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Abstract. In this paper we address the problem of estimating the num-
ber of stations in a wireless network. Under the assumption that each
station can detect collisions, we show that it is possible to estimate the
number stations in the network within a factor 2 from the correct value
in time O(log nloglogn). We further show that if no station can detect
collisions, the same task can be accomplished within a factor of 3 in time
O(log® n) and maximum energy O(log n) per node, with high probability.
Finally, we present an algorithm that computes the minimum value held
by the stations in the wireless network in time O(log? n).

1 Introduction

In the last years wireless networks have attracted a lot of attention of the sci-
entific community. Such networks essentially constitute large scale dynamic dis-
tributed systems in which each node has a low computational power and limited
lifetime. An extreme example of wireless networks are sensor networks in which,
thousands of low-cost, independent entities are deployed in an area and their task
is to self-organize a network in order to accomplish a specific task. Each node is
equipped with sensing devices and, depending on the specific task, the sensors
may be identical or there may be different kinds of nodes. The communication
among the nodes is guaranteed by means of radio or laser transmitters/receivers.

One of the assumptions that facilitate the design of algorithms in wireless
networks is the knowledge of the number (or an upper bound on the number)
of stations in the network. However, especially in highly dynamic networks this
assumption seems to be strong.

Network models. The radio network consists of n stations, devices running on
batteries and with low computational capabilities. The stations communicate by
means of a shared channel. The stations are anonymous, in the sense that they
do not have, or it is not feasible to retrieve any ID or serial number.

Each station has a local clock and all the clocks are synchronized. Although
such devices may have limited computational capabilities, this is not a strong as-
sumption because of the existence of various protocols for clock synchronization
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(e.g., []). During each time step, each station can send and/or receive a message.
We assume a reliable single-hop network, that is, whenever exactly one station
transmits a message, all the other stations receive it. If two or more stations
send a message in the same time slot, a collision occurs. We distinguish three
different models, depending on the information obtained by a station whenever a
collision occurs: (a) CD: All the stations can detect collisions; (b) strong-noCD:
The stations that send a message can detect a collision while the other stations
cannot distinguish between channel noise and a collision; (¢) weak-noCD: No
station can detect a collision.

As usual, the time needed by an algorithm to execute a task is one per-
formance measure we will consider. Furthermore, since stations have limited
lifetime, energy saving is an important issue to consider. We assume that each
station can be in two different states: active/awake or inactive/sleep. When a
station is active, it can send and or receive messages and execute computations
and we assume consumes energy 1 for each time step. When a station is in a sleep
state it neither sends/receives messages nor executes computations. A station,
before switching to the sleep state, sets a timer. Whenever the timer expires,
the station goes back to the active state. In the sleep state we assume that the
station consumes no energy.

Previous work. Various computation problems have been studied in the litera-
ture in the above models. In the case of reliable radio networks, specific solutions
have been designed for computing the function sum ([I]), sorting and ranking
(), and for solving the problem of leader election [II2] and network initializa-
tion, i.e., the problem of assigning unique identifiers to stations in anonymous
networks, [8]. More generally, the authors in [IT] present an energy efficient algo-
rithm to simulate parallel algorithms on mesh-like wireless networks. In [6], it is
proved that any algorithm designed for a single-hop network in the strong-noCD
model can be simulated in the weak-noCD model, with no slowdown. However,
for this solution, a O(n) preprocessing time is needed. Notice that both the above
solution assume the knowledge of the number of stations in the network.

All the algorithms above can be divided essentially in two (or three) differ-
ent classes depending on whether or not the number of stations (or an upper
bound for it) is known. It is immediate that the second scenario is much more
realistic. On the other hand, designing algorithms in such a scenario is a much
more complicated task. In [5] the authors provide an algorithm that computes
an approximation of the number of stations in the network in the strong-noCD
model, in time O(log*"“n) where each station spends energy O((loglogn)®),
for any constant € > 0. Note that in [5], the energy is assumed to be propor-
tional to the number of messages transmitted/listened and not to their total size.
However, several messages in that protocol may have size of £2(logn) bits. The
algorithm presented in [5] assumes no collision detection capability and outputs,
with high probability, an estimation ng of the number of stations that satisfies
the following: n/2% < ng < 2n. The authors in [6] claim that similar techniques
can be used also in the weak-noCD model.
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Our results. In this paper we present algorithms that compute the number of
stations in the network in the CD and the weak-noCD models. Let n be the
number of stations in the network. We show that if each station can detect col-
lisions, in time O(lognloglogn) the algorithm outputs an estimation m of the
number of stations such that m/2 < n < 2m, where m denotes the output of
the algorithm. In the weak-noCD model, we present an algorithm that accom-
plishes the same task in time O(log? n), maximum energy O(logn) per station
and outputs an estimation m such that m/3 < n < 3m. Finally we show that,
under the assumption that the approximate number of station is known, there
exists an algorithm that computes the minimum in the weak-noCD model in
time O(log2 n). Our algorithms are randomized and the results hold with high
probability (i.e., probability 1 — O(n™¢) for some positive constant ¢). Our pro-
tocols for estimating the number of stations use only bit messages. Due to lack
of space, we only outline the proofs here. Formal proofs will appear in the final
version of the paper.

2 Estimating the Number of Stations

In this section we present two algorithms to estimate the number of stations in
the network. We first start by describing the algorithm in the CD model. Then,
we present an algorithm in the weak-noCD model.

2.1 Estimating the Number of Stations in the CD Model

In this section we present an algorithm that computes an approximation of the
number of stations based on the assumption that, whenever a collision occurs,
each station in the network detects it.

The basic idea of the algorithm is the following. Assume m is an estimation
of the number of stations in the network. In each phase of the algorithm, each
station may select uniformly at random and independently from the other sta-
tions, an integer r between 1 and m. At this point, the algorithm consists of
m rounds. During round r, all the stations that hold a value equal to r send a
message on the channel. Since stations can detect collisions, each station counts
the number of “empty” slots, i.e., the number of rounds in which no station
sent a message. This number is a random variable occurring in the well-known
occupancy problem where k balls are randomly thrown into b bins and is known
to be sharply concentrated around its expected value as the following theorem
states.

Theorem 1 ([7]). Let r = k/b, and let Z be the number of empty bins when k
balls are thrown randomly into b bins. For A > 0 it holds that:

1

k 2
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By Theorem[I] if the estimation is close to the actual number of stations, the
number of empty slots will be around m/e. So, if the number of empty bins is
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much higher (resp. much smaller) than m/e, the estimation m is increased (resp.
decreased) and a new phase is executed. The above solution clearly needs 2(n)
rounds to terminate.

In order to avoid this unnecessary waste of time, we would like to use an algo-
rithm in which each phase is executed by a polylogarithmic number of stations.
Indeed, in this case, the number of stations is big enough to guarantee a good
estimation of the actual number of stations in the network and, at the same
time, the number of rounds needed to execute the algorithm is low. Notice that,
from the point of view of energy consumption, this strategy also leads to low
consumption since, in each phase, most of the stations will be in a sleep state.
Unfortunately, the above strategy seems to require the knowledge of the number
of stations.

One issue to address is the function we use to compute the new estimation
of the number of stations. A first idea could be to simply double (or reduce by
a half) the current estimation in order to obtain the new one. It is immediate
that using this strategy, O(logn) phases will be enough in order to compute a
good approximation of the number of sensors. On the other hand it is possible to
reduce this number phases by choosing a function that reaches n more quickly,
say in O(loglogn) phases. The problem with this second type of function is
that if we compute an estimation m that is much higher than the actual value
n, we may end up spending a huge number of rounds before realizing that the
estimation is wrong.

What we are going to use is somehow derived by the strategy above. During
each phase, a station decides to sleep or to execute the algorithm with a prob-
ability that is (roughly) inversely proportional to the current estimation of m.
The reason of such relation is based on the idea that, whenever m grows, the
number of stations executing each phase decreases. Using this relation between
the number of active stations and the estimation, we guarantee that, with high
probability each step in the algorithm is correct. On the other hand, the number
of time slots in each phase is, of course, a function that is increasing as m in-
creases. However, this function is polylogarithmic in m and this guarantees that
every phase does not take too much time. This also allows us to use a “quick”
way to compute a very rough estimation of n, starting from which we refine the
estimation using a binary search.

We are now ready to define algorithm CountCD. We will use a simple building
block, the procedure CountEmpty. This procedure takes as input the current
estimation m of the number of sensors and works as follows. Let f(m) = alogm,
for sufficiently large ov. When invoked, a station switches to the sleep mode for
f(m) time slots with probability 1 — f(m)/m, or stands awake and participates
in the current phase with probability f(m)/m. If the station is awake, it selects
an integer r between 1 and f(m) and, during round r, it sends a message on
the channel. Based on the number of empty slots, each node participating in
the current phase decides whether the current estimation is higher than, lower
than, or very close to the actual number of stations. At the end of the phase, all
the stations wake up and the station that first transmitted successfully during
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the current phase announces whether the current estimation is higher than,
lower than, or very close to the actual number of stations. In case no station
successfully sent a message during a given phase, we distinguish between two
cases. If the participating stations have decided that the current estimation is
lower than the actual number of stations then they all send a “lower” message
at the last round. If a collision appears, then this is realized by all stations as a
“lower” message. Otherwise, if the participating stations have decided that the
current estimation is higher than the actual number of stations then no station
sends any message and this silence is realized as a “higher” message.

As stated above, we divide algorithm CountCD into two epochs which we call
QuickStart and SlowEnd. In the first epoch, starting with an estimation m = 2,
each station runs the procedure CountEmpty with input the current estimation,
sets the current estimation to m? and repeats until the call of CountEmpty on
input the current estimation returns that the current estimation is higher than or
very close to the number of stations. If an estimation very close to the number
of stations is found, then the algorithm CountCD terminates. Otherwise, let
m be the estimation which CountEmpty found to be higher than the actual
number of stations. Then, the second epoch begins and executes a binary search
in the set {i,i+ 1,...,2i} where i is such that /m = 2° < n < 2% =m (i.e.,
i = O(logn)), based on the outcomes of CountEmpty. Assuming that procedure
CountEmpty correctly decides whether the current estimation is much higher,
much lower, or very close to the actual number of stations, algorithm CountCD
runs in O(lognloglogn) time (i.e., O(loglogn) calls of CountEmpty in each of
the two epochs QuickStart and SlowEnd).

It is clear that one of the crucial points in the algorithm is the correct es-
timation of the range in which the number of empty slots should belong to in
order for the current estimation of the number of stations to be accepted by
CountEmpty. The next lemma provides bounds on the number of empty slots in
a phase depending on whether the estimation is much higher than, much lower
than, or very close to the actual number of stations. Intuitively, the number of
stations that are awake in this round will be much higher, much lower, or very
close to f(m) and the number of empty slots will be much higher, much lower,
or very close to f(m)/e, respectively. The proof uses Theorem [l and Chernoff
bounds.

Lemma 1. Consider a phase of algorithm CountCD, let m be the current esti-
mation of the number of stations in the network and denote by O the number
of empty time slots. There exist positive constants oy, s and «s such that the
following hold:

— If m > 2n, then Pr{O < 0.55f(m)] < 2n~*L.
— Ifm <n/2, then Pr[O > 0.2f(m)] < 2n~ 2.
— Ifn/v2 <m < nv2, then Pr[O < 0.2f(m) or O > 0.55f(m)] < 2n=°3.

By Lemmal[ll procedure CountEmpty suffices to compare the number of empty
slots O in each phase with the lower and upper thresholds 0.2 f(m) and 0.55 f (m).
If O is higher than the upper threshold or lower than the lower threshold, then
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the current estimation is almost surely larger than 2n or smaller than n/2, while
if O is between the two thresholds, then the current estimation is almost surely
correct.

We can thus prove the following statement.

Theorem 2. Let n > 2 be the number of stations in the network. With high
probability, algorithm CountCD runs in time O(lognloglogn) and outputs an
estimation m of the number of stations such that n/2 < m < 2n.

2.2 Estimating the Number of Stations Without Collision
Detections

The algorithm presented in the previous section exploits the collision detection
capability in order to verify whether the current estimation is smaller or bigger
than the actual number of stations. As stated above, during each round, each
station can determine whether or not a message was sent. More specifically,
when the estimation is smaller than the actual number of stations, the number
of rounds in which no station sends a message is small. Conversely, when the
current estimation is bigger than the number of stations, the number of rounds
in which no station sends a message is high.

It could be tempting to use similar arguments in the weak no-CD model.
In this model we may count the number of time slots in which a message was
successfully sent. In order to use this idea, we need the following counterpart of
Theorem [I] for the number of bins containing exactly one ball in the classical
balls-to-bins process.

Theorem 3. Let r = k/b, and let Z be the number of bins containing exactly
one ball when k balls are thrown randomly into b bins. For A\ > 0 it holds that:

1\ " A2
ﬂ:E(Z):k(l— b) ~ ke " Pr[|Z — pu| > A] < 2exp <_2k)

It turns out that in the case of no collision detection, it is not possible to
use the QuickStart algorithm to obtain a rough estimation of the number of
stations. Consider the case in which the current estimation is smaller than the
number of stations. In this case, the number of collision is high and the number
of slots containing exactly one message is small. Conversely, consider the case
in which the estimation is bigger than the number of stations. In this case, the
number of empty bins will be high and, again, the number of rounds in which
a message is successfully sent is small. Since in the weak no-CD model it is
not possible to distinguish between a collision and an empty slot, an algorithm
cannot distinguish between the two cases.

On the other hand, whenever the current estimation is close to the number of
stations, the number of rounds in which a message is successfully sent should be
around f(m)/e. For this reason, starting from an estimation m = 2, whenever
m is wrong, we can double it until we reach a value close to the actual number
of stations. We are left to determine the thresholds to be used in the algorithm



Basic Computations in Wireless Networks 539

for deciding whether or not the current estimation should be accepted. We call
CountSingle the procedure that checks whether the current estimation is close
to the number of stations or not. Again, each station wakes up at the end of
each phase in order to realize whether or not the algorithm should continue. The
station that first transmitted successfully in the current phase will announce the
result at the end of the phase. Silence is realized as a ”continue” message.

As described so far, we have outlined the algorithm CountnoCD which works
in the strong-noCD mode. The main problem in the weak-noCD model is that
the station that first transmitted successfully during a phase does not know it
(since it cannot detect whether its message was successfully sent) in order to
announce the result at the end of the phase. To overcome this and extend our
protocol in the weak-noCD model, we can use messages of two bits in each round.
The first bit is used as above while the second bit is used to encode the binary
representation of the round of the first successful transmission. After ¢ successful
transmissions in the current phase (for ¢ > 1), the second bit of the message of
any transmitting node is set to the i-th least significant bit of the round in which
the first node successfully transmitted.

Using Theorem [Bl and Chernoff bounds we can prove the following lemma.

Lemma 2. Consider a phase of algorithm CountnoCD, let m be the current
estimation of the number of stations in the network and denote by O the number
of time slots with successful transmissions. There are positive constants 31 and
B2 such that the following hold:

— If m <n/3 orm > 3n, then Pr [O > f(in)] < 2n P,
— If2n/3 <m < 4n/3, then Pr {O < f(;n)} < 2nPs,

By Lemmal[2 procedure CountSingle suffices to compare the number O of time
slots with successful transmissions in each phase with the threshold f(m)/4. If O
is lower than the threshold, then the current estimation is almost surely wrong,
while if O is higher than the threshold, then the current estimation is almost
surely correct.

We can also show the following technical lemma which can be used to compute
an upper bound of O(logn) on the energy of each node (i.e., total number of
rounds at which a node is awake). The same bound holds for algorithm CountCD
as well.

Lemma 3. Consider the sequence of independent random variables X; for i =
1,....k, such that X; € {0,i} with Pr[X; =i] =i/2%. Let X = Zle X;. It holds
that Pr[X > 6k] < 47F.

We can thus prove the following statement for algorithm CountnoCD.

Theorem 4. Let n > 2 be the number of stations in the network. With high
probability, the algorithm CountnoCD runs in time O(log2 n), requires maximum
energy O(logn) per node and outputs an estimation m of the number of stations
such that n/3 < m < 3n.
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3 Computing the Minimum

We now turn to the problem of computing the minimum in the weak-noCD
model. Assume each station possesses a value chosen with unknown distribution
from an unknown range. We wish to design an algorithm that outputs the min-
imum value in the network. We assume that an upper bound on the number of
stations in the network is known, otherwise we can use the algorithm presented
in the previous section to estimate its value.

Let us assume that the stations hold different values. A simple idea is the
following: each station randomly selects a round between 1 and n during which
it sends its value on the channel. Whenever a value is successfully transmitted,
all the station that hold a value bigger than the one sent, switch to the sleep
state. The remaining stations continue the algorithm until a single station is
alive. It is immediate that, whenever the probability distribution of the values
is unknown, such an algorithm requires O(n?).

Ideally, the above algorithm tries to divide into two sets the stations so that
all the station in the first set, i.e., the ones with value bigger than the received
one, switch to the sleep state, while the station in the second set continue the
execution. If, in each phase, we could guarantee that the set of awake stations
is a constant fraction of the corresponding set in the previous phase, we could
reduce the number of phases to O(logn).

To solve this problem, we will use the oversampling technique introduced
in [I0] that can be described as follows: from a set of n values, select equiprobably
ps samples. Let z1,...,zps be the sorted sequence. Consider the subsequence
Ts, T2s,- -, T(p—1)s and assign to the set j = 2,...,p — 1 all the values in the
range (7(j_1)s, Tjs). All the values less than x, will be assigned to the set with
index 1 and, similarly, all the values greater than x(,_;), will be assigned to the
set p.

The next theorem states that the size of the sets constructed using the above
technique is approximately the same with high probability:

Theorem 5 ([2]). Let n be the number of values, let p be the number of set,
and let s be the oversampling ratio. Then, for any a > 14 1/s, the probability
that a set contains more than an/p values is at most ne—(1=1/e)*as/2

Given the above theorem, we can divide the set of values held by the stations
into two subsets, of approximately the same size with high probability, by using
s = O(logn). As discussed above, this reduces the number of phases to O(logn).

One of the hidden assumption of Theorem [] is the fact that the values are
distinct. In order to meet this requirement, the station will randomly select in
the first phase a value 7 in the range {1,...,n%}. A station holding a value m
will broadcast the pair (m,r). We write (mi,7m1) < (mae,r2) iff m; < mg or
(m1 = mg and r; < 19).

! Notice that in [I0] the value p represents the number of processors in a parallel
machine. However, this restriction is immaterial as in the proof of the theorem p is
used as a parameter in the selection probability.
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In order to reduce the number of rounds within each phase, we need to reduce
the number of stations that send a message. As in the previous sections, we
will use self-selection during each phase. More specifically, let ¢ be a constant.
During phase i, for i =0, ...,logn — loglog n, executes phase ¢ with probability
2tlogn/n. Each awake station selects a round in the range {1...12celogn} in
which it will send its value on the channel. At the end of phase i, on average,
each station has received 12clogn values. By Theorem [ with @ = 3/4 and
p = 2, the probability that the number of awake stations in the subsequent
phase is at least 3n/4 is at most n™°.

The algorithm works as follows: All stations are initially awake. Each station
runs 3 logn —loglogn phases. Each phase has logn rounds. For ¢ =0, ...,logn —
loglogn — 1, each station which is awake at the beginning of phase i, partic-
ipates to the algorithm with probability 271 logn. If it participates to phase 1,
it equiprobably selects one of the rounds of phase 7 to transmit its value. For
1 = logn — loglogn, ...,3logn — loglogn, each station which is awake at the
beginning of phase i equiprobably selects one of the rounds of phase i to trans-
mit its value. When a station hears a value smaller than its value, it becomes
sleeping. The minimum value is the last transmitted value.

We will show that the algorithm correctly computes the minimum value with
high probability. Let n; be the number of awake stations at the beginning of phase
i. If n; < n/271) then, it is certainly n;11 < n/2'F!. Assume that n/21 <
n; < n/2%. Then, the number of successfully transmitted values in phase i is at
least alogn for some positive constant a. This follows by considering stations
transmitting within the phase as balls and rounds as bins; then the number of
successful transmissions within the phase is the number of bins receiving exactly
one ball in the corresponding balls-to-bins game. The probability that more than
half of the n; stations that are awake at the beginning of phase i will still be
awake at the beginning of phase ¢ 4+ 1 is the probability that the transmitted
values will be larger than the values stored in the n;/2 stations holding the
smallest values, i.e., at most n~?.

Now consider a phase of the last 2logn phases. Each of the stations that are
awake at the beginning of phase logn —loglog n has constant probability (say ()
of neither transmitting successfully nor sleeping during each of the next phases.
So, the probability that some node is still awake after the last phase is at most
logn - 3?2198 < n=¢ for some constant c.

Theorem 6. There exists an algorithm that computes the minimum in the weak-
noCD model in time O(log®n), with high probability.

4 Conclusions

In this paper we have presented an algorithm for estimating the number of
stations in an anonymous wireless network. The algorithm is based on the as-
sumptions the station can detect collisions. The algorithm presented runs in time
O(lognloglogn), its expected energy consumption is O(loglogn) and it outputs
and estimation m such that n/2 < m < 2n. Furthermore we have shown that a
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similar technique can be used to compute in time O(log® n) and maximum energy
O(logn) an estimation of the number of stations in the weak noCD model. In this
case the estimation m computed by the algorithm is such that n/3 < m < 3n.
Finally we have shown that in the weak-noCD model it is possible to compute
the minimum in time O(log®n).
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