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Abstract. It is a cl2issical result from graph theory that the edges of 
an Z-regular bipartite graph can be colored using exactly I colors so that 
edges that share an endpoint are assigned different colors. In this paper 
we study two constrained versions of the bipartite edge coloring problem. 

- Some of the edges adjacent to a pair of opposite vertices of an l-
regular bipartite graph are already colored with S colors that appear 
only on one edge (single colors) and D colors that appear in two 
edges (double colors). We show that the rest of the edges can be 
colored using at most max{mm{l + D, y } , i + ^ ^ } total colors. We 
also show that this bound is tight by constructing instances in which 
max{min{Z + D, y } , / + ^ ^ } colors are indeed necessary. 

— Some of the edges of an /-regular bipartite graph are already colored 
with S colors that appear only on one edge. We show that the rest of 
the edges can be colored using at most max{Z + S/2 ,5} total colors. 
We also show that this bound is tight by constructing instances in 
which rmx.{l + S/2,5} total colors are necessary. 

1 Introduction 

It is a classical result from graph theory [9] tha t the edges of an i-regular bipart i te 
graph can be colored using exactly I colors so tha t edges tha t share an endpoint 
are assigned different colors. We call such edge colorings legal colorings. 

Konig's proof [9] is algorithmic, yielding a polynomial t ime algorithm for 
finding optimal bipart i te edge colorings. Faster algorithms have been presented 
in [4,5,2,12]. These algorithms usually use as a subroutine an algorithm tha t 
finds perfect matchings in bipart i te graphs [6,12]. 

Biparti te edge coloring can be used to model scheduling problems, e.g. t i m e 
tabling. An instance of t imetabling consists of a set of teachers, a set of classes, 
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and a list of pairs {t, c) indicating that the teacher t has to teach class c dviring a 
time slot within the time span of the schedule ([12]). A timetable is an assignment 
of the pairs to time slots, in such way that no teacher t and no class c occurs in 
two pairs that axe assigned to the same time slot. Obviously, this is a bipartite 
edge coloring problem. Usually, additional constraints are put on a timetable, 
making the problem NP-complete [3]. 

In this paper, we study two constrained versions of the bipartite edge coloring 
problem. Our first constrained version (problem A) can be described in the 
following way. We are given an Z-regulax bipartite graph G = (Vi, V^, E) along 
with a partial legal coloring of its edges that specifies a color for edges incident 
to vertices vi 6 V\ and V2 € V2. Therefore, each color can be used either on 
one edge, in which case we call it a single color, or on two edges one incident 
to v\ and one incident to V2 in which case we call the color a double color. If 
we denote by S the number of single colors, D the nmnber of double colors and 
by U the number of edges incident to vi and V2 which axe uncolored, we have 
that 2D + S + U — 21. We want to color the remaining edges of the graph so to 
minimize the total number of colors used. 

The case where U — 0 has been studied in [11,7,10,8]. For this case, I + 
^ ^ total colors are necessary and sufficient [8]. Mihail et al. [11] gave the 
first (but not tight) solution to the specific subcase where S — 2D = I and 
showed how this solution can be used to approximate the wavelength routing 
problem in trees. The edge coloring problem is solved by obtaining matchings 
of the bipartite graph, and coloring them in pairs using detailed potential and 
averaging arguments. 

The papers [7,10,8] also use a bipartite edge coloring algorithm as a sub
routine of a wavelength routing algorithm. Both [7] and [10] concentrate on the 
special case where S — 2D — I and color the bipartite graph using l-\-^^ — 71/4 
total colors. The main idea of the algorithm in [7] is similax to the one of [11] 
but new techniques axe used for partitioning the bipartite graph matchings into 
groups that can be colored and accounted for independently. Implicitly, Kumar 
and Schwabe [10] solve the same problem using different techniques. The main 
part of our analysis is a generalization of [8]. 

The second constrained version of the bipartite edge coloring problem (prob
lem B) is slightly different. We are given an i-regular bipartite graph G — 
iyi,y2,E) along with a partial legal coloring of some of its edges. Each color 
is used only on one edge. We denote by S the number of colored edges. Our 
objective is to color the remaining edges of the graph so to minimize the total 
number of colors used. To our knowledge, problem B has not been studied yet. 

Summary of resul ts . Our results for problem A can be summarized in the 
following two theorems. 

Theo rem 1. There exists a polynomial time algorithm that properly colors the 
uncolored edges of an I-regular bipartite graph constrained by S single and D 
double colors using at most max{min{Z + D,^},1+ ^ ^ } colors. 
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Theorem 2. For each S > 0, D > 0 such that S + 2D < 21, and for each 
1 > 0 there exists an l-regular bipartite graph constrained by S single and D 
double colors for which any legal coloring of the remaining edges requires at least 
max{min{/ + D, f },/ + ^ ^ } total colors. 

The resiilts for problem B are the following. 

Theorem 3. There exists a polynomial time algorithm that properly colors the 
uncolored edges of an l-regular bipartite graph constrained by S colors using at 
most max{/ + 5/2,5} colors. 

Theorem 4. For each S >Q, and for each I > 0 there exists an l-regular bipar
tite graph constrained by S colors for which any legal coloring of the remaining 
edges requires at least max{/ + 5 /2 ,5} total colors. 

The rest of our paper is organized as follows. In Section 2, we prove Theorem 1 
by giving an algorithm that solves problem A. In Section 3, we present our lower 
bounds for the problem. The results for problem B are outhned in section 4. 

2 The upper bound for problem A 

In this section we present our algorithm for solving problem A. 
The algorithm receives as input an /-regular bipartite graph G = (Vi, V2, E) 

with Vi = {Wo, • • • , Wn} and V2 — {XQ, • • • ,-X'„}, where some edges incident 
to Wo and XQ have been colored using 5 singles and D double different colors. 
We call edges incident to WQ and XQ the source edges. We assume without loss 
of generahty that no edge connects WQ and XQ. If a color appears on only one 
source edge, then we call it a single color. If it appears on two source edges, we 
call it a double color; note that one of these two source edges has to be incident 
to Wo and the other to XQ. We denote by D and 5 the number of double and 
single colors, respectively. 

We proceed by decomposing the bipartite graph into / perfect matchings 
which can always be done since the graph is /-regular. Each such matching 
includes exactly two soiurce edges: one incident to Wo and one incident to XQ. 
A double color is called separated if its two source edges appear in different 
matchings. On the other hand, if they appear in the same matching then the 
color is said to be preserved. We classify the matchings into seven types: UU, 
US, UT, TT, PP, SS, TS, based on their corresponding source edges. If both 
the source edges of a matching aie not colored, then the matching is of type 
UU. If one source edge of the matching is uncolored and the other source edge is 
colored with a single color, then the matching is of type US. If one source edge of 
the matching is uncolored and the other source edge is colored with a separated 
color, then the matching is of tj^^e UT. If the two source edges of a matching 
are colored with separated colors, then the matching is of type TT. If the two 
soiurce edges axe colored with the same preserved color, then the matching is 
of type PP. If the two source edges are colored with two single colors, then the 
matching is of type SS. If the two source edges are colored with a single color 
and with a separated color, then the matching is of type TS. 
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Chains and Cycles of Matchings. We partition the matchings of types UT, 
TT, TS into groups. Each such group is either a chain or a cycle of matchings. A 
chaiin of matchings is a sequence (Mo, Mi, • • • , Mk-i) of k matchings such that 

1. Mo £md Mfc_i Eire matchings of type ST or UT; 
2. Ml, • • • , Mfe_2 are £ill matchings of type TT; 
3. for ecich 0 < i < fc — 2, matchings Mj cind Mj+i share excictly one double 

(sepcirated) color. A cheiin consists of at least two matchings and is of type 
S-S,S-U, or U-U. 

A cycle of matchings is a sequence (Mo, Mi, • • • , Mfc_i} of k TT matchings 
such that, for each 0 < i < k — 1, matchings Mi and Mj+imodfc share exactly 
one double (sepzurated) color. 

Minimal Chains and Cycles. A sequence C of matchings (chain or cycle) 
is minimal if it does not contedn any two parallel source edges. A non-minimal 
sequence of matchings can be split into two shorter sequences in the following 
way. Consider the sequence C = (MQ, • • • , Mj_i) of matching and suppose that 
the edge colored Cj of M; eind the edge colored Cj of Mj are peirallel. We exchange 
the two edges thus obtcdning two new matchings M,' and Mj with soiu-ce edges 
colored Cj and Cj+i and Ci and Cj+i and the two new sequences of matchings 
Ci - (Mo, Ml, • • • M _ i , Mj, Mj+i, • • • , M,_i) and Ca = (M/, M^+i, • • • , M,_i) . 
The sequence Ci is of the same type (i.e., a cycle or a chain) as C while C2 
is always a cycle. We repeat this process of splitting one sequence into two 
new sequences until all sequences are minimal (i.e., they do not contain peirallel 
edges). 

2.1 Coloring the matchings 

In this section we demonstrate how to color groups of matchings. 

Coloring two consecutive matchings. We will first present two alternative 
ways for coloring two consecutive matchings. These techniques will be used for 
coloring cycles or chains. We consider two consecutive matchings Ti = (x, y) and 
T2 = (y, z) together as a cycle cover of the bipartite graph. We assiune that the 
cycle cover of two matchings consists of one single cycle that spans the entire 
bipartite graph. We remark that ovu" colorings can be easily adapted if such a 
cycle cover consists of more thcin one cycle. 

1. We use the colors x,y,z as cind color the uncolored edges without using ciny 
new color. Let ei, 62 be the edges of the cycle cover that are adjcicent to the 
source edge e^ colored with color x that does not belong to matchings Ti 
and T2. Note that since e^ belongs to a matching of the same minimal chaiin 
or cycle with Ti and T2, it cannot be parallel to the source edges colored 
with z or y. 
We use colors y and z to color ei and 62- Similarly, we use colors y and x 
to color edges 63 and 64 (edges of the cycle cover that are adjeicent to the 
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source edge Cz colored with z that does not belong to matchings Ti and T2). 
The remaining iincolored edges of the cycle cover Ccin be colored using colors 
X and z alternatively (and possibly using color y in one more edge to break 
parity). 

2. We use color y and a new color n to color the uncolored edges. We color 
the uncolored edges of the cycle cover using color y and the new color n 
alternatively. 

Both colorings are depicted in Figure 1. Note that both colorings work if x or ;̂ 
is a single color. 

w_a 

w a 

x_o 

X 0 

Fig. 1. Two alternative colorings of two consecutive matchings. 

Easy colorings. PP, SU, and UU matchings can be easily colored. Edges of a 
PP matching are colored using the double color. Edges of and SU matching are 
colored using the single color. Edges of a UU matching are colored using a new 
color. 

Coloring cycles. Using the two alternative coloring of consecutive matchings 
we can color a cycle of length t using [ |] new colors. 

Coloring cycles of length 4k. Let MQ = (xcj/o), Mi = {yo,zo), M2 = {ZQ,WQ), 

..., M4k-i = {wk-i, Xo) be such a cycle. For every 0 < i < A; we color consecutive 
matchings Ma = {xi,yi) and M4J+1 = {yi,Zi) with colors Xi,yi,Zi and consec
utive matchings M4i+2 = {zi,Wi),Mii+3 = (u'i,Xi+i) with color Wi and a new 
color Ui. 

Coloring cycles of length 4fc + 1. Let MQ = {xo,yo),....,Mik — {xkiXo) be such 
a cycle. For every 0 < i < A; we color consecutive matchings Ma = {xi,yi) and 
M^i+i = (j/i, Zi) with colors Xj, j/i, Zi and consecutive matchings M4i+2 = (z,, Wi) 
and M4i+3 = {wi,Xi+i) with color wt and a new color nj. The matching M4k is 
colored with a new color nfc. 
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Coloring cycles of length 4fc + 2. Let MQ = {xo,yo),—, M4k+i = {yk, XQ) be such 
a cycle. For every 0 < i < fe we color consecutive matchings M4i = {xi,yi) and 
Af4i+i = (j/t) Zi) with colors Xj, T/J, Zi and consecutive matchings M4i+2 = {zt, Wi) 
and M4i+3 — {wi,Xi+i) with color Wi and a new color nj. The matchings M4k 
and M4k+i axe colored with yk and a new color Uk-

Coloring cycles of length 4fc + 3. Let MQ = {xo,yo),—,M4k+2 = (zk^xo) be 
such a cycle. For every 0 < i < A; we color consecutive matchings M4i = {xi,yi) 
and M4i+i — {yi,Zi) with colors Xi,yi,Zi and for 0 < i < A; — 1 consecutive 
matchings M4i+2 = {zijWi), M4i+3 = {wi,Xi+i) with color lUj and a new color 
nj. The matching M4k+2 will be colored with a new color njt. 

Coloring chains of type S-S. Using the two alternative coloring of consecu
tive matchings we can color a S-S chain of length t using [^^] new colors. 

Coloring chains of type S-U. Consider an S-U chain of length t. We assign 
the single color to the uncolored source edge. Now we have a cycle which can be 
colored as above. The niunber of new colors is [ | ] . 

Coloring chains of type U - U . Consider a U-U chain of length t. We use a 
new color and assign it to both uncolored source edges. Now we have a cycle 
which can be colored as above. The number of new colors is 1 + [ | ] . 

Other colorings. We now discuss how to handle some interesting cases. 
An SS matching can be colored together with a U-U chain of length 2 using 

at most 4 total colors. First we assign the single colors of the SS matching to 
the uncolored source edges of the UT matchings of the chain. Now we have a 
cycle of length 3. If the cycle is minimal we can color it using one new color. 
Otherwise, we obtain a cycle of length 2 which can be colored using one extra 
color and a PP matching which is colored in the obvious way. Obviously, we can 
color an SS matching together with two U-U chains of length 2 using at most 7 
total colors. 

A U-U chain of length 2 can be colored together with an SU matching using 
at most 4 total colors. We first assign a new color to the uncolored edge of the 
SU matching and we have an SS matching and a U-U chain of length 2 which 
is colored as described. 

A U-U chain of length 2 can be colored together with an S-S chain of length 
2 using at most 6 total colors. We first assign the single colors of the S-S chain 
to the uncolored edges of the U-U chain. Now we have a cycle of length 4. If the 
cycle is minimal we can color it using 1 new color. Otherwise, it is decomposed 
either into two cycles of length 2 which can be colored using 2 new colors, or 
into a cycle of length 3 which is colored using 1 new color and a PP matching 
which is colored trivially. 
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2.2 Analysis of the algorithm 

For analyzing the performance of our algorithm, we study four cases which are 
presented below. We note that analysis below intuitively reveals the inherent 
difficulty that the presence of uncolored source edges adds to the problem. 

Case 1. U < S. The valid inequaUties we have to consider are the following 

U<D<l/2<S,U<l/2<D<S,U<S<l/2<D, 

U<l/2<S<D,D<U<l/2<S,D<l/2<U<S. 

All other cases violate the constraint 2D + S + U — 21. Note that in all cases it 
is I + ̂  > min{Z + D, 31/2}. 

We use U single colors to color the uncolored source edges and we have a new 
partial coloring of soiu:ce edges with D' = D + U double colors, and S' — S — U 
single colors. Note that using the colorings described in the previous section, any 
set of S-S chains, cycles, PP ajid SS matchings of size k with Dk double and Sk 
single colors is colored using at most k + ^''^'^'' total colors. Thus, the remaining 
edges of the bipartite graph are colored using at most I + ^ ^^ — 1+ ^ ^ total 
colors. SS matchings are colored using one of the single colors. 

Case 2. S <U and D > 1/2. The valid inequalities we have to consider are the 
following 

S<l/2<D<U,S<U<l/2<D,S<l/2<U <D. 

In all cases it is 31/2 = mm{l + D, 31/2} > I + ^ . 
We use the single colors and new double colors to color the uncolored soiurce 

edges. We have a new partial coloring with I double colors. All matchings are now 
either PP's or cycles. Using the colorings for PP matchings and cycles described 
in the previous section, the remaining edges are colored using at most 31/2 total 
colors. 

Case 3.S <D<l/2<U. Note that Z + D > / + ^ . Let kss be the number of 
SS matchings, ksTTS the number of S-S chains of length 2, ksxTU the number 
of S-U chains of length 2, kuxTU the number of U-U chains of length 2, and 
kpp the number of PP matchings. 

Matchings except SS, PP, and chains of length 2 can be colored with 

, , ni o7 o; I , -^ ~ ksTTS " ksTTU - kuTTU - kpp 
l—KSS—^i^STTS — ̂ KsTTU—^KUTTU — '^PP-^ ^ 

colors. S-S and S-U chains of length 2 are colored with 3ksTTS + 3ksTTU colors, 
while PP matchings are trivially colored with kpp colors. Totally 

, , r,, , -^ + ksTTS + ksTTU - kuTTU - kpp 

i - kss - ^kuTTU H 2 

colors. Now we distinguish between two subcases: 
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~ l^ss < kijTTU- Then kss SS matchings axe colored together with kss U-U 
chains of length 2 using 4fcss colors. The rest kuTTU — kss U-U chains of 
length 2 axe colored with 3kuTTU — 3fcss colors. The total nmnber of colors 
is 

, D + ksTTS + ksTTU + kuTTU - kpp ^ I , £) 

- kss > kuTTU- Then kuTTU SS matchings axe colored together with kuTTU 
U-U chains of length 2 with 4kuTTU colors. The rest kss — kuTTU SS match
ings are colored with 2kss — "^kuTTU colors. The total number of colors is 

I I I , -^ + ksTTS + ksTTU - kuTTU " kpp 
l + kss + ^ • 

Note that 

S — 2ksTTS — ksTTU ^ D — 2ksTTS — ksTTU 

kss < 2 < 2 ' 

so the total number of colors is at most l + D- ''STTS+''UTTU+I'PP <I + D. 

Case 4- D < S <U. The valid inequalities we have to consider are the following 

D<S<l/2<U,D<l/2<S<U. 

Note that I + ^ ^ > I + D. Consider a set of matchings of size k consisting 
of cycles, U-U chains of length > 3, S-S and S-U chains, PP, SU, UU and 
SS matchings with Dk double colors and Sk single colors. The colorings of the 
previous section color any such set of matchings using k + ^''^^'' colors. Thus, 
we only have to explain how to color U-U chains of length 2. 

Let kss be the number of SS matchings, ksu be the number of SU matchings, 
ksTTS be the number of S-S chains of length 2, ks-u be the number of S-U 
chains, ks-s be the number of S-S chains of length > 3, and kuxTU be the 
number of U-U chains of length 2. It is 

S = 2kss+ksu+2ksTTS+ks-u+2ks-s > -C > kuTTU+ksTTS+ks-u+2ks-s ^ 

2kss + ksu + ksTTS > kuxTU-

Thus, U-U chains of length 2 can either be grouped into pairs and colored 
together with an SS matching, or colored together with an SU matching or an 
S-S chain of length 2. 

3 Lower bounds for problem A 

Consider the graph of figiure 2. Let D < 1/2. Assmne that there exist D edges 
between vertices XQ and Yi colored with double colors. There are D edges be
tween YQ and X2 which axe either uncolored or colored with single colors. There 
are also I — D edges between YQ and Xi which include all edges adjacent to YQ 
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that are colored with double colors. Then, for coloring the edges adjacent to X2 
we cannot use the D double colors. Thus, I + D total colors are necessary. 

Let D > 1/2. Select a set C of 1/2 double colors and consider the following 
partial coloring. There exist 1/2 edges between vertices XQ and Y\ colored with 
double colors of C. There are 1/2 edges between IQ and X2 which are either 
uncolored or colored with colors not in C. There are also 1/2 edges between YQ 
and Xi colored with the double colors of C. Then, for coloring the edges adjacent 
to X2 we cannot use the 1/2 double colors of the set C. Thus, 3Z/2 total colors 
are necessary. 

Consider now the following bipartite graph and partial coloring. There are 
^ ^ edges between XQ and Fi which are colored with half the double colors 
and half the single colors. There also exist ^ ^ edges between YQ and X2 which 
axe colored with the double colors not assigned to edges between XQ and Y\ and 
5/2 single colors. The I — ̂ ^ edges between XQ and I2 are either uncolored 
or colored with double colors also assigned in edges between YQ and X2. The 
/ — ^ ^ edges between YQ and Xi are either uncolored or colored with double 
colors also assigned in edges between XQ and Yi. Then for coloring the I — ^ ^ 
edges between X2 and Yi we must use new colors. This means that I + ^ ^ total 
colors Eire necessary. 

^-O^X JLJ Y_0 

X_l GC^fx^P Y_l 

X_2 Cr ^ O Y_2 

Fig. 2. The bipartite graph for the lower bound. 

4 Problem B 

In this section we deal with problem B. We first give the lower bound. 
Consider an Z-regular bipartite graph G = {Vi,V2,E) and let Vi 6 Vi and 

V2 e V2. Let S < 21. There are 5/2 edges adjacent to vi but not to V2 and 
5/2 edges adjacent to V2 but not to vi. These edges are already colored with 5 
colors. There also exist I — 5/2 edges between vi and V2 which must be colored 
with extra colors. Thus, I + 5/2 total colors are necessary. 

In the following we outUne the idea of the upper bound. First, the bipartite 
graph is decomposed into matchings. Let U be the set of matchings that do not 
contain any colored edge, and F be the set of matchings that contain at least 3 
colored edges. We can show the following claim which captures the most difficult 
part of the upper bound. 
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Claim. A matching of F with k colored edges can be colored together with [^y^ J 
matchings of U without using any new colors. 

Proof. We first show how a matching M3 of F with 3 colored edges can be colored 
together with a matching MQ of U without using any new color. We consider 
M3 and Mo together as a cycle cover of the bipartite graph. Wlog we assume 
that the cycle cover consists of one cycle that spans the entire bipartite graph. 
Let ex,ey, Cz be the colored edges of M3, colored with colors x, y, z respectively. 
Consider the path pi that coimects edges Cy and e^ and does not contain e^. 
We color the uncolored edges of pi using colors y and x alternatively. Coloring 
the uncolored edges of path p^ between e^ and e^ and path ps between Cx and 
Cy is similar. Obviously, we can color a matching of F with more than 3 colored 
edges together with a matching of U without using any new color. 

Now consider a matching Mk G F with fc > 5 colored edges and let MQ € U. 
Let C be the set of A; edges of Mk which are already colored. For any subset C 
of C of cardinality at least 4, there exists at least a pair of edges e^, Cy € C that 
are not adjacent to the same edge of MQ. Otherwise, there exists an edge e' G C 
with at least 3 adjacent edges in MQ, a contradiction since MQ is a matching. So 
Mo can be colored with colors assigned to Cx and Cy. Iteratively, we can color 
[^^ J matchings of U using 2 [^y^ J colors of edges of Mk without using any new 
color. There are 3 or 4 (if fc is even) colors in edges of Mk that were not used for 
coloring any matching of U; so we can easily color the uncolored edges of Mk 
together with another matching of U. The claim follows. D 

We use the claim above to group and color the maximum number of match
ings in U along with matchings in F. Then each one of the remaining matchings 
of U (if any) can be trivially colored with an extra color; similarly matchings 
with no more than 2 colored edges (but with at least one) can be colored without 
using any extra color. 

Let fci,..., fc|j?| be the number of colored edges in matchings of F. The number 
of uncolored matchings is 

s - r ' ^ i fc-

\U\<1- \F\ - ^ ^ ' = 1 " ' 

so the number of new colors (if any) will be 
fci-1 <'-|-?<'-f 

- 2 2 - 2 

and the number of total colors does not exceed I + 5/2. 
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