM). WDM technology establishes com-
munication between pairs of network nodes by establishing transmitter–
receiver paths and assigning wavelengths to each path so that no two
paths going through the same fiber link use the same wavelength. Optical
bandwidth is the number of distinct wavelengths. Since state–of–the–art
technology allows for a limited number of wavelengths, the engineering
problem to be solved is to establish communication between pairs of
nodes so that the total number of wavelengths used is minimized.

In this paper we describe the implementation and study the performance
of a wavelength routing algorithm for irregular networks. The algorithm
proposed by Raghavan and Upfal [17] and is based on a random walk
technique. We also describe a variation of this algorithm based on a
Markov chain technique which is experimentally proved to have improved
performance when applied to random networks generated according to
the Gn,p model.

1 Introduction

Optical fiber transmission is rapidly becoming the standard transmission medium
for networks and can provide the required data rate, error rate, and delay perfor-
mance for future networks. A single optical wavelength supports rates of gigabits-
per-second (which in turn support multiple channels of voice, data, and video
[18]). Multiple laser beams that are propagated over the same fiber on distinct
optical wavelengths can increase this capacity much further; this is achieved
through WDM (Wavelength Division Multiplexing). However, data rates are
limited in opto–electronic networks by the need to convert the optical signals
on the fiber to electronic signals in order to process them at the network nodes.
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Networks using optical transmission and maintaining optical data paths through
the nodes are called all–optical networks.

In such networks, we consider communication requests as ordered transmitter–
receiver pairs of network nodes. WDM technology establishes connectivity by
finding transmitter–receiver paths, and assigning a wavelength to each path, so
that no two paths going through the same fiber link use the same wavelength.
Optical bandwidth is the number of available wavelengths. As state–of–the–
art optics technology allows for a limited number of wavelengths (even in the
laboratory) the important engineering problem to be solved is to establish com-
munication between pairs of nodes so that the total number of wavelengths used
is minimized.

Theoretical work on optical networks mainly focuses on the performance of
wavelength routing algorithms on regular networks or arbitrary networks using
oblivious (predefined) routing schemes. We point out the pioneering work of
Pankaj [15] who considered shuffle exchange, De Bruijn, and hypercubic net-
works. Aggarwal et al. [1] consider oblivious wavelength routing schemes for sev-
eral networks. Raghavan and Upfal in [17] consider mesh–like networks. Aumann
and Rabani [2] improve the bounded of Raghavan and Upfal for mesh networks
and also give tight results for hypercubic networks. Rabani in [16] gives almost
optimal results for the wavelength routing problem on meshes.

These topologies reflect architectures of optical computers rather than wide–
area networks. For fundamental practical reasons, the telecommunication in-
dustry does not deploy massive regular architectures: backbone networks need
to reflect irregularity of geography, non–uniform clustering of users and traffic,
hierarchy of services, dynamic growth, etc. In this direction, Raghavan and Up-
fal [17], Aumann and Rabani [2], and Bermond et al. [4], among other results,
focus on bounded–degree networks and give upper and lower bounds in terms
of the network expansion. The wavelength routing problem in tree–shaped net-
works has also received much attention. Erlebach and Jansen [7,8] prove that
several versions of the problem are NP–hard, while extensive study of a class of
algorithms for such networks has been made in a series of papers [13,10,12,11].

In this paper we describe the implementation and experimentally study the
performance of a wavelength routing algorithm for irregular (arbitrary) sparse
networks. This algorithm proposed by Raghavan and Upfal in [17] and theoretical
results were obtained for networks of bounded degree. The model of bounded
degree networks reflects the irregularity property of real communication net-
works. We also describe a variation of this algorithm (algorithm MC) that is
experimentally proved to have improved performance.

The paper is structured as follows. We give basic definitions on the optical
model we follow in section 2. The description of algorithm RW and issues con-
cerning its implementation are presented in section 3. Algorithm MC is described
in section 4. We present experimental results in section 5. Some extensions of
this work currently in progress are briefly discussed in section 6.
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2 The Optical Model

We follow the notation proposed in [3]. A network is modeled as a graph G =
(V (G), E(G)) where V (G) is the set of nodes and E(G) the set of fiber links.
We denote by P (x, y) a path in G that consists of consecutive edges beginning in
node x and ending to node y. A request is an ordered pair of nodes (x, y) in G.
An instance I is a collection of requests. Note that a given request may appear
more than once in an instance.

A routing R for an instance I on network G is a set of paths R = {P (x, y)|(x, y)
∈ I}. The conflict graph associated to a routing R of instance I on network G
is a graph GR = (V (GR), E(GR)) such that each node in V (GR) corresponds
to a path in R and two nodes x, y in V (GR) are adjacent (there exist an edge
(x, y) ∈ E(GR)) if and only if the corresponding paths in R share a fiber link of
network G.

Let G be a network and I an instance of requests. The wavelength routing
problem consists of finding a routing R for instance I and assigning each request
(x, y) ∈ I a wavelength, in such way that no two paths of R sharing a fiber
link of G have the same wavelength. Intuitively, we can think the wavelengths
as colors and the wavelength routing problem as a node–coloring problem of the
corresponding conflict graph.

Early models of optical networks assumed that optical transmission through
fibers is performed bidirectionally, so undirected graphs were used to model
optical networks. It has since become apparent that directed graphs are essential
to model state–of–the–art technology, so recent theoretical work on WDM optical
networks focuses to the directed model. In this model, the network is a symmetric
digraph (unless otherwise specified), i.e. between two adjacent nodes, there exist
two opposite directed fiber links. Note that the definitions above apply to both
models.

Given a routing R for an instance I on network G, we denote by w(G, I, R)
the minimum number of wavelengths used for a valid wavelength assignment to
paths in R. Obviously, w(G, I, R) is the chromatic number of the correspond-
ing conflict graph GR. We denote by w(G, I) the minimum w(G, I, R) over all
routings R of instance I. The notation for the undirected model is w(G, I, R)
and w(G, I), respectively.

Given a routing R for an instance I on network G, the load of a fiber link α ∈
E(G), denoted by π(G, I, R, α), is the number of paths in R that contain α. We
denote by π(G, I, R) the maximum load of any fiber link in E(G), and by π(G, I)
the minimum π(G, I, R) over all routings R of an instance I. The notation
for the undirected model is π(G, I, R, α), π(G, I, R) and π(G, I), respectively.
Obviously, π(G, I, R) is a lower bound for w(G, I, R), so π(G, I) is a lower
bound for w(G, I).

Given a routing R for an instance I on network G, the length of a path
P (x, y) ∈ R, denoted by δ(G, I, R, P (x, y)), is the number of consecutive fiber
links of E(G) contained in P (x, y). The dilation of a routing R for instance I
on network G, denoted by δ(G, I, R) is the maximum length of any path in R.
The average length of paths in R, denoted by δ̃(G, I, R) is defined in the obvious
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way. We can also define δ(G, I) as the minimum δ(G, I, R) over all routings
R. In general computing w(G, I), w(G, I, R) and π(G, I) is NP–hard for most
networks [9,7,8], while computing δ(G, I) can be solved in polynomial time [6].

An important instance that has received much attention is the k–relation.
A directed k–relation is defined as an instance Ik in which each node appears
as a source or as a destination in no more than k requests. An undirected k–
relation is defined as an instance Ik in which each node appears in no more
than k requests (either as source or as destination). In the following sections,
we consider k–relations that have the maximum number of requests, i.e. in a
directed k–relation, each node appears as source or designation in exactly k
requests, while in an undirected k–relation, each node appears (either as source
or as destination) in exactly k requests. Note that under this definition of k–
relations, given a network G, the number of requests in a directed k–relation
is twice the number of requests in an undirected k–relation. A 1–relation I1 is
called permutation and has received much attention in the literature (not only
within the context of wavelength routing).

3 The Algorithm of Raghavan and Upfal

In this section we describe the implementation of the algorithm proposed by
Raghavan and Upfal [17] for approximating w(G, Ik) on bounded–degree all–
optical networks (algorithm RW).

Given a k–relation Ik on a network G, the algorithm uses a random walk
technique for finding a routing R for I on G and properly assigns colors to paths
of R. The algorithm considers requests one by one, finds a path for each one of
them and assigns a proper color to it. When a path has been established for a
request of I and colored, it is never reestablished or recolored again.

We define a random walk on a graph G = (V (G), E(G)) (directed or not)
as a Markov chain {Xt} ⊆ V associated to a particle that moves from vertex
to vertex according to the following rule: the probability of a transition from
vertex vi, of degree di, to vertex vj is 1/di if (i, j) ∈ E, and 0 otherwise. The
transition matrix of the random walk denoted by P is such that element Pij (or
Pvi,vj) is the probability that the particle moves from vertex vi to vertex vj . The
stationary distribution of the random walk is a vector ρ such that ρ = Pρ. We
define a trajectory W of length τ as a sequence of vertices [w0, w1, . . . , wτ ] such
that (wt, wt+1) ∈ E(G) for 0 ≤ t < τ .

Algorithm RW

1. Compute the transition matrix P and the stationary distribution ρ.
2. Compute a sufficient length L for trajectories.
3. For each request (ai, bi) ∈ R do:

(a) Choose a node ri ∈ V according to the stationary distribution.
(b) Choose a trajectory W ′

i (resp. W ′′
i ) of length L from ai to ri (resp. from

bi to ri) according to the distribution on trajectories, conditioned on the
endpoints being ai and ri (resp. bi and ri).
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(c) Connect ai to bi by the path P (ai, bi), defined by W ′
ai,ri

followed by
W ′′

ri,bi
.

(d) Eliminate cycles of the path P (ai, bi).
(e) Assign a proper color to P (ai, bi).

Computing the length of trajectories. It is known [14] that since a random walk
is an ergodic Markov chain, P t converges to a unique equilibrium as t → ∞.
The length L of trajectories must be such that the power P L is very close to
limt→∞ P t. Although this computation in [17] is L = −3 log kn

log λ where λ is the sec-
ond largest eigenvalue of the transition matrix P in absolute value, we observed
that P t is very close to limt→∞ P t for smaller values of t. The computation
L = −1.5 log n

log λ from [14] suffices.

Random choice in step 3a. A node ri ∈ V is chosen according to the stationary
distribution by simulating the casting an n–faced die with probabilities ρi, i =
1, ..., n associated with the n faces.

Finding trajectories. The method proposed in [5] which is also implied in [17]
for computing a random trajectory W = [u = w1, w2, ..., wt = v] of length t from
node u to node v is to:

1. Choose a node w according to the following rule: let w be a neighbor of v.
Then

Pr[wt−1 = w|wt = v] =
P

(t−1)
u,w Pw,v

P
(t)
u,v

.

where P (t) denotes the t–th power of the transition matrix P .
2. Recursively, choose a random trajectory of length t − 1 from u to w.

Eliminating cycles. This phase is not analyzed in [17]. We observed that the
paths defined by two trajectories contain cycles, almost always. Cycles in a path
P (ai, bi) created by two trajectories W ′

i and W ′′
i are emilinated by finding a

shortest path between nodes ai and bi in the subgraph Hi defined by the two
trajectories (i.e. Hi = (V (Hi), E(Hi) s.t. V (Hi) = {v ∈ V (G)|v ∈ W ′

i or v ∈
W ′′

i } and E(Hi) = {(v, u) ∈ E(G)|v, u ∈ W ′
i or v, u ∈ W ′′

i }).

Coloring paths. The algorithm we use for coloring paths is the obvious (greedy)
one. We use a palette of colors χ1, χ2, ..., χkn and assign to a path P (x, y) the
color χc with minimum c s.t. χc has not been assigned to any established path
that shares a fiber link with P (x, y). The total number of colors (wavelengths)
actually used is the maximum index of colors assigned to paths.

4 The Algorithm MC

The algorithm MC is a variation of the algorithm RW presented in the previous
section. The main structure of algorithm MC remains the same with the one of
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algorithm RW. Also algorithm MC maintains the main characteristics of algo-
rithm RW. Given a k–relation Ik on a network G, the algorithm uses a Markov
chain technique for finding a routing R for I on G and properly assigns colors
to paths of R. The algorithm considers requests one by one, finds a path for
each one of them and assigns a proper color to it, so that once a path has been
established for a request of I and colored, it is never reestablished or recolored
again.

The main difference is that algorithm MC, while computing the path for a re-
quest of instance I, it considers a Markov chain {Zt} ⊆ V associated to a particle
that moves from node to node. The definition of the Markov chain (i.e. the tran-
sition probabilities) is such that it takes into account the paths that have been
already established in previous steps. This means that the transition matrix, the
stationary distribution and the sufficient length of trajectories is recomputed for
each request given as input to the algorithm. There are many different ways to
define the Markov chain {Zt}. In the following we present algorithm MC to-
gether with a simple strategy for computing the transition probabilities of the
Markov chain {Zt}. This strategy is the one used for performing the experiments
presented in section 5.

Algorithm MC

1. For each request (ai, bi) ∈ R do:
(a) Recompute the transition matrix P ′ and the stationary distribution ρ′.
(b) Recompute a sufficient length L for trajectories.
(c) Choose a node ri ∈ V according to the stationary distribution.
(d) Choose a trajectory W ′

i (resp. W ′′
i ) of length L from ai to ri (resp. from

bi to ri) according to the distribution on trajectories, conditioned on the
endpoints being ai and ri (resp. bi and ri).

(e) Connect ai to bi by the path P (ai, bi), defined by W ′
i followed by W ′′

i .
(f) Eliminate cycles of the path P (ai, bi).
(g) Assign a proper color to P (ai, bi).

Recomputing the transition matrix. Consider a step of the algorithm. Assume
that paths for s < |I| requests have been already been established and colored.
Let Is denote the subset of instance I which contains the s already considered
by the algorithm MC requests, and Rs the set of paths established for requests
of Is. We denote by π(G, Is, Rs, α) the load of a fiber link α ∈ E(G) at the
current step.

Given a network G = (V (G), E(G)), we define a Markov chain {Yt} ⊆ V (G)
associated to a particle that moves from node to node. The transition proba-
bility between non–adjacent nodes is P ′′

ij = 0. The definition of the transition
probabilities from a node ui to its neighbors, distinguishes between two cases:

1. Some of the fiber links adjacent to ui are not used by any path of Rs. Let d be
the degree of node ui and m be the number of nodes adjacent to ui, u1, ..., um

such that the fiber links (ui, uj), j = 1, ..., m have π(G, Is, Rs, (ui, uj)) = 0,
for 1 ≤ j ≤ m. It is π(G, Is, Rs, (ui, uj)) > 0, for m + 1 ≤ j ≤ d. Then, the
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transition probability from node ui to a neighbor node uj is P ′′
ij = 1/m if

j ≤ m, P ′′
ij = 0 otherwise.

2. All fiber links adjacent to ui are used by paths in Rs. The transition proba-
bilities P ′′

ij from node ui to two neighbors uj and ul satisfy

P ′′
ij

P ′′
i,l

=
π(G, Is, Rs, (ui, ul))
π(G, Is, Rs, (ui, uj))

s.t.
∑

(ui,uj)∈E(G)

P ′′
ij = 1.

This gives

P
′′−1
ij = π(G, Is, Rs, (ui, uj))

∑

(ui,uk)∈E(G)

1
π(G, Is, Rs, (ui, uj))

.

It is clear that, the Markov chain {Yt} constructed at a step of the algorithm,
has the following main property: for a transition from a node, it prefers the less
loaded fiber links. The algorithm MC uses a parameter f ∈ (0, 1] and assigns to
each transition of Markov chain {Zt} a probability

P ′
ij = fPij + (1 − f)P ′′

ij .

Intuitively, {Zt} maintains the ergodicity feature of the random walk, while it
encapsulates the main property of {Yt}. Note that for f = 1, algorithm MC is
identical to algorithm RW, since {Zt} is a random walk. Values close to f = 0
are not valid since the Markov chain {Yt} may not be ergodic.

Note that the transition probabilities of P ′ that must be recomputed at
each step of the algorithm MC are only those associated to nodes of the path
established in the previous step.

5 Experiments and Results

The algorithms have been tested using as input random networks and random
k–relations. Random networks are constructed according to the Gn,p model.
For maintaining connectivity, a network given as input to the algorithms has
an arbitrary Hamilton circuit. The parameters that effect the results of the
wavelength routing algorithms are:

– Parameter n is the number of nodes of the random network. All the ex-
periments presented in this paper have been made on networks with 200
nodes.

– Parameter c indicates that the probability that a fiber link (except those in
the Hamilton path) exists in the network is p = c/n. This parameter gives a
measurement for the density of the network.

– Parameter k indicates that the instance given to the algorithms as input is
chosen randomly among all k–relations on a network of n nodes. For the
experiments presented in this paper, we used small values for k (up to 4).
Larger values increase the running time of the algorithms dramatically.
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We first measure the number of wavelengths assigned to a k relation by the
algorithm RW as a function of the density of the network. Note that, while the
standard algorithm of Raghavan and Upfal as it was presented in [17] consid-
ers undirected paths only, the description given in section 3 applies to both the
directed and the undirected model. We consider three types of k relations: (1)
a random k–relation of undirected paths, (2) the corresponding symmetric k–
relation of directed paths (i.e. for each request (u, v) ∈ Ik, (v, u) ∈ Ik as well) and
(3) a random k–relation of directed paths (non–symmetric). Note that the total
number of requests in a undirected k–relation is half the number of requests of a
directed k–relation. Moreover, the two versions of the wavelength routing prob-
lem in the directed and undirected model have important inherent differences. In
particular, there exist a permutation I1 on a n node graph which, although it can
be routed with load π(G, I1) = 2, it requires w(G, I1) = n wavelengths [1]. No
such case has been observed in the directed model, and it has been conjectured
that w(G, I) = O(π(G, I)) for every network G and instance I [3]. Surprisingly,
algorithm RW has the same performance when applied to random undirected
or directed requests on random (sparse) networks. The results for permutations,
2–relation and 4–relation are depicted in table 1.

Density Undirected Symmetric Non–Symmetric

3 19 29 55 19 31 54 18 30 55

5 14 23 36 13 22 36 13 23 36

10 9 14 21 9 14 22 8 14 21

15 5 10 14 6 10 15 6 10 15

20 5 8 11 5 7 12 6 7 11

Table 1. Routing undirected and directed requests on random networks of 200
nodes. The table contains the number of wavelengths used for random undi-
rected, the corresponding symmetric directed, and random directed permuta-
tions, 2–relations, and 4–relations on 5 random networks of different density.

In the following we concentrate to directed instances. The results for the per-
formance of algorithm RW on random permutations, 2–relations, and 4–relations
according to the data contained in the three rightmost columns of table 1 are
graphically represented in figure 1.

Furthermore, data of table 2 show that the number of wavelengths used by
algorithm RW in each case is slightly greater than the load of the routings and
is much smaller than the degree of the conflict graph. Also, for sparse networks
(density 3 or 5), the dilation is smaller than the theoretical length of paths,
meaning that all paths produced by connecting two trajectories contained cycles.
This is not true for dense networks (density 10 or 20). For any case, most paths
produced by connecting trajectories contained cycles, so the average length of
paths is much smaller than the dilation. The difference between average length



266 A. Bouganis, I. Caragiannis, C. Kaklamanis

Fig. 1. Routing directed permutations, 2–relations, and 4–relations on random
networks with 200 nodes using algorithm RW.

of paths and dilation (and the theoretical length of paths which is twice the
length of trajectories) increases as the network density decreases.

Density #Wav. Load Av. Length Dilation Traj. Length CG Degree

3 20 11 17.73 35 22 76

5 15 9 17.04 27 15 54

10 8 6 12.53 18 9 24

20 7 5 10.60 12 6 13

Table 2. Routing a permutation on random networks with 200 nodes using
algorithm RW. The columns of the tables contain results for the number of
wavelengths used, the load, the average length of paths, the dilation, the length
of trajectories, and the degree of the conflict graph of the produced routing for
4 random networks of different density.

We observed that algorithm MC improves algorithm RW concerning the num-
ber of wavelengths assigned to requests. This improvement can be about 20% of
the performance of RW in some cases and is significant especially for instances
with many requests (4–relations) on very sparse networks (density 3 or 5).

This is mainly due to the fact that the routings produced by algorithm MC
are qualitatively better than those produced by algorithm RW. We performed
experiments by running algorithm MC with parameter f = 0.5 for the same
permutation on random networks of density 3, 5, 10, and 20. The conflict graph
produced has smaller degree in any case; as a result, the number of wavelengths
used is decreased related to the number of wavelengths used by algorithm RW.
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A somewhat surprising result is that, for sparse networks, the average length
of paths produced by algorithm MC is slightly smaller than the average length
of paths produced by algorithm RW. Table 3 summarizes data produced by
algorithm MC with f = 0.5.

Density #Wav. Load Av. Length Dilation CG Degree

3 15 11 15.63 33 64

5 13 9 15.31 29 42

10 6 5 12.90 18 15

20 4 3 10.75 12 9

Table 3. Routing a permutation on random networks with 200 nodes using
algorithm MC with parameter f set to 0.5. The columns of the tables contain
results for the number of wavelengths used, the load, the average length of paths,
the dilation, and the degree of the conflict graph of the produced routing for 4
random networks of different density. Corresponding rows of tables 2 and 3
represent results of experiments on the same network. Data in both tables were
obtained for the same permutation.

Concerning the number of wavelengths used, which is the main performance
metric we use for comparing our algorithms, the performance of algorithm MC
is better in most cases as the parameter f decreases. Algorithm MC was exe-
cuted with several values of parameter f (included f = 1.0, a value for which
algorithm MC is identical to algorithm RW) on permutations and 4–relations on
networks of different density. The results that correspond to these experiments
are depicted in tables 4 and 5 and are graphically represented in figures 2 and
3, respectively.

Density f = 0.2 f = 0.4 f = 0.6 f = 0.8 RW

3 14 16 16 17 20

5 13 12 13 12 14

10 5 6 7 7 8

20 4 4 4 5 5

Table 4. Routing permutations on networks with 200 nodes using algorithm
MC. Data represent the number of wavelengths used, for several values of pa-
rameter f .
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Fig. 2. Routing permutations on networks with 200 nodes using algorithm MC.

Density f = 0.2 f = 0.4 f = 0.6 f = 0.8 RW

3 44 47 48 50 53

5 30 32 32 35 36

10 16 17 18 19 19

20 10 11 10 10 11

Table 5. Routing 4–relations on networks with 200 nodes using algorithm MC.
Data represent the number of wavelengths used for several values of parameter
f . Corresponding rows of tables 4 and 5 represent results of experiments on the
same network.

6 Extensions

The algorithms RW and MC were implemented in the Matlab v5.0 environ-
ment and the experiments presented in this paper were conducted on a Pentium
PC/200MHz. Recently, we completed the implementation and testing of the al-
gorithms in C; we currently perform several experiments on a powerful Pentium
III/500MHz running Solaris 7.

In experiments not included here, we experimentally studied the performance
of modified MC algorithms that use more complex functions to define the tran-
sition probabilities of the Markov chain. In some cases, we observed that results
can be further improved.

In addition to networks generated according to the Gn,p model, we currently
perform experiments on random regular networks with link faults; a model that
also reflects irregularity of real networks and is closer to the theoretical model
of bounded–degree graphs assumed in [17]. We plan to include all these results
in the full version of the paper.
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Fig. 3. Routing 4–relations on networks with 200 nodes using algorithm MC.
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