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Algorithmic mechanism design is concerned with designing algorithms for settings where inputs are con-
trolled by selfish agents, and the center needs to motivate the agents to report their true values. In this
paper, we study scenarios where the center may be able to verify whether the agents report their prefer-
ences (types) truthfully. We first consider the standard model of mechanism design with partial verification,
where the set of types that an agent can report is a function of his true type. We explore inherent limitations
of this model; in particular, we show that the famous Gibbard–Satterthwaite impossibility result holds even
if a manipulator can only lie by swapping two adjacent alternatives in his vote. Motivated by these negative
results, we then introduce a richer model of verification, which we term mechanism design with probabilistic
verification. In our model, an agent may report any type, but will be caught with some probability that may
depend on his true type, the reported type, or both; if an agent is caught lying, he will not get his payment
and may be fined. We characterize the class of social choice functions that can be truthfully implemented
in this model. We then proceed to study the complexity of finding an optimal individually rational imple-
mentation, i.e., one that minimizes the center’s expected payment while guaranteeing non-negative utility
to the agent, both for truthful and for non-truthful implementation. Our hardness result for non-truthful
implementation answers an open question recently posed by Auletta et al. [2011].

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and Problem
Complexity; J.4 [Computer Applications]: Social and Behavioral Sciences–Economics
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1. INTRODUCTION
Algorithmic mechanism design [Nisan and Ronen 2001; Nisan 2007] is a burgeoning
research area that deals with designing algorithms for settings where inputs are con-
trolled by selfish agents. A center wants to implement some function of the inputs, but
agents have preferences over possible outcomes and may lie about their inputs if it is
profitable for them to do so. Thus, the center needs to create incentives for truthful
reporting, usually by offering payments to the agents. Examples of problems in this
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area include combinatorial auctions, resource allocation, scheduling, facility location,
network creation, and many other problems of practical significance.

Let us describe this problem more formally, focusing on a setting with a single self-
ish agent1. In its most abstract form, a mechanism design problem can be specified by
a space O of possible outcomes (say, allocations of items in an auction or job assign-
ments in a scheduling scenario), a set of possible types D, where elements of D are
functions from O to R (the value v(o), v ∈ D, is the benefit that the agent enjoys if
outcome o is chosen), and a social choice function f : D → O, which selects an outcome
given the agent’s reported type. The function f represents the center’s preferences,
which may differ from those of the agent: that is, f(v) is not necessarily chosen from
arg maxo∈O v(o). Therefore the agent may lie about his type: instead of submitting his
true type v (and obtaining an outcome o), an agent may submit v′ 6= v if this leads to
an outcome o′ that he likes better (i.e., v(o′) > v(o)). Typically, this issue is handled by
designing a payment rule p : D → R that incentivizes the agent to report truthfully:
we want p to be such that agent i maximizes his utility (the sum of the enjoyment he
derives from the selected outcome and the payment he gets) by submitting his true
type v. If p has this property, the pair (f, p) (such pairs are usually called mechanisms)
is said to (truthfully) implement f .

Not all social choice functions are implementable: for instance, it is impossible to
schedule tasks on unrelated machines so as to minimize the makespan if the machines
may lie about the time it takes them to execute each task [Nisan and Ronen 2001]. For
rich enough domains, only a restricted class of social choice functions admits an imple-
mentation [Roberts 1979; Saks and Yu 2005]. In a sense, many of these impossibility
results stem from the fact that an agent may declare any type in the domain. Moti-
vated by this observation, Nisan and Ronen [2001] proposed a model where agents’
misreporting is restricted: the set of types that an agent may report is determined by
his true type and may be a strict subset of D. This model can be conveniently encoded
as a directed graph M with a vertex set D: an edge from u to v means that an agent
of type u can report v. For instance, in the context of scheduling, it makes sense to
assume that a machine can understate its speed, but not overstate it. In other set-
tings, such as, e.g., voting, an agent may be able to submit a ranking of the candidates
that differs from his true ranking in a few positions, but will be detected if his rank-
ing is the opposite of his true preferences. In the economics literature, this setting is
known as mechanism design with partial verification; the term “partial” refers to the
fact that the center may detect some, but not all of the lies. It has been first formalized
by Green and Laffont [1986], and subsequently studied in a number of papers. A num-
ber of strong positive results in the partial verification model inspired by [Nisan and
Ronen 2001] have been obtained for several important domains, including scheduling
and combinatorial auctions [Auletta et al. 2006; Penna and Ventre 2008, 2009; Auletta
et al. 2009; Krysta and Ventre 2010].

An interesting feature of the partial verification model is that, to implement a so-
cial choice function f , the center may have to incentivize the agents to misreport their
preferences. That is, the center may declare that it is going to execute a mechanism
(g, p) with g 6= f , but set up the incentives so that an agent with type u prefers to
report a type v with g(v) = f(u). Thus, while it may look like the center is not imple-
menting f , once the agents’ strategic behavior is taken into account, the outcome on
a type u is exactly f(u). A mechanism (g, p) with this property is called a non-truthful
implementation of f . Now, in the setting without verification there is no need to jump
through these hoops: the famous revelation principle [Myerson 1981] says that any so-

1It is known that for the type of questions studied in this paper, there is no loss of generality in focusing on
single-agent settings; see, e.g., [Archer and Kleinberg 2008; Auletta et al. 2011] for an explanation.
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cial choice function f that can be implemented in this roundabout manner can also be
implemented truthfully, i.e., by combining the target social choice function with a suit-
able payment rule. In contrast, in the partial verification model this is not the case:
there are social choice functions that can be implemented non-truthfully, but do not
have a truthful implementation. However, as shown in a recent paper by Auletta et
al. [2011], non-truthful implementations are computationally hard to find; this hard-
ness result holds even when the graph M is acyclic and the outdegree of each vertex is
at most 3.

In this paper, we continue the investigation of the partial verification model. In Sec-
tion 3 we identify two natural classes of partial verification settings: the former can
be interpreted as “one-sided” verification, and encompasses the verification models
considered in [Singh and Wittman 2001; Auletta et al. 2006, 2009; Krysta and Ventre
2010], while the latter can be viewed as “distance-based” verification. In more detail, in
the latter model, the set of types that a player is allowed to report consists of all types
that are sufficiently close to his true type, according to some notion of distance. We
observe that, in contrast with one-sided verification, distance-based verification does
not seem to be useful for designing truthful mechanisms. Specifically, we investigate
two settings that admit a natural notion of distance—convex domains and voting—and
show that in both of them the set of truthfully implementable social choice functions
under distance-based verification is the same as in the model without verification.
Our result for the voting domain can be informally summarized as follows: the fa-
mous Gibbard–Satterthwaite impossibility result [Gibbard 1973; Satterthwaite 1975]
remains true even if the manipulating voter is restricted to swapping a single pair of
candidates in his vote.

Motivated by these negative results, we then proceed to study a broader class of ver-
ification settings. Our starting point is the observation that in the partial verification
model of [Green and Laffont 1986] lie detection is fully deterministic: either an agent
of type v can declare a type v′ 6= v without any risk of being caught, or he simply cannot
declare v′ as his type. However, in many real-life scenarios lie detection is probabilis-
tic: an agent can report any type v′ that differs from his true type v, and is caught with
a certain probability. This probability may depend on both v and v′; in particular, in
settings where there is a natural notion of distance between types, such as the ones
described in Section 3, the detection probability is likely to grow with the distance
from v to v′. If a lie is detected, the lying agent is usually punished: if the center was
supposed to pay the agent, the payment may be withheld, and the agent may have to
pay a fine; again, the fine may depend on the agent’s true type, the declared type, or
both.

For instance, consider a member of a decision-making body (let us call him Mr. X)
who is supposed to vote by submitting his ranking of several alternatives, such as
budget proposals or nominees for an administrative post. Let us denote the available
alternatives by A, B, and C, and suppose that Mr. X’s true ranking of the alternatives
is A > B > C. Moreover, he once wrote a private e-mail in which he argued that A is
preferable to B, and on another occasion he told a group of supporters that he prefers
A to C. Now, if Mr. X votes B > A > C for strategic reasons, his reputation may be
damaged if that private e-mail of his is leaked, Thus, when he weighs the cost and the
benefits of the strategic vote, he must take into account the leakage probability. Voting
B > C > A is even more dangerous, as there is an additional risk that the position he
expressed when talking to his supporters becomes publicly known.

Another example is provided by job scheduling. Consider a machine that has speed
s, but may declare a speed s′ 6= s. Suppose that, as a result, this machine is allocated a
workload of L > 0. The center can observe whether the machine starts working imme-
diately (and withhold the payment if it does not), and, once started, the machine cannot
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stop until it completes its load. However, the center cannot observe the actual speed of
the machine or monitor the entire execution: all it can do is check upon this machine
once to see if it is still working. The center aims to schedule its check around the ex-
pected completion time, i.e., L/s′, but, due to other demands on its resources, it may
be unable to time it perfectly. Thus, the timing of the check will be chosen uniformly
from the interval [L/s′ − δ, L/s′ + δ] for some δ > 0. If the inspection detects cheating
(i.e., it took place before time L/s′ and the machine had already stopped working, or it
took place after time L/s′ and the machine was still working), the center can withhold
payment. Clearly, for a fixed value of δ the detection probability depends on both s and
s′: more specifically, it grows linearly with |Ls −

L
s′ | as long as |Ls −

L
s′ | ≤ δ, and becomes

1/2 when |Ls −
L
s′ | ≥ δ.

In Section 4 we provide a formal model for such scenarios by introducing the frame-
work of mechanism design with probabilistic verification; this is our main conceptual
contribution. Our model allows for probabilistic lie detection and fines, and can be
shown to generalize the partial verification model. We characterize the set of social
choice functions that can be truthfully implemented in this model; our proof is based
on a modification of the graph-theoretic argument given in [Vohra 2011]. Our results
indicate that probabilistic verification can be very powerful. In particular, whenever all
lie detection probabilities are strictly positive, any social choice function can be imple-
mented: intuitively, if payments are large enough, even a small chance of not receiving
them makes a player reluctant to lie.

Of course, large payments are undesirable from the center’s perspective. Therefore,
in Section 5 we investigate the natural question of finding an implementation that
minimizes the center’s expenses, subject to the condition that the agent’s expected
benefit from participation in the mechanism is non-negative (this constraint is usu-
ally referred to as individual rationality). For truthful implementation, we show that
a unique optimal solution exists and can be found in strongly polynomial time. For
non-truthful implementation, this problem is much more difficult: we show that it is
NP-hard even for partial verification (and hence, a forteriori, for probabilistic verifica-
tion) and even when the misreport graph M has maximum outdegree 2; our proof also
resolves an open problem of [Auletta et al. 2011] regarding implementation without
payments. Thus, the best we can hope for is to find an efficient algorithm for comput-
ing an optimal non-truthful implementation in settings where each agent can report
at most one non-truthful type. We make partial progress towards this goal, by giving
a polynomial-time algorithm that computes an optimal non-truthful implementation
for the case where types can be arranged on a line, and each agent can either report
his true type or declare the type that appears right after his true type in this ordering;
any other declaration will be detected with probability 1. These results can be viewed
as a contribution to the growing body of work on automated mechanism design [Guo
and Conitzer 2010].

We believe that the probabilistic verification model raises a number of interesting
questions that are waiting to be explored; we formulate some of them in Section 6.

2. PRELIMINARIES AND NOTATION
We start by presenting the general model of mechanism design with partial verifica-
tion, as proposed by Green and Laffont [1986]; our exposition follows that of Auletta et
al. [2011]. Since our focus is on dominant strategy implementation, we will limit our
analysis to settings with a single selfish agent.

We assume that there is a set O of possible outcomes and a single agent who has
some private information about the outcomes, abstracted as a valuation function, or
type u : O → R. The valuation function quantifies how much the agent values each
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outcome in O. The set of all possible valuation functions is the domain D. Throughout
the paper, we will assume that O is a finite set; most (but not all) of our results assume
that D is finite, too.

In the usual mechanism design setting, an agent with type u can report any other
type v ∈ D. In contrast, in the partial verification model the set of types that the agent
can report is limited and may depend on u. This is encoded by a misreport correspon-
dence M : D → 2D, which for each type u specifies the set of types M(u) ⊆ D that the
agent can possibly report. This correspondence can be viewed as a directed graph on
D where there is an edge from u to v if v ∈ M(u); we will sometimes refer to M as
the misreport graph and write (u, v) ∈ M to indicate that v ∈ M(u). We only consider
correspondences M for which truth-telling is always an option, i.e., u ∈ M(u) for all
u ∈ D; when we describe the graph M , we often omit all self-loops from the description.
The standard model (with no verification) corresponds to setting M(u) = D for all u.

A mechanism is a pair (g, p) where g : D → O is a social choice function and p : D → R
is a payment function. Based on the agent’s reported type, the social choice function
g selects a single outcome from O, and the payment function p assigns to the agent a
(positive or negative) payment. The agent’s benefit under a mechanism is assumed to
be given by a quasi-linear utility function, i.e., it is equal to his valuation of the chosen
outcome plus the payment received. Specifically, when he has true type u and reports
v, his utility is u(g(v)) + p(v).

We will also sometimes consider the more restricted setting of mechanism design
without payments, where the function p(u) is required to be identically 0 on D.

We will now present the main definition of this section.

Definition 2.1. A mechanism (g, p) is said to M -implement2 a social choice function
f : D → O for an agent with quasi-linear utility if for each u ∈ D there exists a
v ∈M(u) such that

g(v) = f(u) (1)
u(g(v)) + p(v) ≥ u(g(u′)) + p(u′) for each u′ ∈M(u). (2)

A function f is called M -implementable if there exists a mechanism that M -
implements it.

Given a mechanism (g, p) and a social choice function f , we define a function φ(g,p) :
D → D that given a type u outputs some type v satisfying conditions (1) and (2).
Intuitively, under (g, p) an agent with type u weakly prefers to report φ(g,p)(u), which
leads the mechanism to output g(φ(g,p)(u)) = f(u).

Another notion that will play an important role in our analysis is individual ratio-
nality. We say that a mechanism (g, p) that M -implements a social choice function f is
individually rational if for every v ∈ D it holds that u(g(φg,p(u))) + p(φ(g,p)(u)) ≥ 0. In
words, under an individually rational mechanism an agent acts so that his utility is
non-negative.

A mechanism (g, p) that M -implements f is said to be truthful if for all u ∈ D we
have g(u) = f(u) and u(f(u)) + p(u) ≥ u(g(u′)) + p(u′) for each u′ ∈ M(u). In the
absence of verification, the revelation principle [Myerson 1981] implies that, without

2This definition is somewhat different from the one given in [Auletta et al. 2011]: we assume that the
agent breaks ties in a way that suits the mechanism designer’s goals (rather than in favor of reporting his
true type, as in [Auletta et al. 2011]). This distinction becomes important when we discuss non-truthful
mechanisms that minimize the center’s expenses: under our definition, if the center wants an agent of type
a to report type b, he can achieve this by making b as attractive as a, while under the definition of [Auletta
et al. 2011], he will have to make b infinitesimally more attractive, which means that no mechanism would
be optimal for the center.
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loss of generality, we may limit our attention to truthful mechanisms. However, when
partial verification is available, this is no longer the case: our next example shows that
the center may prefer a non-truthful implementation over a truthful one.

Example 2.2 (adapted from [Green and Laffont 1986; Auletta et al. 2011]).
Consider a setting with O = {T, F}, D = {u, v, w}, and x(T ) = 1, x(F ) = 0 for every

x ∈ D. Suppose that the correspondence M is given by M(u) = {u, v}, M(v) = {v, w},
M(w) = {w}, and we would like to implement the social choice function f(u) = F ,
f(v) = f(w) = T . This social choice function can be truthfully M -implemented by
setting p(u) = 1, p(v) = p(w) = 0; it is not hard to see that this M -implementation
minimizes the sum of payments over all individually rational truthful mechanisms.
However, f admits a (non-truthful) individually rational M -implementation without
payments. Indeed, we can set g(u) = g(v) = F , g(w) = T : under this mechanism
g(u′) = F for any u′ ∈ M(u), and v and w can both report w to obtain their preferred
outcome g(w) = T .

Example 2.2 shows that in settings without money not all M -implementable social
choice functions are truthfully M -implementable; an alternative interpretation is that
allowing non-truthful implementation may reduce the center’s expenses. For settings
where money is available, an example of a correspondence M and a social choice func-
tion f that is M -implementable, but not truthfully M -implementable can be found
in [Auletta et al. 2011; Yu 2011].

3. LIMITATIONS OF PARTIAL VERIFICATION
The partial verification model has proved to be quite powerful in settings where the
verification is “one-sided”, i.e., each outcome is associated with a cost incurred by the
agent, and an agent can lie by overstating his cost, but not by understating it, or,
alternatively, each outcome is associated with a profit, and the agent can understate
his profit, but not overstate it. Under this type of verification, a number of strong
results have been obtained for scheduling [Auletta et al. 2006, 2009], combinatorial
auctions [Krysta and Ventre 2010], and several other domains.

We will now argue that the “asymmetry” of the correspondence function M plays an
important role in these results. To this end, we give two examples of settings where
under a very restricted, yet “symmetric” correspondence M the set of social choice
functions that can be truthfully implemented is the same as in the setting without
verification. In other words, in these settings partial verification does not help at all,
as long as we limit ourselves to truthful implementation.

Our first example of a setting where “symmetric” partial verification does not help
is that of convex domains, where M(v) is restricted to the ε-neighborhood of v for an
arbitrarily small ε. The second scenario is strategic voting, where each voter is only
allowed to modify his preference list by swapping two adjacent candidates. As we will
see, in either case, the correspondence M is indeed very restrictive, yet these restric-
tions do not help to achieve truthfulness.

Now, if one is willing to consider non-truthful implementation, our negative results
no longer hold. However, this approach suffers from another problem: non-truthful
implementations can be hard to find. We will discuss this issue in more detail in Sec-
tion 5.2.

3.1. Convex Domains
We may view a valuation v as a point in RO, and domain D as a subset of RO. This
allows us to use the standard notions of distance and convexity in RO. In particular, for
any ε > 0, the ε-neighborhood of a valuation v, denoted by Nε(v), is defined as the set of
all points in D that are at `2-distance of at most ε from v, and D is said to be convex if
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it is a convex subset of RO. We remark that a convex domain contains infinitely many
points unless it is a singleton.

In this very general setting, one natural restriction on the agent’s ability to lie is
to require that he reports a type that is ε-close to his true type for some small ε, i.e.,
to define the misreport correspondence as Mε(v) = Nε(v). However, it turns out that
no matter how small ε is, this restriction does not enable us to implement any social
choice function that is not implementable without verification.

THEOREM 3.1. For any ε > 0 a social choice function f on a convex domain D is
truthfully Mε-implementable if and only if it is truthfully implementable.

Theorem 3.1 is a direct corollary of Theorem 4.1 in [Archer and Kleinberg 2008].
In fact, Archer and Kleinberg’s result extends to infinite outcome spaces. However,
it is phrased in terms of local properties of the function f rather than in terms of
verification. We remark that Theorem 3.1 also admits a simple direct proof that is
based on “stitching” together a sequence of ε-neighborhoods; we omit it due to space
constraints.

3.2. Strategic Voting
We will now show that the classic Gibbard–Satterthwaite impossibility result [Gibbard
1973; Satterthwaite 1975] holds even under a very powerful partial verification model.

An election is given by a set of m alternatives A (the candidates), and a set of n voters
V . Let L(A) denote the space of all linear orders over A. Each voter i is described by
an order Ri ∈ L(A), also denoted by ≺i; this order is called i’s preference order. When
a ≺i b for some a, b ∈ A, we say that voter i prefers b to a. The vector R = (R1, . . . , Rn),
where Ri ∈ L(A) for all i = 1, . . . , n, is called a preference profile. Given a preference
profile R over a set of candidates A, for any preference order L ∈ L(A) we denote by
(R−i, L) the preference profile obtained from R by replacing Ri with L.

A voting rule F is a mapping that, given a preference profile R over A outputs an
element a of A; we write a = F(R).

We say that a voter i can manipulate an election (A, V ) with a preference profile
(R1, . . . , Rn) with respect to a voting rule F if there exists an L such that F(R) ≺i

F(R−i, L). A voting rule F is called incentive compatible if it cannot be manipulated
by any voter on any preference profile. It is not hard to see that the strategic voting
problem can be viewed in the mechanism design framework of Section 2, as long as
we fix voter i as well as R−i. With this interpretation F ′(R) = F(R−i, R) will play the
role of a social choice function and incentive compatibility is an analogue of truthful
implementability; thus we can use the terminology defined in Section 2 to discuss
incentive compatibility under partial verification.

A voting rule is said to be onto if for every a ∈ A there exists a preference profile R
such that F(R) = a. Being onto is viewed as a minimal requirement for a reasonable
voting rule: a voting rule that is not onto will fail to elect some candidate even if he is
ranked first by all voters.

Voter i is a dictator under a voting rule F if for all preference profiles R over A,
the winner is simply the top alternative in Ri. F is called a dictatorship if some i is a
dictator for it; usually, dictatorships are not viewed as reasonable voting rules.

The Gibbard–Satterthwaite theorem states that for |A| ≥ 3 there exists no reason-
able incentive compatible voting rule.

THEOREM 3.2 ( [GIBBARD 1973; SATTERTHWAITE 1975]). Let F be an incentive
compatible voting rule onto A, where |A| ≥ 3. Then F is a dictatorship.
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Now, let us suppose the voters’ ability to manipulate the elections is limited: each
voter is only allowed to misreport by swapping two adjacent alternatives in his prefer-
ence list. This can be encoded by the partial verification model as follows: if R is given
by a1 ≺ a2 ≺ · · · ≺ am, we set

Mswap(R) = {R(aj−1 ↔ aj) : j = 2, 3, ...,m},

whereR(aj−1 ↔ aj) denotes the linear order obtained fromR by swapping the adjacent
alternatives aj−1 and aj . For L ∈ Mswap(R), we use L/R to denote the pair of alterna-
tives that is ordered differently in R and L. Clearly, L/R = {a, b} implies L = R(a↔ b).

The main result of this section is that even under this very restrictive model of ma-
nipulation, if |A| ≥ 3, no reasonable voting rule is incentive compatible. Thus, partial
verification cannot be used to circumvent Gibbard–Satterthwaite.

THEOREM 3.3. If F is an Mswap-incentive compatible voting rule onto A, where
|A| ≥ 3, then F is a dictatorship.

A voting rule F is called monotone if for all i ∈ V , all preference profiles R−i of the
other voters and all Ri, R

′
i ∈ L(A), if it holds that f(Ri,R−i) = a, f(R′

i,R−i) = a′ and
a 6= a′, then a′ ≺i a and a ≺′

i a
′. That is, if the winner changed from a to a′ when voter

i changed his preference from Ri to R′
i, then i must have swapped a and a′ in his vote.

As shown in [Nisan 2007], this notion is equivalent to incentive compatibility:

PROPOSITION 3.4. A voting rule is incentive compatible if and only if it is mono-
tone.

To prove Theorem 3.3 we will show thatMswap-incentive compatibility implies mono-
tonicity. Theorem 3.3 then follows by combining this result with Proposition 3.4 and
Theorem 3.2.

PROPOSITION 3.5. If a voting rule F is Mswap-incentive compatible, then it is mono-
tone.

We start by stating a simple, but useful lemma.

LEMMA 3.6. Suppose that F is an Mswap-incentive compatible voting rule. For any
i ∈ V , any preference profile R−i of the other voters, any Ri ∈ L(A) and any R′

i ∈
Mswap(Ri), if F(Ri,R−i) = a, F(R′

i,R−i) = a′ and a′ 6= a then a′ ≺i a and a ≺′
i a

′.

PROOF. Immediate from the definition of manipulation.

We will also need the following fact, which is a well-known property of the so-called
swap distance, i.e., the distance between two preference profiles that is defined as the
number of swaps of adjacent candidates needed to transform one profile into the other.

LEMMA 3.7. For any two preference orders R 6= L, there is a sequence of preferences
R = R0, R1, . . . , Rt = L where Rj ∈ Mswap(Rj−1), j = 1, 2, ..., t. Moreover, this sequence
can be chosen so that the pair of alternatives swapped never repeats, i.e., Rj−1/Rj 6=
Rk−1/Rk for any j 6= k.

Now we are ready to prove Proposition 3.5.

PROOF. Let F be an Mswap-incentive compatible voting rule. Fix a voter i with a
preference ordering Ri, a preference profile R−i of the other voters, and a preference
ordering R′

i. Let a = F(Ri,R−i), a′ = F(R′
i,R−i). Out goal is to show that a′ ≺i a,

a ≺′
i a

′.
By Lemma 3.7, there is a sequence of preferences Ri = R0, R1, . . . , Rt = R′

i where
Rj ∈ Mswap(Rj−1), j = 1, 2, ..., t. Let m1 < m2 < · · · < mr be the indices where
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F(Rmk−1,R−i) 6= F(Rmk ,R−i), k = 1, 2, ..., r. Let ak = F(Rmk ,R−i). For convenience
of notation, set m0 = 0, mr+1 = t + 1, and a0 = F(R0,R−i) = a. Now the sequence is
divided by the mk ’s into r + 1 blocks, and within the k-th block the winner is always
ak−1: for mk−1 ≤ j ≤ mk − 1 it holds that F(Rj ,R−i) = ak−1.

For each k = 1, . . . , r, we look at the border of the block: as we move from Rmk−1

to Rmk , the winner switches from ak−1 to ak. Since Rmk ∈ Mswap(Rmk−1), we have
F(Rmk−1,R−i) = ak−1 6= ak = F(Rmk ,R−i), so by Lemma 3.6 we conclude that Rmk is
obtained from Rmk−1 by swapping ak−1 and ak.

Moreover, by Lemma 3.7 alternatives ak−1 and ak never get swapped anywhere else
in the sequence of preferences, i.e., Rj−1/Rj 6= {ak−1, ak} for all j 6= mk. Since for all
j 6= mk the preference rankings Rj−1 and Rj order ak−1 and ak in the same way, for
the preference orders that precede Rmk−1, the alternative ak−1 is preferred to ak, just
as in Rmk−1; for the preference orders that follow Rmk , ak is preferred to ak−1, just as
in Rmk . In particular, ak ≺i ak−1 and ak−1 ≺′

i ak.
Since ak ≺i ak−1 holds for all k = 1, 2, . . . , r, by transitivity we get a′ = ar ≺i a0 = a.

Similarly, we have a ≺′
i a

′. This completes the proof.

4. PROBABILISTIC VERIFICATION MODEL
Motivated by the negative results of the previous section, we will now define the prob-
abilistic verification model that was informally discussed in Section 1. As before, since
we are interested in dominant strategy implementation, we focus on the single agent
case.

We assume that for each pair of types u, v ∈ D we are given a pair of numbers
λ[u, v] ∈ [0, 1] and ψ[u, v] ∈ R+ ∪ {0,+∞}: λ[u, v] is the probability that a player with
type u can report type v and not get caught, and ψ[u, v] is the fine3 that a player of type
u has to pay when he is caught reporting v. We require λ[u, u] = 1 for all u ∈ D, and
write Λ = {λ[u, v]}u,v∈D, Ψ = {ψ[u, v]}u,v∈D. We refer to Λ as the verification probability
matrix and to Ψ as the fine matrix.

We assume that the outcome is chosen according to the declared type and the agent
enjoys the utility associated with this outcome, but he only gets paid/does not get fined
if the lie is not detected. This is motivated by applications such as scheduling, where
lie detection typically takes place after an assignment of jobs to machines has been
determined, but before the payments are distributed. That is, under a mechanism (g, p)
the expected utility of an agent with type u who reports v is

U(g,p)(u, v) = u(g(v)) + λ[u, v]p(v)− (1− λ[u, v])ψ[u, v].

Definition 4.1. Given an outcome space O, a domain D, a verification probability
matrix Λ = {λ[u, v]}u,v∈D, a fine matrix Ψ = {ψ[u, v]}u,v∈D, and a social choice function
f : D → O, a mechanism (g, p) is said to (Λ,Ψ)-implement f if for every u ∈ D there
exists a v ∈ D such that

g(v) = f(u) (3)
U(g,p)(u, v) ≥ U(g,p)(u, u′) for each u′ ∈ D. (4)

If Ψ is the all-zero matrix, we omit it from the notation, and say that (g, p) Λ-
implements f .

3One may feel that fines are not a necessary component of a probabilistic verification model; indeed, a
simpler model with no fines may be adequate for many scenarios. However, there are settings where fines
are externally available, and if our goal is to design a mechanism that minimizes the center’s expenses (we
consider this problem in Section 5), ignoring the availability of fines would lead to suboptimal solutions.
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In words, the expected utility of the agent when declaring a type v with g(v) = f(u)
must be at least as high as for any other declaration.

A (Λ,Ψ)-implementation is said to be truthful if f = g and condition (4) holds with
v = u, i.e.,

u(f(u)) + p(u) ≥ u(f(u′)) + λ[u, u′]p(u′)− (1− λ[u, u′])ψ[u, u′] for all u, u′ ∈ D.
This condition can be rewritten as

λ[u, v] · p(v)− p(u) ≤ ĉ[u, v] for all u, v ∈ D, (5)

where ĉ[u, v] = u(f(u))− u(f(v)) + (1− λ[u, v])ψ[u, v].
The definition of the reporting function φ(g,p) : D → D extends to mechanisms with

probabilistic verification in a natural way: φ(g,p)(u) outputs some type v satisfying con-
ditions (3) and (4). The notion of individual rationality can be extended similarly: we
say that a mechanism (g, p) that (Λ,Ψ)-implements a social choice function f is indi-
vidually rational if for every u ∈ D it holds that U(g,p)(u, φg,p(u)) ≥ 0.

Our probabilistic model generalizes the partial verification model (and, hence, also
the classic model): a misreport graph M can be simulated by setting λ[u, v] = 1,
ψ[u, v] = 0 if (u, v) ∈ M and λ[u, v] = 0, ψ[u, v] = +∞ otherwise. We denote the re-
sulting verification probability matrix by ΛM and the fine matrix by ΨM . Note that in
this construction the fine matrix ΨM cannot be replaced by the all-zero matrix, i.e.,
a mechanism that M -implements f does not necessarily ΛM -implement it. Indeed, in
the absence of fines, if u(g(v)) > u(g(u′)) + p(u′) for some v 6∈ M(u) and all u′ ∈ M(u),
an agent of type u would prefer to report v, even if he knows for sure that he will be
denied payment. However, there is an interesting special case of the probabilistic ver-
ification model where fines are not necessary. Namely, suppose that all outcomes are
associated with tasks, so that the agent incurs a cost for each outcome, i.e., v(o) ≤ 0
for all o ∈ O and all v ∈ D. Let M be a misreport correspondence, and let (g, p) be an
individually rational mechanism that M -implements some function f ; we can assume
that p(v) ≥ 0 for all v ∈ D. Then (g, p) is an individually rational ΛM -implementation
of f . Indeed, if an agent of type u reports a type v 6∈ M(u), he will be detected and his
utility will be u(g(v)) ≤ 0, whereas if he reports φ(g,p)(u), the individual rationality of
(g, p) guarantees him a non-negative utility. We will discuss this setting in more detail
in Section 5.2.

4.1. Characterization of Truthfully Implementable Rules
It is natural to ask which social choice functions are truthfully implementable in our
model. For the setting without verification, the answer is given by the classic result of
Rochet [1987]. It turns out that a natural adaptation of that result works in our case
as well.

Recall that Rochet’s result is presented in terms of a complete directed graph Gf

whose vertex set is the domain D, and the weight of the directed edge (u, v) is given
by c[u, v] = u(f(u)) − u(f(v)). Rochet [1987] shows (see also [Vohra 2011]) that in the
absence of verification, truthful implementability of f reduces to a combinatorial prop-
erty of the graph Gf .

THEOREM 4.2 ( [ROCHET 1987; VOHRA 2011]). A social choice function f is
truthfully implementable if and only if Gf has no negative cycle.

We will now show that a similar characterization can be obtained for probabilistic
verification under some mild conditions on the domain D and the matrix Λ. Namely,
we will assume that (1) D is bounded, i.e., −C < v(o) < C for some sufficiently large
constant C > 0 and all v ∈ D, o ∈ O, and (2) all elements of Λ are either equal to 1
or are bounded away from 1, i.e., there exists an ε > 0 such that for all u, v ∈ D the
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inequality λ[u, v] < 1 implies λ[u, v] ≤ 1−ε. Note that both of these restrictions trivially
hold if the domain D is finite.

We will modify Rochet’s construction as follows. Given a social choice function f and
a probability verification matrix Λ = {λ[u, v]}u,v∈D, we construct a graph GΛ

f from Gf

by setting edge weight cΛ[u, v] = +∞ for all edges (u, v) with λ[u, v] < 1 and cΛ[u, v] =
c[u, v] otherwise. Now, the set of social choice functions that are (Λ,Ψ)-implementable
can be characterized as follows.

THEOREM 4.3. Suppose that D is bounded and all entries of Λ are either equal
to 1 or are bounded away from 1. Then a social choice function f is truthfully (Λ,Ψ)-
implementable if and only if GΛ

f has no negative cycle.

PROOF. Suppose that GΛ
f has a negative cycle, and assume for the sake of contra-

diction that f admits a truthful (Λ,Ψ)-implementation. Then there is a payment vec-
tor {p(u)}u∈D that satisfies the inequalities (5) for all u, v ∈ D. All edges (u, v) in a
negative cycle of GΛ

f have λ[u, v] = 1, cΛ[u, v] = ĉ[u, v]. Therefore, when we add the
inequalities (5) along the negative cycle, the resulting inequality is of the form 0 ≤W ,
where W is the (negative) weight of the cycle, a contradiction.

For the “if” direction, since GΛ
f has no negative cycle, Theorem 4.2 implies that there

are payments {p′(u)}u∈D satisfying all inequalities without probabilistic verification
or fines: p′(v) − p′(u) ≤ cΛ[u, v] for all u, v ∈ D such that λ[u, v] = 1. Further, since D
is bounded and the outcome space O is finite, we can assume that all payments are
bounded, i.e., −C ′ < p′(u) < C ′ for some C ′ > 0 and all u ∈ D; indeed, the shortest
path-based construction of [Vohra 2011] would produce a payment vector with this
property. We will now modify p′ to construct a truthful payment vector.

Set

L = sup{1/(1− λ[u, v]) | λ[u, v] < 1},
∆ = sup{λ[u, v]p′(v)− c[u, v]− p′(u) | λ[u, v] < 1};

our assumptions on D and Λ ensure that both L and ∆ are finite. We claim that the
mechanism (f, p), where p(u) = p′(u) + ∆L for each u ∈ D, is Λ-truthful (and, hence,
(Λ,Ψ)-truthful for any fine matrix Ψ, since all fines are non-negative).

Indeed, by construction, for each edge (u, v) with λ[u, v] < 1, we have λ[u, v]p′(v) −
c[u, v]− p′(u) ≤ ∆ and (1− λ[u, v])L ≥ 1. Therefore,

λ[u, v]p(v)− p(u) = λ[u, v](p′(v) + ∆L)− (p′(u) + ∆L)
= (λ[u, v]p′(v)− p′(u)) + (λ[u, v]− 1)∆L ≤ (c[u, v] + ∆)−∆ ≤ ĉ[u, v].

On the other hand, for edges with λ[u, v] = 1 we get

p(v)− p(u) = (p′(v) + ∆L)− (p′(v) + ∆L) = p′(v)− p′(u) ≤ c[u, v] = ĉ[u, v].

Thus, {p(u)}u∈D satisfies all inequalities (5), i.e., it truthfully (Λ,Ψ)-implements f .

An interesting corollary of Theorem 4.3 is that if all probabilities are less than 1, any
social choice function becomes implementable. Intuitively, this is not very surprising:
if the payments are large and the agent has a non-zero risk of not receiving them
whenever he lies, he prefers not to lie. Note also that the class of (Λ,Ψ)-implementable
social choice functions does not depend on Ψ. In particular, any social choice function
that can be implemented for some Λ and Ψ can be Λ-implemented. Intuitively, this is
because the mechanism can simulate the fines through payments.
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5. OPTIMAL PAYMENT COMPUTATION
In mechanism design, payments provide a useful tool to incentivize desirable behav-
ior. However, they are costly to the center, and thus we are often interested in finding
mechanisms that implement a given social choice function in the cheapest possible
way. Of course, this question is only meaningful if we have to provide some welfare
guarantees to the agent, as otherwise the center can always improve its profits by
adding a large negative constant to all payments, i.e., charging the agents for partici-
pation. The standard way of handling this issue is to require individual rationality, as
defined in Section 2. Another issue is that two payment vectors may be incomparable:
if (f, p) and (f, q) are two truthful mechanisms with p(u) = 3, p(v) = 1 and q(u) = 0,
q(v) = 7, which one should we select? Thus, we need to define our optimization objec-
tive more carefully.

The standard approach to this problem is to assume that, in addition to the out-
come space O, the domain D, the matrices Λ and Ψ, and the function f that we want
to implement, we are given a probability distribution Π = {πu}u∈D over D, and the
agent draws his type from D according to Π; we can assume without loss of gen-
erality that Π assigns non-zero probability to all elements of D, i.e., πu > 0 for all
u ∈ D. Then, our aim is to minimize the expected payment subject to the individ-
ual rationality constraint. In other words, we aim to pick a mechanism (g, p) so as
to minimize

∑
u∈D πuλ[u, φ(g,p)(u)]p(φ(g,p)(u)). We will refer to this problem as EXP-

VER(O, D,Λ,Ψ,Π, f). A careful reader will notice that we do not treat the fines paid
by the agent as the center’s profits, but rather we assume that the fines are paid to
a third party; this is consistent with our interpretation that fines are external to the
mechanism. Alternatively, we may want to minimize the amount we have to pay in the
worst-case scenario, i.e., maxu∈D p(φ(g,p)(u)) (note that by the definition of φ(g,p) the
agent reports φ(g,p)(u) with probability at least πu, i.e., we will actually pay p(φ(g,p)(u))
with non-zero probability). This problem will be referred to as MAX-VER(O, D,Λ,Ψ, f);
note that there is no dependence on Π in this definition. Both of our optimization prob-
lems can also be formulated in the partial verification model; these variants of our
problems will be denoted by EXP-VER(O, D,M,Π, f) and MAX-VER(O, D,M, f), re-
spectively.

In the rest of this section, we investigate these optimization problems for the proba-
bilistic verification model, first for truthful implementations and then for the general
case. From now on, we will assume that the domain D is finite, and write n = |D|.

5.1. Truthful Implementation
Interestingly, it turns out that for truthful implementation the choice of the optimiza-
tion objective is immaterial: for any truthfully (Λ,Ψ)-implementable social choice func-
tion f , the set Pf (Λ,Ψ) of all payment vectors such that (f, p) is an individually rational
(Λ,Ψ)-implementation of f has a minimum element. That is, there exists a unique pay-
ment vector p∗ ∈ Pf (Λ,Ψ) such that p∗(v) ≤ p(v) for any v ∈ D and any p ∈ Pf (Λ,Ψ).
For the setting without verification, this result follows easily from the construction
in [Vohra 2011]. We will now show how to extend it to our setting.

Recall that the truthfulness constraints (5) contain one inequality for each pair
(u, v) ∈ D × D, u 6= v, so altogether n(n − 1) inequalities. The individual rationality
requirement can be encoded by n additional constraints: we have

p(u) + u(f(u)) ≥ 0 for all u ∈ D. (6)

The inequalities in (5) and (6) are linear in p(u) and p(v), i.e., the system composed
of (5) and (6) is a linear feasibility problem with n(n − 1) + n = n2 constraints. We
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will now show that if the set Pf (Λ,Ψ) of all payment vectors satisfying conditions (5)
and (6) is non-empty, then it contains a minimum element.

PROPOSITION 5.1. If Pf (Λ,Ψ) 6= ∅, there exists a unique vector p∗ such that p∗(u) ≤
p(u) for all p ∈ Pf (Λ,Ψ) and all u ∈ D.

PROOF. It is not hard to see that if p and q are two payment vectors in Pf (Λ,Ψ),
then the entry-wise minimum of p and q, min(p, q), is also a vector in Pf (Λ,Ψ). Indeed,
fix a type u ∈ D and assume without loss of generality that min{p(u), q(u)} = p(u).
Then we have

λ[u, v] ·min{p(v), q(v)} −min{p(u), q(u)} ≤ λ[u, v] · p(v)− p(u) ≤ ĉ[u, v].

Also, we clearly have min{p(u), q(u)} ≥ −u(f(u)) for all u ∈ D. To complete the proof, it
suffices to observe that for an arbitrary p the set {q ∈ Pf (Λ,Ψ) | q(u) ≤ p(u) for all u ∈
D} is compact.

By combining the linear feasibility program (5)–(6) with the goal function
min

∑
u∈D πup(u), we can find the optimal payment vector p∗ in polynomial time. In

fact, we can strengthen this result by observing that each constraint of our linear pro-
gram contains at most two variables. Megiddo [1983], and, subsequently, Cohen and
Megiddo [1994] show that for such linear programs a feasible solution can be found
in strongly polynomial time; the algorithm in the latter paper can be used to find a
lexicographically optimal solution. For our setting, the results of [Cohen and Megiddo
1994] imply an algorithm with running time O(n5 log n). Moreover, a class of linear
programs that is essentially equivalent to ours appears in the context of single-player
discounted payoff games. Andersson [2006] provides a O(n4 log n) algorithm for solving
such linear programs; his procedure can be adapted to our case as well.

5.2. Optimal Non-truthful Implementation
As demonstrated by Example 2.2, non-truthful implementation may be less costly for
the center than a truthful one. However, we will now argue that such implementa-
tions may be hard to find, even if we limit ourselves to partial implementation with a
misreport graph that is acyclic and has maximum outdegree 2.

THEOREM 5.2. Both EXP-VER(O, D,M,Π, f) and MAX-VER(O, D,M, f) are NP-
hard. This holds even if |O| = 2, M is acyclic and its maximum outdegree is 2.

The proof of Theorem 5.2 can be modified to show that both of our problems remain
hard for Λ-implementation: it suffices to set Λ = ΛM and observe that all types assign
negative utilities to all outcomes, so all fines can be set to zero (see the discussion that
precedes Section 4.1).

We remark that our proof can be used to strengthen a hardness result in [Auletta
et al. 2011]. Specifically, Auletta et al. show that it is NP-hard to decide whether a
given social choice function can be (non-truthfully) M -implemented without payments,
even if |O| = 2 and M is an acyclic graph with maximum outdegree 3. A simple modifi-
cation of the proof of Theorem 5.2 allows us to extend this hardness result to misreport
correspondences with maximum outdegree 2.

COROLLARY 5.3. Given a social choice function f : D → {F, T} and a misreport
graph M , it is NP-complete to decide whether f is implementable without payments.
This holds even if M is acyclic and its maximum outdegree is 2.

In light of Theorem 5.2, we will now consider a special case of our optimization prob-
lem, where the agent has non-positive valuations for all outcomes, and the elements
of D can be ordered as u1, . . . , un so that λ[u, v] = 0 unless u = ui, v = ui+1 for some
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i = 1, . . . , n − 1; in other words, the graph MΛ with the vertex set D and edge set
{(u, v) | λ[u, v] > 0} is a directed path. We will now show that for this setting both of
our optimization problems admit an efficient algorithm.

THEOREM 5.4. Both EXP-VER(O, D,Λ,Ψ,Π, f) and MAX-VER(O, D,Λ,Ψ, f) are
polynomial-time solvable as long as MΛ is a directed path and v(o) ≤ 0 for all v ∈ D,
o ∈ O.

PROOF. We denote by [i : j] the set of consecutive integers {i, i+1, ..., j} and assume
that [i : j] is empty when i > j. Without loss of generality, we assume that D = [1 : n]
and that MΛ consists of directed edges (k, k+ 1) for k = 1, ..., n− 1. To avoid confusion,
we denote by vi(o) the valuation of the agent for outcome o ∈ O when his true type is
i ∈ D. For the sake of simplicity of the exposition, we assume that the fine matrix is
an all-zero matrix and that πi = 1/n for each type i ∈ D (so, we omit Ψ and Π from
the notation). However, it is straightforward to adapt our proof to the case of general
values of Ψ and Π. We begin with some definitions.

We denote by C(f) the set of social choice functions g such that f(`) ∈ {g(`), g(`+ 1)}
and g(n) = f(n). Clearly, a social choice function not belonging to C(f) does not Λ-
implement f . Consider the class BR of graphs with the types of D as nodes and one
edge between any two consecutive types k and k+1 with direction either from k to k+1
(right edge) or from k + 1 to k (left edge).

The graphs in BR can be used to model the incentives of the agent given a social
choice function g and payments p. Specifically, we say that a graph G of BR is a best
response graph for the pair (g, p) when for each right edge (k, k + 1) (resp., left edge
(k+1, k)) ofG, reporting k+1 (resp., k) is a best response of the agent when his true type
is k. We remark that any possible best response of the agent can be modeled by a graph
in BR: indeed, due to the individual rationality condition and the assumption of non-
positive valuations, declaring a type different than k or k+1 has negative utility for the
agent when his true type is k. We say that (g, p) implements f with best response graph
G if (g, p) is individually rational, G is a best response graph for (g, p), g(n) = f(n),
g(k + 1) = f(k) for each right edge (k, k + 1) of G, and g(k) = f(k) for each left edge
(k+1, k). We say that g implements f with a best response graphG if there is a payment
function p such that (g, p) implements f with best response graph G.

Given a graph G ∈ BR, the class of social choice functions C(f,G) consists of func-
tions g ∈ C(f) such that g(n) = f(n), g(k + 1) = f(k) for each right edge (k, k + 1)
of G, and g(k) = f(k) for each left edge (k + 1, k). Observe that if there is a payment
function p such that G is a best response graph for (g, p), then (g, p) implements f with
best response graph G. Also, a social choice function not belonging to C(f,G) does not
implement f with a best response graph G. Furthermore, it is not hard to see that⋃

G∈BR C(f,G) = C(f).
After these initial definitions, we can give a roadmap of the proof. First, we show

that for each graph G ∈ BR and each social choice function g ∈ C(f,G), g implements
f with best response graph G. In other words, we prove that C(f,G) consists of the
social choice functions that implement f with best response graphG and, consequently,
C(f) consists of the social choice functions that Λ-implement f . Further, we argue that
the set of all payment functions p such that (g, p) implements f with best response
graph G contains a unique coordinate-wise minimal element p∗g,G. Finally, we show
how to find the optimal solution to MAX-VER(O, D,Λ, f) and EXP-VER(O, D,Λ, f) by
optimizing over all possible best response graphs. This is done by a path computation
in an appropriately defined network.

We proceed by presenting a simple representation of the graphs of BR, which we
will call the hill decomposition. Consider a connected non-trivial subgraph of a graph
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of BR defined on the consecutive types [i : k]. This subgraph is called a hill when it
consists of left edges only and i = 1 (such a hill is represented as (1, 1, k)), or it consists
of right edges only and k = n (such a hill is represented as (i, n, n)), or there is a type
j with 1 ≤ i < j < k ≤ n such that the edges between types t and t + 1 are right for
t ∈ [i : j−1] and left for t ∈ [j : k−1] (such a hill is represented as (i, j, k)). Every graph
G ∈ BR admits a unique hill decomposition, which can be constructed as follows. Let
S(G) be the set of types t in [2 : n − 1] such that G contains a left edge (t, t − 1) and a
right edge (t, t+ 1). To obtain the hill decomposition of G, we simply replace each type
t in S(G) with two copies, and connect each of the two incident edges of t to a different
copy.

Let G be a graph of BR and h = (i, j, k) a hill in its hill decomposition. Abusing
notation, we will say that a social choice function g ∈ C(f) belongs to C(f, h) if g(`) =
f(` − 1) for each type ` ∈ [i + 1 : j] and g(`) = f(`) for each type ` ∈ [j : k − 1].
Also, let h1, h2, ..., hs be the consecutive hills in the hill decomposition of G; clearly,
C(f,G) = C(f, h1) ∩ ... ∩ C(f, hs).

We say that a pair of outcomes Oh = (oi, ok) is consistent with a hill h = (i, j, k) if
there is a social choice function in C(f, h) returning outcome oi for type i and outcome
ok for type k. The definitions above imply that oi is necessarily f(1) when i = j = 1,
but can be any outcome in O otherwise. Similarly, ok is necessarily f(n) when k = n,
but can be any outcome in O otherwise. Consider such a hill h = (i, j, k) and a pair of
outcomes Oh = (oi, ok) consistent with h. Denote by HCon(h,Oh) the following set of
constraints on the payment entries p(i), p(i+ 1), ..., p(k).

p(i+ 1) ≥ p(i) + vi(oi)− vi(f(i))
λ[i, i+ 1]

, if i < j (7)

p(`) ≥ p(`− 1) + v`−1(f(`− 2))− v`−1(f(`− 1))
λ[`− 1, `]

, for ` ∈ [i+ 2 : j] (8)

p(`) ≥ λ[`, `+ 1]p(`+ 1) + v`(f(`+ 1))− v`(f(`)), for ` ∈ [j : k − 2] (9)
p(k − 1) ≥ λ[k − 1, k]p(k) + vk−1(ok)− vk−1(f(k − 1)), if j < k (10)

p(`) ≥ −v`−1(f(`− 1))
λ[`− 1, `]

, for ` ∈ [i+ 1 : j] (11)

p(`) ≥ −v`(f(`)), for ` ∈ [j : k − 1] (12)
p(n) ≥ −vn(f(n)), if k = n (13)

Here, constraints (7) and (8) guarantee that, for each ` ∈ [i : j − 1] (if any), reporting
type ` + 1 is a best response for the agent when his true type is `. To see why this is
the case, consider a social choice function g′ ∈ C(f, h) with g′(i) = oi and g′(k) = ok: by
definition, it has g′(`) = f(` − 1) for ` ∈ [i + 1 : j] and inequalities (7) and (8) can be
rewritten as

p(`) + v`(g′(`)) ≤ λ[`, `+ 1]p(`+ 1) + v`(g′(`+ 1))

for ` ∈ [i : j−1]. Similarly, constraints (9) and (10) guarantee that, for each ` ∈ [j : k−1]
(if any), reporting type ` is a best response for the agent when his true type is `. To see
this, consider a social choice function g′ that has g′(`) = f(`) for ` ∈ [j : k − 1] (since
g′ ∈ C(f, h)). Then, inequalities (9) and (10) become

p(`) + v`(g′(`)) ≥ λ[`, `+ 1]p(`+ 1) + v`(g′(`+ 1))

for ` ∈ [j : k−1]. Constraints (11)–(12) ensure individual rationality for the agent when
his true type is ` ∈ [i : k − 1]. Finally, constraint (13) ensures individual rationality for
the agent when his true type is n.
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An argument similar to the one used in the proof of Proposition 5.1 shows that the
set of constraints HCon(h,Oh) admits a solution in which the entries p(i), ..., p(k) are
simultaneously minimized. In fact, this solution can computed in time O(|j − i + 1|).
To do so, we will process the types one by one, by moving from two sides to the top
of the hill, i.e., in the order i, i + 1, . . . , j − 1, k, k − 1, . . . , j. At each type `, we look at
all inequalities with p(`) on the left hand side of ≥. Either the payment involved on
the right hand side is decided already (inequalities (7)–(10)), or the right hand side is
simply a constant (inequalities (11)–(13)). This allows us to decide the payment at type
` by taking the maximum of the right hand side of these inequalities.

Let us denote by p∗h,Oh(i), ..., p∗h,Oh(k) the minimum values of the entries p(i), ..., p(k).
Then p∗h,Oh minimizes also the following two functions of p(i), ..., p(k):

nhmax(h,Oh, p) =
{

maxk−1
`=i+1 p(`), if k 6= n

maxn
`=i+1 p(`), otherwise

and

nhexp(h,Oh, p) =


1
n

(∑j−1
`=i λ[`, `+ 1]p(`+ 1) +

∑k−1
`=j p(`)

)
, if k 6= n

1
n

(∑j−1
`=i λ[`, `+ 1]p(`+ 1) +

∑n
`=j p(`)

)
, otherwise

Observe that, for each type t ∈ {i, k} \ {1, n} (if any), the entry p(t) is lower-bounded
only by the constraint p(t) ≥ 0 and, hence, p∗h,Oh(t) = 0.

Now, consider a graph G ∈ BRwhose unique representation consists of s consecutive
hills h1, h2, ..., hs. Also, let g be a social choice function of C(f,G) returning the pair of
outcomes Oh = {oi, oj} on input types i and k for each hill h = (i, j, k) in {h1, ..., hs}.
Define the payment function p∗g,G as p∗h,Oh on the types of each hill h ∈ {h1, ..., hs}. Note
that this definition is consistent: by the observation above, if two different hills h, h′ ∈
{h1, ..., hs} share a type t, then this type has p∗h,Oh(t) = p∗

h′,Oh′ (t) = 0. Furthermore, it
guarantees that p∗g,G has all its entries simultaneously minimized among all payment
functions p such that the union of the sets of constraints HCon(h,Oh) for h ∈ {h1, ..., hs}
is satisfied; this union consists of the conditions ensuring that (g, p) implements f with
best response graph G. Hence, under the same constraint, p∗g,G minimizes the function
maxh∈{h1,...,hs} nhmax(h,Oh, p) and

∑
h∈{h1,...,hs} nhexp(h,Oh, p) as well. It is not hard to

see that the former is equal to the maximum payment to the agent while the latter is
the expected payment to the agent.

We are ready to present our construction. We build a network consisting of 2 + nm
nodes partitioned into n + 2 levels 0, 1, ..., n + 1. Level 0 has node wstart and level n + 1
has node wend. For ` = 1, ..., n, level ` contains node w`,o for each o ∈ O. There are edges
of cost 0 from wstart to all nodes at level 1, and from all nodes at level n to wend. Also,
for every possible hill h = (i, j, k) and every pair of outcomes Oh = (oi, ok) that is con-
sistent with h, there is a directed edge from node wi,oi

to node wk,ok
. This construction

guarantees that every path from node wstart to node wend in this network corresponds to
a pair (G, g), where G is a graph in BR and g is a social choice function in C(f,G). Fur-
thermore, observe that the number of nodes and edges in this network is polynomial
in n and |O|. To complete the construction, it remains to define the cost of the edges
that correspond to hills.

In the network used to solve MAX-VER(O, D,Λ, f), the cost of an edge correspond-
ing to a hill h and a pair of outcomes Oh consistent with h is nhmax(h,Oh, p∗h,Oh). This
guarantees that the maximum cost among the edges in a path from wstart to wend that
corresponds to the pair (g,G) is equal to the maximum payment to the agent in the im-
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plementation (g, p∗g,G) of f . In the network used to solve EXP-VER(O, D,Λ, f), the cost
of the same edge is nhexp(h,Oh, p∗h,Oh). This guarantees that the total cost of the edges
in a path from wstart to wend that corresponds to the pair (g,G) is equal to the expected
payment to the agent in the implementation (g, p∗g,G) of f . In both cases, the path cor-
responding to the optimal solution of MAX-VER(O, D,Λ, f) or EXP-VER(O, D,Λ, f) can
be found in time polynomial in n and m by a simple shortest path computation.

One may think that hardness of optimal non-truthful implementation stems from the
fact that we have to guess the social choice function g, in addition to the payment func-
tion p, and, consequently, that finding the optimal payment vector p that turns a given
social choice function g into an individually rational mechanism that Λ-implements f
is easy. The results of Section 5.1 confirm this intuition for the case g = f , and the
proof of Theorem 5.4 effectively shows that finding an optimal p for a given g is easy
if MΛ is a directed path. However, in general, finding an optimal implementation may
be hard even if both f and g are fixed. We will now prove this for M -implementation;
the proof generalizes easily to Λ-implementation.

THEOREM 5.5. Given a space of outcomes O, a finite domain D, a misreport graph
M , a distribution Π onD, a pair of social choice functions f, g : D → O, and a parameter
t, it is NP-hard to decide whether there exists a payment function p such that (g, p) is an
individually rational M -implementation of f and the center’s expected payment under
(g, p) is at most t. This holds even if |O| = 2 andM is acyclic and its maximum outdegree
is 3.

6. CONCLUSION
We have introduced a model for mechanism design with probabilistic verification. Our
work suggests several interesting open problems. First, the negative results in Sec-
tion 3 are limited to truthful implementation; can we expect to circumvent them by
resorting to non-truthful implementation? Also, there are interesting variants of the
probabilistic verification problem, which we have not fully explored. For instance, what
happens if verification happens prior to outcome selection, and if the agent is caught
lying, the mechanism implements the outcome that corresponds to his true type? How
would our results change if we were to assume that the center can pocket the fine that
the agent pays when he is caught lying? What if the fine the agent pays can only de-
pend on his true type or, conversely, his declared type? More broadly, what if the center
has some verification “budget” and can use it to determine the verification probabili-
ties?

We remark that by focusing on a single agent we implicitly assume that the verifi-
cation probabilities do not depend on other agents’ type declarations. (Note that this
is also the case for the partial verification model of [Green and Laffont 1986; Auletta
et al. 2011].) While this assumption is reasonable for some applications (such as the
voting scenario described in the introduction), there are settings where it may fail to
hold: for instance, in the job scheduling example a cheating machine cannot be de-
tected unless it is assigned some load, and its load may depend on the speeds declared
by other machines. It would be interesting to extend our model so as to account for this
possibility.

On a more technical level, the proof of Theorem 5.4 works under the assumption
that valuations are non-positive. For the case where this assumption is removed, we
have a (significantly more complicated) extension of our algorithm that computes the
optimal non-truthful implementation in time polynomial in n and 2|O|. It is not clear
whether the exponential dependence on |O| is necessary here. Of course, extending our
positive result to graphs of maximum outdegree 1 is also an interesting challenge.
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