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ABSTRACT
We study the problem of maintaining connectivity in a wire-
less network where the network nodes are equipped with
directional antennas. Nodes correspond to points on the
plane and each uses a directional antenna modeled by a sec-
tor with a given angle and radius. The connectivity problem
is to decide whether or not it is possible to orient the anten-
nas so that the directed graph induced by the node trans-
missions is strongly connected. We present algorithms for
simple polynomial-time-solvable cases of the problem, show
that the problem is NP-complete in the 2-dimensional case
when the sector angle is small, and present algorithms that
approximate the minimum radius to achieve connectivity for
sectors with a given angle. We also discuss several exten-
sions to related problems. To the best of our knowledge, the
problem has not been studied before in the literature.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Non-numerical Algorithms and Problems—routing and
layout ; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—wireless communication
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1. INTRODUCTION
Various types of antennas are used in wireless network-

ing. For our purposes we distinguish between directional
and omnidirectional. The former emit greater power in one
direction thus allowing for increased transmission range and
performance at the receiver’s end as well as reduced inter-
ference from unwanted sources. They are different from the
latter which radiate power uniformly in all directions in the
plane. The set of neighbors of an omnidirectional antenna
with transmission radius r consists of all points within a disk
of radius r centered at the source. In addition to the range
r, directional antennas have a transmission angle φ (mea-
sured in radians) that specifies how wide from the source is
the spread of the antenna. The neighborhood of a node is
determined by which nodes appear in the resulting sector of
the disk (which in turn depends upon its orientation on the
plane).

An important issue in wireless networking is attaining con-
nectivity with minimum communication cost. Regardless of
the type of antenna being used the communication cost is
determined by the transmission cost of each antenna, which
in turn is proportional to the coverage area of the antenna.
For omnidirectional antennas the coverage area is πr2, while
for directional antennas it is proportional to the square of
the range r multiplied by φ. Therefore for the same cov-
erage area a directional antenna can reach further than an
omnidirectional antenna in the direction of a target node.
Moreover, the smaller the transmission spread φ the lower
the communication cost. This is a great advantage of direc-
tional antennas over omnidirectional ones in terms of single
edge cost. However, maintaining network connectivity in
this scenario becomes more complex. For omnidirectional
antennas of the same range, the resulting network has bi-
directional links, while in the case of directional antennas
this may not be the case and the resulting network has to
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be modeled by a directed graph. To ensure connectivity the
antenna orientations of the individual nodes must be chosen
so that the resulting directed graph is strongly connected.

Directional antennas in use today have a variety of capa-
bilities that enable them to vary their transmission range
and orientation. In this paper we model our antennas after
those such as the ESPAR (Electronically Steerable Passive
Array Radiator) antenna [14] which consists of a steerable
central source that can radiate in a region reasonably ap-
proximated by a sector of a circle. (The number of sector
sizes is fixed by the choice of the number of radiator ele-
ments typically set at six, i.e., in this case only multiples
of π/3 are possible. In the problems we consider the sector
size is part of the input.) We consider the problem of main-
taining connectivity using the minimum possible range for
a given angular spread. Specifically, for a set of sensors lo-
cated in the plane at established positions and with a given
angular spread we are interested in providing an algorithm
that minimizes the range required so that by an appropri-
ate rotation of each of the antennas the resulting network
becomes strongly connected.

Preliminaries and notation
In the sequel we introduce the formal model and basic defi-
nitions that will be used throughout the paper. Given a set
X of points on the plane and r > 0, consider the proximity
graph Gr(X) containing a node for each point of X and an
edge for each pair of nodes if the distance of the correspond-
ing points is at most r. Lets call the transmission graph the
directed graph defined by containment of sectors of radius r
and angle φ at the nodes with a given orientation. In partic-
ular, the proximity graph is an undirected graph represent-
ing the communication network underlying a set of sensors
with identical transmission range r, while the transmission
graph is obtained from the proximity graph by taking into
account the orientation of the antennas at the nodes and
as such it is a directed graph. Given a set of points X on
the plane, denote by r∗(X, φ) the smallest radius such that
there exists an orientation of sectors of angle φ and radius
r∗(X, φ) so that the resulting transmission graph is strongly
connected.

Given a set of points X on the plane consider the mini-
mum spanning tree MST (X) connecting the points. Denote
by r(MST (X)) the edge of MST (X) of maximum distance.
Clearly, MST (X) is also spanning tree on the proximity
graph Gr(X). Also, for any r′ < r, the proximity graph
Gr′(X) is disconnected, otherwise MST (X) would not be a
minimum spanning tree for X. It follows that given any an-
gle φ, r∗(X, φ) must be bounded from below by r(MST (X)).

Related work
There has been a fair deal of research on employing direc-
tional antennas for routing and topology control in wireless
ad hoc networks [5, 13, 15, 16, 18]. Since nodes in such net-
works are energy constrained, energy efficiency is an impor-
tant parameter along which these algorithms are compared.
The connectivity problem for omni-directional antennas has
been studied extensively by a number of authors including
[1, 2, 7, 11]. For the case of directional antennas, [9] makes a
direct comparison of the energy consumption of directional
and omnidirectional antennas for achieving k-connectivity
for randomly distributed nodes in the unit square and [8]
looks at coverage and connectivity problems in the same sce-

nario. Directional antennas seem to have wide applicability
not only for improving energy consumption but also in secu-
rity of adhoc networks. They have been used for preventing
wormhole attacks [3] and for mitigating the broadcast storm
problem [4].

The problem studied in this paper concerns how to main-
tain connectivity in a network with directional antennas
with a given angular spread while achieving the minimum
possible transmission range. To the best of our knowledge
the problem explored here has not been proposed in the lit-
erature before.

Outline and results of the paper
In this paper, we provide a first set of results for the connec-
tivity problem in wireless networks using directional anten-
nas. We present simple polynomial time algorithms for the
linear case and the 2-dimensional case when the sector an-
gle of the antennas is large (i.e., at least 8π/5). For smaller
sector angles, we present algorithms that approximate the
minimum radius. When the sector angle is smaller than
2π/3, we show that the problem of determining the mini-
mum radius in order to achieve connectivity is NP-hard.

The rest of the paper is structured as follows. The two
polynomial-time solvable instances are presented in Section
2. Our NP-completeness result is proved in Section 3. We
present the approximation algorithm in Section 4. We con-
clude with interesting extensions and open problems in Sec-
tion 5.

2. POLYNOMIAL-TIME SOLVABLE CASES
First we consider the simpler linear case whereby all the

sensors are located on a straight line. Observe that when
X consists of points on a line and φ ≥ π, there exists an
orientation of sectors of angle φ and radius r(MST (X)) at
each point p in such a way that the sector of each point
covers both the left and the right closest point (if any) to p.
The next theorem gives a better bound for 0 ≤ φ ≤ π.

Theorem 1. Consider a set of n > 2 points i = 1, 2, . . . , n
sorted according to their location on the line. For any φ ≥ 0
and r > 0, there exists an orientation of sectors of angle φ
and radius r at the points so that the transmission graph is
strongly connected if and only if the distance between points
i and i + 2 is at most r, for any i = 1, 2, . . . , n − 2.

Proof. Assume d(xi, xi+2) > r, for some i ≤ n−2. Con-
sider the antenna at xi+1. There are two cases to consider.
First, if the antenna at xi+1 is directed to the left then the
portion of the graph to its left cannot be connected to the
portion of the graph to the right; second, if the antenna at
xi+1 is directed to the right then the portion of the graph
to its right cannot be connected to the portion of the graph
to the left. In either case the graph becomes disconnected.
Conversely, assume d(xi, xi+2) ≤ r, for all i ≤ n − 2. Con-
sider the following antenna orientation:

1. antennas x1, x3, x5, . . . labeled with odd integers are
oriented right, and

2. anntennas x2, x4, x6, . . . labeled with even integers are
oriented left.

It is easy to see that the resulting orientation leads to a
strongly connected graph. This completes the proof of The-
orem 1.
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An important ingredient of the construction is related to
the minimum spanning tree MST (X) of the set of points
X. The following theorem turns out to be easy to prove.

Theorem 2. Given φ ≥ 8π/5, r > 0 and a set of points
on the plane, an orientation of sectors of angle φ and radius
r so that the transmission graph is strongly connected can be
computed (if it exists) in polynomial time.

Proof. If the proximity graph is not connected, then
clearly no orientation of the sectors that defines a strongly
connected transmission graph can be found. If the proxim-
ity graph is connected, consider a minimum spanning tree
on it. Since the edge costs are Euclidean, each node on this
spanning tree has degree at most 5 (it may also have 6 but
in this case we can transform it to a spanning tree of the
same cost and degree 5). Hence, for each node u, there are
two consecutive neighbors v, w in the spanning tree so that
the angle ∠(vuw) is at least 2π/5. Hence, by using sectors
of angle 8π/5 at each node and by orienting it so that it
covers all neighbors in the spanning tree, we obtain a trans-
mission graph that contains two opposite directed edges per
undirected) edge of the spanning tree and thus, it is strongly
connected. This completes the proof of Theorem 2.

3. THE COMPLEXITY OF THE 2-DIMEN-
SIONAL CASE

In this section we prove that the problem on the 2-dimen-
sional case is NP-complete for sector angles smaller than
2π/3. A weaker statement for sector angles smaller than
π/2 follows by the same reduction used by Itai et al. [6]
in order to prove that the hamilton circuit problem in grid
graphs is NP-complete. Consider an instance of the prob-
lem consisting of points with integer coordinates on the eu-
clidean plane (these can be thought of as the nodes of the
grid proximity graph between them). Then, if there exists
an orientation of sector angles of radius 1 and angle φ < π/2
at the nodes so that the corresponding transmission graph
is strongly connected, then this must also be a hamilton cir-
cuit of the proximity graph. The construction of [6] can be
thought of as reducing the hamilton circuit problem on bi-
partite planar graphs of maximum degree 3 (which is proved
in [6] to be NP-complete) to an instance of the problem with
a grid graph as a proximity graph such that there exists a
hamilton circuit in the grid graph if and only if the original
graph has a hamilton circuit. Below we use a slightly more
involved reduction with different gadgets in order to show
that the problem is NP-complete for sector angles smaller
than 2π/3. In particular, we prove the following statement.

Theorem 3. For any constant ǫ > 0, given φ such that
0 ≤ φ < 2π/3 − ǫ, r > 0, and a set of points on the plane,
determining whether there exists an orientation of sectors
of angle φ and radius r so that the transmission graph is
strongly connected is NP-complete.

In order to prove Theorem 3 we will show that the hamil-
ton circuit problem in a special class of (bipartite) planar
graphs of degree 3 having a particular embedding on the
euclidean plane; these graphs are called ǫ-hexagon graphs.

Definition 4. Let ǫ > 0. An ǫ-hexagon graph G = (V, E)
is a bipartite planar graph of maximum degree 3 which has
an embedding on the plane with the following properties:

• Each node of the graph corresponds to a point in the
plane.

• The euclidean distance between the points correspond-
ing to two nodes v1, v2 of G is in [1−ǫ, 1] if (v1, v2) ∈ E
and larger than

√
3 − 3ǫ otherwise.

• The angle between any two line segments corresponding
to edges adjacent to the same node of G is at least
2π/3 − ǫ/2.

Clearly, an ǫ-hexagon graph is the proximity graph for
an instance of the problem and any orientation of sector of
radius 1 and angle φ = 2π/3−ǫ that induces a strongly con-
nected transmission graph actually corresponds to a hamil-
tonian circuit of the proximity graph. The opposite also
holds, i.e., given a hamilton circuit in the proximity graph,
there exist (two) orientations of sectors of radius 1 and angle
2π/3 − ǫ that induce the hamilton circuit as a transmission
graph (with the two possible opposite directions). Hence, in
order to prove Theorem 3, it suffices to prove that the hamil-
ton circuit problem in ǫ-hexagon graphs is NP-complete.

Theorem 5. For any constant ǫ > 0, the hamilton circuit
problem in ǫ-hexagon graphs is NP-complete.

Proof. We will use a reduction from the hamilton circuit
problem on bipartite planar graphs of maximum degree 3
which is known to be NP-complete [6]. Given such a graph
G = (V0, V1, E) with n nodes, we will construct an ǫ-hexagon
graph H (together with its embedding) which has a hamilton
circuit if and only if G has a hamilton circuit.

Edges of G are simulated by necklaces in H . The main
building block of a necklace is a cell, i.e., a 6-node cycle with
nodes labeled 0, 1, 2, 3, 4, and 5. A necklace consists of con-
secutive cells so that nodes 4 and 5 of the i-th cell coincides
with nodes 0 and 1 of the (i + 1)-th cell, respectively. We
note that the node labels in consecutive cells have opposite
(clockwise or counter-clockwise) orders. The endpoints of a
necklace with k cells are nodes 0 and 1 of the first cell and
node 5 of the last cell (see Figure 1). Observe that the only
hamilton path of a necklace ending at node 5 of its last cell
originates from node 0 of its first cell. We call this a cross
path. Also, the only hamilton path of a necklace ending at
node 1 of its first cell originates from node 0 of the first cell.
Such a path is called a return path.

The representation of a necklace with regular hexagons
as cells (with nodes corresponding to the corners of the
hexagons) has a particular orientation (see Figure 1). We
use regular hexagons of side 1 to represent the first and
the last cell of a necklace and irregular hexagons with sides
of length in [1 − ǫ, 1] and angle between adjacent sides in
[2π/3 − ǫ/2, 2π/3 + ǫ/4], to represent the intermediate cells
of a necklace. In this way, we can implement turns of neck-
laces and achieve different orientations provided that there
is enough space for them (see Figure 1). We also note that
the distance between points corresponding to non-adjacent
nodes is more than

√
3 − 3ǫ.

Each node of G is simulated by a diamond, i.e., by the 13-
node construction of Figure 2 consisting of three mutually
adjacent regular hexagons of side 1. The three nodes p1, p2,
and p3 as well as their incident edges e1, e2, and e3 are used
to connect the diamond to the necklaces corresponding to
edges of G incident to the node of G corresponding to the
diamond. Observe that any hamilton path between node pi
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Figure 1: The first figure shows the fixed orientation of a necklace represented with regular hexagons of side
1. The second and third figures show the cross and return path, respectively. The fourth figure shows the
representation of the necklace using irregular hexagons of sides between 0.95 and 1 and with angles between
sides from 115o to 125o.

to pj (with 1 ≤ i 6= j ≤ 3) crosses all the three edges e1, e2,
and e3.

The connection of edges to nodes of G are simulated by
connecting necklaces to diamonds. The special edges of di-
amonds corresponding to nodes of V0 are used to connect
to necklaces (the different necklaces that are connected to
the same diamond use different special edges). The edge be-
tween nodes 0 and 1 of a necklace coincides with edge ei so
that node pi coincides in with 0 (see Figure 2). Similarly, the
special nodes of diamonds corresponding to nodes of V1 are
used to connect to necklaces (again, the necklaces that are
connected to the same diamond use different special nodes).
Node 5 of the last cell of a necklace is located at distance 1
from node pi of the diamond so that the angle between the
edge between pi and node 5 of the last cell of the necklace
and any of its four adjacent edges is exactly 2π/3 (see Fig-
ure 2). We also note that since each necklace has an odd
number of cells, the order of the node labels in the first and
the last cell of each necklace is the same. Hence, the points
of the cell of the necklace attached to the last one (and any
other point of the necklace) will be at distance more than√

3 − 3ǫ from any point of a diamond (see the dotted lines
in Figure 2).

Now, in order to embed the whole graph on the euclidean
plane, we first use an embedding of G on the rectangular
grid n × n. Such constructions are well-known in the liter-
ature. The nodes of G are embedded on points of the grid
and edges correspond to vertex-disjoint paths on the grid.
Each grid point can correspond to a node of V0, a node of
V1, a edge corner, an horizontal segment of an edge, or a
vertical segment of an edge, or not used at all. Now, we use
a square of the Euclidean plane with side κǫn where κǫ is
a constant depending on ǫ. This square is divided into n2

squares of side κǫ, one square for each grid point. Squares
corresponding to grid points serving as edge corners, hori-
zontal or vertical segments of edges of G host segments of
necklaces crossing the square. Squares corresponding to grid
points corresponding to nodes of V0 host a diamond and the

beginning of necklaces connected to it while squares corre-
sponding to grid points corresponding to nodes of V0 host a
diamond and the end of necklaces connected to it. Squares
corresponding to unused grid points are empty. See Figure
3 for an example.

We have completed the description of the construction. In
order to complete the proof, first observe that given a hamil-
ton circuit in G, we can construct a hamilton circuit in H
as follows. Edges of G which are included in the hamilton
circuit of G are covered by a cross path in the correspond-
ing necklace in H . Edges of G which are not included in the
hamilton circuit of G are covered by a return path in the cor-
responding necklace in H . In this way, we have constructed
the part of a hamilton circuit which enters each diamond of
H through two cross paths of necklaces connected to it. It
remains to complete the hamilton circuit by covering all the
nodes of the diamond. The reader may see Figure 2 again
in order to be convinced by the following argument. If a di-
amond corresponds to a node of V0, assume without loss of
generality that the two necklaces whose nodes are covered by
cross paths are connected to the special edges e1 and e2 and
there is possibly a return path on the third necklace start-
ing at node 0 and ending at node 1 of its first cell (which
are the endpoints of e2). In order to complete the hamil-
ton circuit and cover all nodes of the diamond, we use the
hamilton path from node p1 to node p3 which starts with the
special edge e1 (and, in this way, is connected to the hamil-
ton path that covers the nodes of the necklace connected to
the special edge e1) and ends with the special edge e3 (and,
in this way, is connected to the hamilton path that covers
the nodes of the necklace connected to the special edge e3).
We replace edge e2 with the return path in the necklace (if
any) connected to edge e2 of the diamond. If a diamond
corresponds to a node in V1, assume assume without loss
of generality that nodes 5 of the two necklaces connected to
nodes p1 and p2 are the endpoints of the corresponding cross
paths. Then, in order to complete the hamilton circuit and
cover the nodes of the diamond we use the hamilton path
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Figure 3: A bipartite planar graph of maximum degree 3, its embedding on the rectangular grid, and the
corresponding ǫ-hexagon graph. Each thick line represents a necklace.
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covering the nodes of the diamond that starts with p1 and
ends with p2 and the edges connecting p1 and p2 to nodes 5
of the last cells of the two necklaces adjacent to them.

By our construction, in any hamilton circuit in H , for
each diamond, the nodes of exactly two necklaces connected
to it are covered by cross paths and the nodes of the third
necklace (if any) are covered by a return path. Then, the
tour obtained by the edges of G corresponding to necklaces
of H covered by cross paths in the hamilton circuit of H is
a hamilton circuit in G.

Recall that Definition 4 states that the distance between
any two points corresponding to non-adjacent nodes of an
ǫ-hexagon graph is larger than

√
3 − 3ǫ. Hence, Theorem 5

also implies the following statement.

Corollary 6. For any constant ǫ > 0, given φ such that
0 ≤ φ < 2π/3 − ǫ, and a set of points X on the plane,
determining whether there exists an orientation of sectors of
angle φ and radius (

√
3−3ǫ)r∗(X, φ) so that the transmission

graph is strongly connected is NP-complete.

4. APPROXIMATING THE MINIMUM RA-
DIUS

In this section we present algorithms that uses sectors of
slightly larger radius than the optimal one. In particular,
we prove the following theorem.

Theorem 7. Given an angle φ with π ≤ φ < 8π/5 and
a set of points in the plane, there exists a polynomial time
algorithm that computes an orientation of sectors of angle φ
and radius 2 sin

(

π − φ

2

)

· r∗(X, φ) so that the transmission
graph is strongly connected.

Proof. Consider a set X of nodes on the Euclidean plane
and let T be a minimum spanning tree of X. Let r =
r(MST (X)) be the longest edge of T . We will use sectors of
angle φ and radius d(φ) = 2r sin

(

π − φ

2

)

and we will show
how to orient them so that the transmission graph induced
is a strongly connected subgraph over X. The theorem will
then follow since r is a lower bound on r∗(X, φ).

We first construct a matching M consisting of (mutually
non-adjacent) edges of T with the following additional prop-
erty: any non-leaf node of T is adjacent to an edge of M .
This can be done as follows. Initially, M is empty. We root
T at an arbitrary node s. We pick an edge between s and
one of its children and insert it in M . Then, we visit the
remaining nodes of T in a BFS manner. When visiting a
node u, if u is either a leaf-node or a non-leaf node such
that the edge between it and its parent is in M , we do noth-
ing. Otherwise, we pick an edge between u and one of its
children and insert it to M .

We denote by Λ the leaves of T which are not adjacent to
edges of M . We also say that the endpoints of an edge in M
form a couple. We use sectors of angle φ and radius d(φ) at
each point and orient them as follows. At each node u ∈ Λ,
the sector is oriented so that it induces the directed edge
from u to its parent in T in the corresponding transmission
graph G. For each two points u and v forming a couple,
we orient the sector at u so that it contains all points p at
distance d(φ) from u for which the counter-clockwise angle
ˆvup is in [0, φ]. See Figure 4.
We first show that the transmission graph G defined in

this way has the following property (P): for each two points u

w

v

u

Figure 4: The orientation of sectors at two nodes u, v
forming a couple, and a neighbor w of u that is not
contained in the sector of u. The dashed circles have
radius r and denote the range in which the neighbors
of u and v lie.

and v forming a couple, G contains the two opposite directed
edges between u and v, and, for each neighbor w of either
u or v in T , it contains a directed edge from either u or v
to w. Consider a point w corresponding to a neighbor of u
in T (the argument for the case where w is a neighbor of v
is symmetric). Clearly, w is at distance |uw| ≤ r from u.
Also, note that since φ < 8π/5, we have that the radius of
the sectors is d(φ) = 2r sin

(

π − φ

2

)

≥ 2r sin π
5

> 2r sin π
6

=
r. Hence, w is contained in the sector of u if the counter-
clockwise angle ˆvuw is at most φ; in this case, the graph G
contains a directed edge from u to w. Now, assume that the
angle ˆvuw is x > φ (see Figure 4). By the law of cosines in
the triangle defined by points u, v, and w, we have that

|vw| =
√

|uw|2 + |uv|2 − 2|uw||uv| cos x

≤ r
√

2 − 2 cos x

= 2r sin
x

2

≤ 2r sin

(

π − φ

2

)

= d(φ).

Since the counter-clockwise angle ˆvuw is at least π, the
counter-clockwise angle ˆuvw is at most π ≤ φ and, hence,
w is contained in the sector of v; in this case, the graph G
contains a directed edge from v to w. In order to complete
the proof of property (P), observe that since |uv| ≤ r ≤ d(φ)
the point v is contained in the sector of u (and vice-versa).

Now, in order to complete the proof of the theorem, we
will show that for any two neighbors u and v in T , there exist
a directed path from u to v and a directed path from v to u
in G. Without loss of generality, assume that u is closer to
the root s of T than v. If the edge between u and v belongs
in M (i.e., u and v form a couple), property (P) guarantees
that there exist two opposite directed edges between u and v
in the transmission graph G. Otherwise, let w1 be the node
with which u forms a couple. Since v is a neighbor of u in T ,
there is either a directed edge from u to v in G or a directed
edge from w1 to v in G. Then, there is also a directed edge
from u to w1 in G which means that there exists a directed
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(d) (e)

(a) (b) (c)

Figure 5: Examples indicating that our results can-
not be significantly improved by using r(MST (X))
as lower bound for r∗(X, φ). The figures show the
minimum spanning tree among sets of points and
all edges are equal to 1. The angles between edges
incident to the central point are π, 2π/3, π/2, and
2π/5 in (a), (b), (c), and (d), respectively. In (e),
the angle between two edges incident to the central
node is 2π/3 and any other angle is π.

path from u to v. If v is a leaf (i.e., it belongs to Λ), then
its sector is oriented so that it induces a directed edge to its
parent u. Otherwise, let w2 be the node with which v forms
a couple. Since u is a neighbor of v in T , there is either a
directed edge from v to u in G or a directed edge from w2

to u in G. Then, there is also a directed edge from v to w2

in G which means that there exists a directed path from v
to u.

As corollaries we obtain approximation ratios 2,
√

3,
√

2,
and approaching 2 sin π

5
≈ 1.1756 from below for angles π,

4π/3, 3π/2, and slightly smaller than 8π/5, respectively.
A 3-approximation algorithm of the minimum radius for

any angle φ ≥ 0 follows by a folklore result that any n-node
ring can be embedded on a n-node connected tree with di-
lation 3. This result is attributed to Sekanina [17] in [10]
(Theorem 3.15, page 470). Hence, given the minimum span-
ning tree among a set of points X on the plane, we can
compute in polynomial time a hamilton tour over the points
in X such that the distance between any two consecutive
points in the tour is at most 3r(MST (X)). We obtain the
following corollary.

Corollary 8. Given an angle φ ≥ 0 and a set of points
in the plane, there exists a polynomial time algorithm that
computes an orientation of sectors of angle φ and radius
3 · r∗(X, φ) so that the transmission graph is strongly con-
nected.

We note that the results of Theorem 7 cannot be signifi-
cantly improved by using only r(MST (X)) as a lower bound
for r∗(X, φ). Figure 5 shows five examples of the minimum

spanning tree among sets of points and all edges are equal to
1. The angle θ between edges incident to the central point is
π, 2π/3, π/2, and 2π/5 in (a), (b), (c), and (d), respectively.
Hence, using sectors of angle φ smaller than θ at the cen-
tral node, at least one of the leaves must be reached directly
by another leave. Such a transmission requires a sector of
radius at least 2 sin

(

π − θ
2

)

, i.e., r∗(X, φ) is at least 2,
√

3,√
2, and 2 sin π

5
≈ 1.1756 times r(MST (X)) for sector an-

gles φ smaller than π, 4π/3, 3π/2, and 8π/5, respectively.
In case (e), the angle between two edges incident to the cen-
tral node is 2π/3 and any other angle is π. It is not difficult
to see that if sectors have angle φ smaller than π/3 (i.e., if
no node adjacent to the central one can directly transmit
to the other two nodes adjacent to the central one), then
transmission from some leaf that reaches a point which is 3
hops away (i.e., at distance

√
7) is necessary. Hence, in this

case, we have that r∗(X, φ) =
√

7 · r(MST (X)).

5. EXTENSIONS AND OPEN PROBLEMS
Our work has revealed several interesting open questions:

The most challenging one is to determine the threshold on
the sector angle above which the connectivity problem can
be solved in polynomial time and below which the problem
is NP-complete. Our results indicate that this threshold is
between 2π/3 and 8π/5.

Designing more efficient algorithms for approximating (or
even achieving) the minimum radius is an interesting prob-
lem as well. The approximation algorithms presented in
Section 4 use r(MST (X)) as lower bound on the minimum
radius. Although there is a small gap between 3 and

√
7

for the case of small sector angle (see Corollary 8 and the
example in Figure 5e), improving the approximation ratios
further will require new techniques since there are instances
where our results are tight (see Figure 5).

We have considered the case where there is a single an-
tenna per node. We may define interesting combinatorial
problems by having more antennas per node. The antennas
may have the same sector angles or the sum of the sector an-
gles of the antennas of each node is fixed. It is interesting to
investigate the complexity of these variants of the problem
and their relation to geometric spanners [12].

The related problem of broadcasting from a single node
to any other node of the network also deserves investiga-
tion. The problem can be shown to be NP-complete for
sector angle smaller than 2π/3 using a proof similar to that
of Theorem 5 (and using a reduction from the hamilton path
problem instead of hamilton circuit) while the problem can
be proved to be solvable in polynomial time for sector angles
at least 4π/3 (using a slightly more involved argument than
that used in the proof of Theorem 2). Again, algorithms
that approximate the minimum radius sufficient to perform
broadcasting can be designed using minimum spanning trees
like those presented in Theorem 7 for the connectivity prob-
lem.
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