A General Framework for Applying Safety Analysis to Safety Critical Real-Time
Applications Using Fault Trees

Vasilis C. Gerogiannis'?

Ioannis E. Caragiannis'*

Manthos A. Tsoukarellas'*

'Advanced Informatics Ltd., 35 Gounari Ave.. 26221 Patras, Greece
2Departmcm of Mathematics. Sector of Informatics, University of Patras, Greece
*Computer Engineering and Informatics Department. University of Patras, Greece

*Technological Edutational Institute of Patras, Greece

e-mail: {V.Gerogiannis i caragian | manthos }@advinfo.pat.forthnet.gr

Abstract

This paper presents a general framework for analvzing
the safetv aspects of complex safetv critical real-time
applications. The proposed framework is based on the
well-established Fault Tree dnalysis (FTH) technique and
provides a systematic way for handling faulr trees. as well
as, discovering any hazardous conditions thar mav arise.
It also provides the background for the developmeni of
automated software safety analysis tools oriented to a
broad set of programming languages or specifications
design notations for which faull tree templates are (or
will be) available. Such a tool can be used io assess
software safety ar most phases of software life cvcle. The
paper presents SAFELAND ool which follows framework
disciplines and performs code-based fault tree analvsis
on safety critical real-time applications written in several
idioms of the C programnting language.

1. Introduction

Safety critical systems (e.g.. in avionics and nuclear
industries area) are characterized by the fact that
consequences of possible failures are serious and may
invoive grave danger to human life or property. Thus. in
many cases. safety critical systems become more crucial
than conventional real-time systems. Many industries
have a long tradition over applying techniques to analyze
the behavior of their software products regarding the
presence of failures (safety analysis) [10, 12]. as well as,
their behavior with respect to strict timing constraints
{schedulability analysis) [9].

This paper presents an open and general framework for
applying software safety analysis: as far as automated

0-8186-8034-2/97 $10.00 © 1997 I[EEE

_broad

168

schedulability analysis tools are concerned, moere
interested readers may refer to [6, 8]. The framework
theoretical basis is the well-established Fault Tree
Analvsis (FTA) approach {3. 12. 13. 19]. The framewaork
structure consists of distinct phases which can be applied
to assess software safety at most stages of the software
development life cyvcle, from the requircments
specification up to the implementation.

The framework provides the necessary background in
order to deveiop autemated safety analysis tools towards a
set of programming languages or
specification/design notations for which fault tree
templates are (or will be) available [13]). Such a tool is
SAFELAND. which aims to analyze applications written
in ANSI C programming language. A subset of the
SAFELAND algorithms has been developed in the
context of the ESPRIT project 20899-OMI/ANTI-
CRASH' [4. 5}

The rest of the paper is structured as follows. In section
2. the issues that have fed to the choice of FTA, as the
backbone framework technique, are presented. The same
section is devoted to present recent related work on FTA.
Section 3 presents the framework architectural
description. SAFELAND and supported algorithms are
discussed in sections 4 and 5, respectively. The paper
concludes with our further orientations towards the
integration of the framework with SAFELAND.

2. Background and related work

Fauit Tree Analysis (FTA) is a form of safety analysis
widely applied in aerospace. electronics and nuclear

'This work has been partiaily funded by the European Communities, under
contract 20899,

industries. It was originally developed in [961 by H. A,
Watson at Bell Labs. to evaluate the Minuteman Launch
Control System for an unauthorized (inadvertent) missile
taunch [12]. FTA is a top-down search technique used to
prove that a given hazard (i.e.. a set of conditions which
is possible to lead to an accident [15]) is unlikely to anse.
Analysis starts from a hazard and proceeds backwards
looking for possible causes of that hazard.

There were several reasons that have led to the choice
of FTA as the backbone analysis technique for the
proposed framework. First of all. hazards associated with
a particular safety critical application are usually well
known: the developers have a list of known hazards
which forms the basis for anaiyzing the application
behavior. The set of hazards is unlikely to be modified.
unless some new technology or a major change in
operating philosophy takes place. indicating that new
forms of an accident {or ways of causing an accident) are
likely to be encountered. Therefore. the use of a top-down
technique. such as FTA. for performing safety analysis
seems to be appropriate.

Morcover. a structured approach is desirable. Although
existing approaches for safety analysis are judgmental to
some extent. any intervention of the safety analyst should
be minimized for facilitating the automation of analysis
activities. There are certain limitations associated with
other safety analysis techniques. For example. HAZard
and OPerability studies (HAZOP) 2] is usually applied to
performm system safety analysis within the requirements
stage, whereas auempts made for applying Failure Modes
and Effects Analysis (FMEA) {15] to software have
shown that software potentially has lots of failure medes
and effects. making the use of FMEA inappropriate. Since
our main intention is to define an. as much as possible.
open and general framework for analyzing the safety of an
application at requirements specification. design and
development stages. FTA seems to be the most svstematic
technique.

Furthermore. FTA has been often proved to have much
lower cost than conventional formal verification methods.
For example., software FTA performed during the
development of a nuclear power plant shutdown system
[12] (which was about 3.000 lines of code wrtten in
Fortran and Pascal) took about three person-months
(included the time required for analvsts to become
familiar with the technique). In contrast. the full formal
verification of the same software using functional
abstractions took about thirty person-vears.

Work related to FTA has been successfully performed
in the past, not only fo the early stage of requirements
specification, but also to the actual implementation.
Leveson et al. in {16] examined the practicality of
producing system Ievel fault trees from a state machine
model. In this work, they explored various tvpes of

169

analvses that can be performed on state machine models,

including (he generation of fauit trees. These ideas can be

adapted to many state machine models and. in panicular.
to the Requirements State Machine Language (RSML)

[14].

The procedure of safety analysis on RSML
specifications is based on a previous work by Leveson and
Stolzy [LI], related to the use of backward analysis for
safecty verification on Time Petri Net models. This
procedure detects possible hazardous states that can be
reached if the system operates correctly (i.e.. it detects
specification errors). The application of certain safety
analysis procedures performed on Petn Nets to a more
complex RSML model, as well as. the amtomated
synthesis of fault trees are discussed in {16]. Automated
fault tree generation from an RSML specification, uses a
backward simulation in order to find configurations, such
that there exists a set of transitions leading back to the
current configuration.

However. when one applies FTA (o design notations
has to face the possibility that the produced code will not
reflect the original design, and therefore, not provide
adequate safety. When FTA is applied to source code, it
can show the calling hierarchy and the interrelationships
between the actual code modules and the top event of
interest (hazard). Specificaily, several benefits may arise
from the application of FTA to software safety analysis
[19]:

« it seems easier 10 mitigate potential problems. since
code is a precise definition of exactly what
computations are being executed

s there exist techniques directly applied to source code
(e.g., the fault {ree templates for the ADA language,
described in {13})

» potential sources of hazards can be more easily
decomposed and analvzed

« a fault tree. automatically generated from the code.
can be compared to previous fanlt trees, generated
from previous code versions, so as to trace and
determine how “safer” the system becomes

o a fault tree, automatically generated from the code,
can be compared to a fault tree manually generated
from the design, to indicate whether the ornginal
intuition about what can or cannot lead to a hazard
was accurate, and thus, substantiating or disproving
the original safety hypotheses.

From all the above it is evident that the development of
an integrated environment for applying safety analysis at
requirements, design and implementation phases, is still
an open issue. Toward this direction. in the next section.
we propose the architecture of a framework which
exploits the benefits of FTA. and can be potentially used
as a generator of automated safety analysis tools.

e

3. Description of the framework

The proposed framework consists of four main modules:
(1) the Parser. (2) the Fault Tree Constructor. (3) the
Fault Tree Mitigator, and (4) the Hazard Analyzer. The
framework architecture is depicted in Figure 1. Squares in
the middle of the figure correspond to the four main
modules. Squares with rounded corers indicate several
types of information. while arcs represent flow of
information between modules.

In panicular. the framework operation follows four
distinct phases:

Phase 1' a description (design or source code) of a
safetv critical application is provided as input to the
parser module. which is the front end part of the whole
scheme. This module is responsible to produce an
intermediate format (i.e.. a portable transformation of the
description semantics) which serves as the basis for the
subsequent phase.

Phase 2: the output of the parser module is passed to
the Fault Tree Constructor. which uses simple fault tree
templates (defined for the intermediate format) in order to
produce a complicated fault tree template.

Phase 3: the produced fault tree will be mitigated and
simplified by the Fault Tree Mitigator into a minimal cut-
set form by using simple boolean algebra rules [3].

Phase +4: the resulted minimal fauit tree will be
combined with user defined hazardous conditions. Hazard
Analvzer produces a safety report. showing the
relationships among events specified in the hazard and
events appeared in the input description. This report is the
final output.

Obviously. the parser module is dependent on the
programming language or the design notation that has
been used for describing the input. The main scope of the
parser is to identify within the input description primary
events. conditions and generic logic statements,
corresponding 1o primitives that appear in procedural
programming languages (¢.g.. if-then-else. assignments.
procedure and function calls), as well as. 10 produce the
corresponding intermediate format.

Fault tree construction is a language independent
phase that scans the intermediate code produced in the
previous step. This module uses generic fault tree
templates [13] and generates the corresponding fault tree.
However, this module becomes semi-independent in case
that input description contains specific features (€.g..
source code containing special library function calls).
Then fault tree construction has to incorporate additional
pre-described templates.

Fault tree mitigation is a completely language
independent two-step phase. In the first step. the fault tree
is converted into a minimal cut set form. while in the
second step. any redundant information concerming events

170

and conditions is eliminated [3. 19]. This procedure
results in a three-level fault tree. where the root indicates
an abstract event for the whole inpul. second-level nodes
indicate intermediate events (pseudoevents) and leaf-
nodes represent all primary events and conditions found
in the input description. Iniermediate nodes are connected
to the root via an OR boolean gate. while leaf-nodes are
connected to their parent pseudoevent via an AND gate.

Finally. Hazard Analysis phase checks. for each
produced cut set, whether involved events and conditions
can hold simultaneously with the user-defined hazardous
condition. If this proposition is true for any cut sel. the
original input description should be considered as unsafe.
Consequently, the developer has some clue of where an
“eITOr” may appear.

4. Case study: the SAFELAND tool

SAFELAND is the name of a safety analysis tool which

follows the framework phases as they presented in the

previous section. It performs software-based FTA
according to a preliminary version of the whole

framework as it was specified in [3].

Several considerations about the operation of
SAFELAND with applications following different
programming styles. guidelines and special primitives
have been made in the context of OMI/ANTI-CRASH
project. all related to the use of ANSI C in the
implementation of safety critical real-time applications.
So far, the following options have been encountered:

e A parser oriented to the methodology used by the end-
user partner (Thomson-CSF-TSI) during the
development of safety critical systems [18]. Having an
actual application as a basis (such as the ServoValve
braking svstem developed by Thomson-CSF/TSI in
OMI/ANTI-CRASH). the parser and fanlt tree
construction module should process ANSI C
programs. a specific structured specification language
called SAQ (Specification Assistess QOrdinateur), and
the special guidelines for Thomson's software
developers.

o A parser oriented to the ANDF (Architectural Neutral
Distribution Format). According to the ANDF
requirements and specifications [1]. a parser of this
kind should support a trustable subset of ANSI C that
satisfies the RTCA/DO-178B standard [17] defined for
the certification of real-time airbome systems
software.

o A parser oriented to both Thomson's methodology, for
the development of safety critical real-time
applications, and the ANDF compiler technology.
Experiences derived from the application of ANDF
technology to hard-real time systems [1] have shown

: | Faull Tree Fault Tree | :

' Parser. M constructor > Mitigator »| Hazard Amalyser :

: Fy 'y L 4 :
[BNFDescripu'onl [Temphtes] | Mitigation Rulnd r Hazards J

Figure 1: Framework architecture

that a parser of this kind should support -and take
advantage of - all features appeared in both previous
cases.

Currently, SAFELAND supports analysis on
applications expressed in a subset of ANSI C and basic
SAO library functions.

The SAQ graphical design methodology [18] was
defined in the context of the ESPRIT project 8034-
OMLFEM. It contains symbols that can be used for
designing safety critical real-time applications. In
particular, SAO codes almost all generic statements found
in procedural programming languages and it is language
independent. Thus, SAO designs can be easily converted
to source code expressed in several programming
languages. Software development based on SAOQ follows
the “V" life cycle model (Figure 2). SAFELAND is a tool
applied to applications developed using the SAO nolation.
Therefore, the tool can be applied during “Unit Tests” and
“Integration Tests” phases. Any feedback to the
implementation phase. after the verification of the
existence of a possible hazard, guarantees that the
application becomes safer with respect to the user defined
hazards, without causing any violation to the “y
software development life cycle.

The ServoValve application is a specific real-time
vetronics (vehicle-electronics) product used for avionics
braking control. Considering the ServoValve braking
application as a real case study. the following assertions
can be listed:

Every C module corresponds to an SAO module and
contains the definition of a single function.
s For every SAO symbol, a special piece of code. which
implements its fanctionality. exists.
o There are standardized SAO
incorporated into the program code.
There are no complicated arithmetical operations.
During the SAO design phase, a complicated
arithmetical expression is cafculated in many steps
using appropriate SAO symbols. The corresponding C
code just implements these symbols.
There may be complicated boolean expressions.
Although, during the SAO design phase. a
complicated boolean expression is calculated in many
sequential steps. the representation of these symbols in

library routines

171

C code is usually implemented by a single complex
boolean expression which corresponds to the specific
sequence of SAQ symbols.

A function which implements an SAO module takes

no paramelers

« A function corresponding 10 an SAO module does not
return any value (void). but it performs modifications
10 its environment via global variables.

« There are several functions that perform I/O. which
are machine dependent. For example. in the
application version for the ST9 processor (a
microcontrolier developed by SGS-THOMSON) there
are functions that perform IO from/to an EEPROM.
Furthermore. real-time applications written in C

programming language and developed according to the

SAO design methodology. satisfy certain reguirements for

safety critical real-time applications as they are described

in RTCA/DO-178B standard [17]:

pointers and dynamic data are not used

recursion is forbidden and,

use of infinite loops is limited only 1o the main modute

of the program (e.g.. the control loop of the

ServoValve in our case).

Following the requirements of RTCA/DCO-178B

standard. the Thomson's guidelines [18] (used during the

development of vetronics hard real-time applications)
simplify much more the application code. The main
intention is 1o make the application safer (strictly
deterministic). Some of these guidelines are listed below:
pass of paramelers between assembly and C routines
has to be specified

only standard features of C with

deterministic behavior are aliowed

data structure with dynamic length are discouraged

explicit data conversions are not allowed

all external and static memory has 1o be initialized

specification of compilation mode is necessary

nested macro definitions should not be used.

The SAFELAND parser both supports SAO library

calls and follows Thomson's guidelines. The parser uses a

reduced BNF specification of ANSI C, enriched by a

subset of standardized SAO library functions (i.e.. SAO

arithmetic opcrations).

guaranteed

Safety Tesing

Ut safely tesung | :

Figure 2 : "V" Life-cycle process

Currently. the main parser limitation is due to the fact
that many routines of the ServoValve are wrilten in the
assembly language of the ST9 processor (in most cases.
real time applications have parts of their code dependent
on the target processor). Therefore, the corresponding
SAO assembly low-level functions (besides arithmetic
operations) are realized in SAFELAND as compound and
no further analyzed events, In order to solve this problem
the application of ANDF can be proved very efficient. In
particular. two are the main goals of ANDF: to guarantee
the portability of software, and to provide a complete and
comprehensive concept for porting and distributing
software from a development platform to a numerous
different target computer architectures. Within the
OMI/ANTI-CRASH project, the ANDF compiler
technology is being enriched with new primitives based
on the RTCA/DO-178B standard in order to become
adequate for safety critical hard real-time applications.
Although these primitives can guarantee some safety up
to a point, they cannot eliminate hazardous conditions. as
these conditions are part of the application semantics.
SAFELAND does not currently address ANDF features.
as related research in providing mechanisms that will
satisfy requirements for safety critical hard real-time
applications. is in progress.

5. SAFELAND algorithms

A demo version of the SAFELAND parser transforms
small routines, coded in an ANSI C subset enriched with
SAO library calls. into a simple intermediate format. The
parser also extracts primary events and conditions from
the input. A sample input routine for the parser is
depicted in Figure 3. This routine is part of the
ServoValve application. Without emphasizing to the
actual meaning of the variables and constants. we will
present an example of the performed safety analysis.

The intermediate format (pseudocode) consists of
simple statement structures (e.g., if condition then eveni,
event is {event, event....}) mixed with SAO calls. Some of

172

the events and conditions which appear in this example
are listed in Table 1°.

The Fault Tree Constructor processes the produced
pseudocode by considering the fault tree templates defined
for the generic staiements of the intermediate format and
the SAO library functions. We will show how the fault
tree for the pseudocode is produced using the templates
for if-then and if-then-else statements, ADD and SUB
SAO library functions (i.e.. 4DD and SUB SAQ functions
perform addition and subtraction respectively, between
two arithmetic variables. checking for overflow and

underflow).
LIMIT{)
{

if (CONSIGNE > X MAX)
CONSIGNE = X_MAX.

if(CONSIGNE < X MIN)
CONSIGNE = X_MIN;

iF{CONSIGNE >= CONS PRES}
{

VARTEMP = SUBfCONSIGNE.CONS_PRES).

if (VARTEMP > RL UP
CONSIGNE=ADDICONS_FRES.RL_UP},

clse

VARTEMP = SUB (CONS_PRES.CONSIGNE),
if (VARTEMP > RI. DOWN}
CONSIGNE=SUB{CONS_PRES.RL_DOWN),

}
CONS_PRES = CONSIGNE.

)
Figure 3: Code of the LIMIT function

Initially, the whole psendocode is considered as a
compound event and a simple fault tree node is associated
with it. At each step, the algorithm transforms every event
either to the semantic denoted by the corresponding fault
tree template or to the events which it consists of {in case
of 2 compound event). More precisely, there may be either
simple events or compound events mested in another
compound event. The fault tree nodes which correspond
to events that are contained in 2 compound event, are all
located at the same level of the fault tree; these nodes are
connected to the parent node which represents the
compound event, via an AND gate. If an event is directly
associated with a generic statement of the intermediate

*Conditions and events derived from the analysis of the SAQ library
functions ADD and SUB are omitted for the shake of simplicity.

Events Conditions
el | CONSIGNE=X_MAX cl | CONSIGNE>X_MAX
¢2 { CONSIGNE=X_MIN c2 | CONSIGNE<X_MIN
e3 | VARTEMP=SUB(CONSIGNE,CONS_PRES) c3 | CONSIGNE>=CONS_PRES
e4 | CONSIGNE=ADID{CONS_PRES,RL_UP) ¢4 | VARTEMP>RL._UP
e3 | VARTEMP=SUB(CONS_PRES,CONSIGNE) c5 | VARTEMP>RL_DOWN
e¢b6 | CONSIGNE=SUB(CONS_PRES,RL._DOWN)
¢7 | CONS PRES=CONSIGNE

format or an SAO library function, the boolean gates
defined by the appropriate template will be inserted to the
fault tree. The procedure is repeated recursively until
there is no other event to be analyzed.

Based on this algorithm, Figure 5 presents the fault
tree produced for the example code of Figure 3. However,
this is not the final fault tree, as the templates of the SAC
library functions (Figure 4) have not been added for the
shake of simplicity.

By applying simple boolean algebra rules. the fauli tree
is converted to a minimal cug set form [3, 19). Firstly, the
fault tree is considered as a whole boolean expression and
is reduced to an equivalent boolean sum of products (e.g.,
an expression in the form (A+B){(C+D) is converted to the
equivalent AC+AD+BC+BD). Secondly, the produced
sum of products is further simplified by applying boolean
rules for simplification (¢.g.. ABC+AB is simplified to
AB). Figure 6 shows the final fault tree for the example
function in minimal cut set form.

Each cut set in the tree corresponds to a possible
execution sequence and contains all conditions and events
related to that sequence. For the whole ServoValve
application, the procedure of hazard analysis requires the
solution of a system of linear inequalities (i.e.. each set of
inequalities corresponds to set of events, conditions and
hazards). We consider non-linear SAQ functions as
separate variables, ie.. the MUL symbol which indicates
the multiplication of two variables A and B is considered
as a scparate variable A*B,

The hazard analysis algorithm considers a variable in
different instances. In the final system of linear
inequalities. each different instance of a wvariable
corresponds to a distinct variable. A new instance of 2
variable is created when it appears in the left part of an
assignment event. The approach does not increase the
complexity of the algorithm as only one instance of a
variable can be active at any ineguality. The linear
inequalities which correspond to 2 cut-set in the mitigated
fault tree (presented in Figure 6) and a user-defined
harard, are all shown in Table 2. This example does not
consider the special semantics of ADD and SUB SAO
functions and treats them as simple addition and
subtraction, respectively. Actually, this is a real case
which results after the mitigation of the fault tree.

173

Table 1: Basic events and conditions for the LIMIT function

Concluding, SAFELAND has been proven efficient
handling complexity issues inherent in FTA and related
to the size of the produced fault trees. Applying the tool to
the modules of the ServoValve application has revealed
the following assertions:

» The nature of the analyzed code is very simple, it
follows the guidelines of RTCA/DO-178B standard
and methodologies for deterministic programming as
previously mentioned.

s Each application module is analyzed separately; any
cail to another module is treated as a compound event
in the produced fault tree, which, in sequence, will be
analyzed in the respective fault tree structure,

« Conversion in minimal cut set form produces a
mitigated fault tree (for example in Figure 6 the final
mitigated fanlt tree for the LIMIT function of SVA
contains only 16 cut sets).

6. Conclusions and future work

We believe that the adoption of the proposed framework
for applying software safety analysis to safety critical real-
time applications will not only help to detect hazardous
conditions. but will also reduce costs during the software
development cycle.

Framework charactenstics such as generality and
openness have already validated to a certain degree by the
development of SAFELAND. a tool which follows the
framework disciplines, SAFELAND has proved that the
framework can support analysis on applications developed
by using ANSI C and specification languages such as
SAO.

Two are the main issues that we have to cope with in
the near future. First, we have to analyze some safety
crtical functions of the testbed application (ServoValve)
which are machine dependent. A possible solution is to
allow some human assistance, while the parsing process is
in progress. Second, SAFELAND has to be extended in
order to support applications in C enriched with ANDF
primitives. This problem will be encountered as soon as
there are resnlts demonstrating the performance of ANDF
in real-time systems area.

Another future research and development scope is to
make SAFELAND interoperate with SCAN, a

Schedulability Analysis Tool [6, 8]. and MAT [7). a
Monitoring Tool under development within the ESPRIT
project 20576 - OMI/TOOLS. Currently. SCAN and
MAT can be used in conjunction in order to analyze the
dynamic behaviour of a real-time application. MAT
provides actual application data (e.g. execution and
blocking times). Consequently. these data along with user
requirements are examined by SCAN to check the

if-then
causes event

condition

is false
then part conditiar then parct
causes event is true

causes svent 13 true

feasibility of timing constraints. The development of
SAFELAND and the subsequent packaging of MAT,
SCAN and SAFELAND in an integrated environment,
will unify heterogeneous types (both static and dynamic)
of software analysis. This way, a unified platform wiil be
provided for the complete safety, reliability and
performance analysis of real-time applications.

if-then-else
causes event

il

else parc condition
causes event is false

conditiar

evaluation of ADD/SUB SA0
function caures event

evaluation of che eccual not overflow

addicion/subcraction {underflow)
result causes event

overtlow
[undertlow)

O

evaluation of maximm/
minimum represencation
value cautses event

O

Figure 4: Fault Tree templates

Figure 5: Fault Tree for the LIMIT function

D

O-00 EIEEEEEE [J_‘l___LLJ

| Y

—_—

Figure 6: Minimal cut-set form fault tree for the LIMIT function

174

User Defined Hazard Cut Set
Mnuemonic Hazardous Condition Mnemonic Event/Condition
H ;ﬁséfﬁ‘s&;?m function ~l CONSIGNE<=X_MAX
Constant Value ~c2 CONSIGNE<=X MIN
RL_UP 1,280 c3 CONSIGNE>=CONS_PRES
RL_DOWN 1,280 e3 VARTEMP=CONSIGNE-CONS PRES
X MaAX 32,767 A VARTEMP<=RL UP
X MIN 32,767 e7 CONS_PRES=CONSIGNE
The fact (CONSIGNE=100) and (-1180<=CONS_PRES<=100) leads to the user defined hazard
Table 2: Hazard analysis of the LIMIT function
[11] N.G.Leveson & J. L. Stolzy, "Safety Analysis using Petri
References Nets”. IEEE Transactions on Software Engineering, Vol.
13(3), March 1987, pp. 386-397.

{1

(2]

(3]

(4]
(5]

(6]

(7

(8]

(%]

(10}

H. Berlejung, W. Baron, “4pplying the ANDF Technology
to Hard Real-Time Systems™. Embedded Microprocessor
Systems, C. Muller-Schloer et al. (Eds.). {OS Press, 1996,
pp. 420-429.

E. J. Broomiield & P. W. H. Chung, “Safety {ssessment
and Software Requivements Specificanon”. Technical
Report, Chemical Engineering Department. Loughborough
Univ. of Technology, UK.

S. Contini, “4 New Hybrid Method for Fault Tree
Analysis”. Reliability Engineering and Svstem Safety, 49,
1995, pp. 13-21.

ESPRIT project 20899 OMUANTI-CRASH, ~Technical
Aneex”. September 1995,

V. C. Gerogiannis, D. A. Brouxa & L E. Caragiannis,
“Safety & Reliability Analysis Methodology Algorithms
for Safety Critical Hard Real Time Svsiems”. ESPRIT
project 20899 OML/ ANTI-CRASH, D2.1. June 1996.

V. C. Gerogiannis, M. A. Tsoukarellas. “SAT-A
Schedulability Analysis Tool for Real-Time Applications”.
Proceedings of the 7th EUROMICRO Workshop on Real-
Time Systems, [EEE Press, Odense, Denmark, June 14-
16, 1995, pp. 155-161.

V. C. Gerogiannis, M. A. Tsoukarellas et al., "Moniltoring
Tool - Requirements Analysis & Specification Report™,
ESPRIT project 20576 OMI/TOOLS, TR .1.1, August
1996.

V. C. Gerogiannis & M. A, Tsoukarellas. “Using SCAN to
Analyze the Schedulability of a Real-Time Applicarion”.
Embedded Micro-processor Systems, C. Muller-Schloer et
al. (Eds.), I0S Press, 1996, pp. 344-353.

M. H. Klein, T. Ralya, B. Polak, R. Obenza & M. G.
Harbour, “A Practitioner's Handbook for Real-Time
Analysis®. Camegie Mellon University, Software
Engineering Institute, Kluwer Academic Publishers, 1993.
N. G. Leveson & P. R. Harvey, “dnaivzing Software
Safery”. [EEE Transactions on Software Engineering, Vol.
9(5), September 1983, pp. 569-579.

175

(12

(13]

(14]

[15]

{16]

(17]

(18]

(19]

N. G. Leveson, “Safeware: System Safety and
Computers”. Addison-Wesley, 1995.

N. G. Leveson, S. S. Cha & T. S. Shimeall, “Safety
Verification of Ada Programs using Software Fault
Trees”. [EEE Software 6(4), July 1991, pp. 48-59.

N. G. Leveson, M. P. E. Heimdahl, H. Hildreth & J. D.
Reese, “Reguirements Specifications for Process Conirol
Systems™. [EEE Transactions on Software Engineering,
20(9), September 1994, pp. 634-707.

I. A. McDermid, “Safeiy Engineering and Assurance for
Real-Time Systems™. Tn Real Time Computing, W. A
Halang & A. D. Stoyenko (Eds.), NATO ASI Series,
series F: Computer Systems and Sciences, Vol. 127,
Springer-Verlag, 1994, pp. 131-160.

V. Ratan, K. Partridge, J. D. Reese & N. G. Leveson,
“Safety Analysis Tools for Requirements Specification”.
COMPASS 96, Gaithersbung, Maryland, 1996.
Requirements and Technical Concepts for Aviation.
“RTCA/DO-178B: Software Consideration of Airborne
Systems and Equipment Centification”. RICA Inc.,
Washington, DC, December 1992.

“Regles de Conception et de Codage”. Thomson-
CSF/DOI, 1991,

J. M. Voas & K. W. Miller, “An Automated Code-based
Faulit Tree Mitigation Technigue”. Tech. Report, Reliable
Software Technologies Corporation.

