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Abstract. Motivated by the wavelength assignment problem in WDM
optical networks, we study path coloring problems in graphs. Given a set
of paths P on a graph G, the path coloring problem is to color the paths
of P so that no two paths traversing the same edge of G are assigned
the same color and the total number of colors used is minimized. The
problem has been proved to be NP-hard even for trees and rings.
Using optimal solutions to fractional path coloring, a natural relaxation
of path coloring, on which we apply a randomized rounding technique
combined with existing coloring algorithms, we obtain new upper bounds
on the minimum number of colors sufficient to color any set of paths on
any graph. The upper bounds are either existential or constructive.
The existential upper bounds significantly improve existing ones provided
that the cost of the optimal fractional path coloring is sufficiently large
and the dilation of the set of paths is small. Our algorithmic results
include improved approximation algorithms for path coloring in rings
and in bidirected trees. Our results extend to variations of the original
path coloring problem arizing in multifiber WDM optical networks.

1 Introduction

We study path coloring problems in graphs. Let P be a set of paths on a graph
G and k > 0 be an integer. The paths of P and the edges of G may be directed
or undirected. The path k-coloring problem (or, simply, path coloring when
k = 1) is to assign colors to the paths of P in such a way that at most k paths
with the same color share an edge of the graph and the total number of colors is
minimized. The problem has been proved to be NP-hard, even for k = 1 and even
for the simplest topologies of rings and trees. Thus, approximation algorithms
are essential.

The problem has application to Wavelength Division Multiplexing (WDM)
optical networks [18]. Such networks consist of nodes connected with fibers.
Connection requests are pairs of nodes to be thought of as transmitter-receiver
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Approximate Path Coloring with Applications to Wavelength Assignment 259

pairs. For each connection request, WDM technology routes the request through
a transmitter-receiver path and assigns this path a wavelength, in such a way that
paths going through the same fiber are assigned different wavelengths. Recently,
the multifiber WDM network model was introduced [6,15,12]. In these networks
each fiber of the standard model is replaced by k identical “parallel” fibers.

For path coloring problems, bounds on the number of colors are usually
expressed as a function of the load of the set of paths given as input, i.e., the
maximum number of paths going through any edge of the graph. Erlebach et al.
[5] present an algorithm that colors any set of paths of load L on a bidirected tree
with at most 5L/3 colors. Auletta et al. [1] present a randomized algorithm that
colors any set of paths of load L on a bidirected binary tree of depth o(L1/3) with
at most 7L/5 + o(L) colors, with high probability. In rings, Tucker’s algorithm
[19] colors any set of paths of load L with 2L colors or with � l−1

l−2L� + 1 colors
where l is the minimum number of paths necessary to cover the ring, as shown
recently in [13,20]. The interested reader may refer to [2] for a survey on path
coloring results motivated by WDM optical networks.

Upper bounds of (1 + 1/k)L
k + ck (where ck depends only on k) for path

k-coloring in rings are presented in [15,12]. The results in [5,1] can be trivially
modified to give � 5L

3k � and 7L
5k + o(L/k) upper bounds for path k-coloring in

arbitrary and binary bidirected trees, respectively. Note that L/k is a lower
bound on the minimum number of colors necessary to k-color any set of paths
of load L. Thus, by dividing the upper bound on the number of colors achieved
by an algorithm by L/k we obtain an upper bound on its approximation ratio.

Another approach is to design approximation path coloring algorithms which
use optimal fractional colorings to obtain provably good approximations of the
optimal path coloring. Given a set of paths on a graph, we may think of the path
k-coloring problem as the problem of covering the paths by as few as possible
k-independent sets of paths, i.e., sets of paths in which at most k paths share an
edge of the graph. This can be captured by the following integer linear program

minimize
∑

I∈I x(I)
subject to

∑
I∈I:p∈I x(I) ≥ 1 p ∈ P

x(I) ∈ {0, 1} I ∈ I
where I denotes the set of the k-independent sets of P . This formulation has a
natural linear programming relaxation by substituting the integrality constraint
by x(I) ≥ 0. The corresponding combinatorial problem is called the fractional
(path) k-coloring problem [3,8] and any feasible solution to the linear program
is called a fractional k-coloring of P . Given a set of paths P on a graph G,
we denote by wk(P, G) and fk(P, G) the cost of the optimal solution of the
integer linear program and its relaxation, respectively. Alternatively, one may
see the (fractional) path coloring problem for a set of paths P on a graph G as
a (fractional) graph coloring problem on the conflict graph of P , i.e., the graph
which has a node for each path of P and an edge between two nodes if the
corresponding paths traverse the same edge on G.

In general, fractional path coloring is hard to approximate while it can be
approximated within α in polynomial time provided that α-approximate indepe-
dent sets can be computed efficiently [8,9,10]. The techniques of [8,9,10] can be
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applied to fractional path k-colorings as well. However, they constitute general
ways for approximating the optimal objective value of the corresponding linear
program with an exponential number of variables while, in approximation algo-
rithms for path coloring, a provably good solution for fractional path coloring
(the values of the variables of the corresponding linear program) is rounded to
an integral one which gives a path coloring. So, previous work (as well as this
paper) seeks for formulations of fractional path coloring as a linear program with
a polynomial number of variables.

The work of Kumar [11] on the path coloring problem in rings (also known
as circular arc coloring problem) uses a reduction to instances of integral mul-
ticommodity flow due to Tucker [19]. Kumar solves the relaxation of the multi-
commodity flow problem optimally (this is equivalent to computing the optimal
fractional coloring almost exactly) and then performs randomized rounding [17]
to obtain the path coloring. The resulting path coloring is proved to be within
1.37 + o(1) of the optimal number of colors.

In [3], it is shown that the fractional path coloring can be solved in polynomial
time in bounded-degree bidirected trees. By applying a randomized rounding
method similar to that used by Kumar and using the algorithm of Erlebach et
al. [5] as a subroutine, a (1.613 + o(1))-approximation algorithm is obtained.

The contribution of this paper can be summarized as follows:

– We introduce a new randomized rounding method applied to fractional path
k-colorings. For the analysis, we study a generalization of a classical occu-
pancy problem which may be of interest in other applications as well.

– Using the randomized rounding we obtain new existential upper bounds on
the minimum number of colors sufficient to k-color any set of paths pro-
vided that the cost of the optimal fractional coloring is sufficiently large and
the dilation (i.e., the length of the longest path) is small. Existential upper
bounds for arbitrary k are also obtained for arbitrary trees and rings.

– We also discuss two algorithmic applications of the method. For constant
k, we present polynomial time approximation path k-coloring algorithms in
bidirected trees of bounded-degree and in rings. Our algorithms improve
existing ones provided that the load is not small. The same restriction exists
in previous results [3,11]. For WDM networks, this is a realistic assumption.

• We give a method which computes an almost optimal fractional k-
coloring of a set of paths on a bounded-degree bidirected tree. For k = 1,
this method is slightly weaker than the method in [3] but it is suitable
for our purposes. The fractional k-coloring is then used to perform ran-
domized rounding and, using the algorithms in [5] and [1] as subroutines,
we obtain (1.511 + o(1))- and (1.336 + o(1))-approximation algorithms
for path k-coloring in bounded-degree and binary trees, respectively.

• In rings, we present a reduction of path k-coloring to instances of an
integral constrained multicommodity flow problem, generalizing in this
way Tucker’s reduction for k > 1. This reduction is used for computing
almost optimal fractional k-colorings, which, combined with randomized
rounding and existing algorithms [12,13,15,19,20], give better approxi-
mation algorithms for path k-coloring (k ≥ 2) and for special instances
of path coloring.
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The strength of our randomized rounding technique is that it uses a parame-
ter which can be adjusted according to the approximation ratio of the k-coloring
algorithm used as a subroutine. It can be used to give path k-coloring algorithms
with improved approximation ratio in any graph (directed or undirected) where
the best known upper bound is expressed in terms of the load, provided that an
almost optimal fractional k-coloring can be computed efficiently.

The rest of the paper is structured as follows. In Section 2, we present the oc-
cupancy problem and study the behavior of related random variables. We present
the randomized rounding technique in Section 3 together with its analysis and
applications. We devote Section 4 to describe how to compute almost optimal
fractional k-colorings in bidirected trees and in rings and how to perform ran-
domized rounding according to them. Due to lack of space, most of the proofs
have been omitted. They will be included in the final version of the paper.

2 An Occupancy Problem

In this section, we study the behavior of random variables in a new occupancy
problem which generalizes classical “balls-to-bins” processes [16]. This will be
very useful for analyzing the performance of our randomized rounding method.

Let k ≥ 1 be an integer, n > 0 be an integer multiple of k and q > 0. Consider
the following “balls-to-bins” process. We have n/k balls and n bins. Associated
with each ball i and each subset of bins sj of size k is a non-negative number
pij such that

∑
j pij = 1 for any ball i, and

∑n/k
i=1

∑
j:�∈sj

pij = 1 for each bin
�. For each ball i = 1, ..., n/k, we toss a coin with Pr[HEADS] = q − �q�. On
HEADS, we execute �q� + 1 rounds, otherwise we execute �q� rounds. In each
round executed for ball i, a subset of bins of size k is selected randomly among
all possible subsets according to the probabilities pij , and one copy of ball i is
thrown to each bin of the selected set. We denote by Q the random variable
representing the number of empty bins after the execution of the process and by
R the random variable representing the total number of rounds executed.

Lemma 1
a. E[Q] ≤ ne−q

b. For any λ > 0, Pr[|Q − E[Q]| > λ] ≤ 2 exp
(
− λ2

2�q�nk

)

c. E[R] = qn/k

d. If q is not integer, then for any λ > 0, Pr[R − E[R] > λ] ≤ exp
(
− λ2k

4(q−�q�)n
)

3 The Randomized Rounding Technique

In this section we present the randomized rounding technique. The technique is
applied to normal sets of paths. A set of (directed) paths P on a network G is
called normal if it has the same load on every (directed) edge of G.

The main idea is to round a fractional k-coloring of the set of paths P and
obtain a k-coloring of some of the paths of P . In particular, we use a family of
fractional k-coloring functions as a representation of a fractional k-coloring.
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Definition 2 Let P be a normal set of paths of load kZ (where Z is an integer).
A set of non-negative weight functions xj for j = 1, ..., Z on the k-independent
sets of P is called a family of fractional k-coloring functions for P if

∑

I∈I:p∈I

Z∑

j=1

xj(I) = 1, for any path p ∈ P , and

∑

I∈I
xj(I) = 1, for any j = 1, ..., Z,

where I is the set of the k-independent sets of P .

Observe that if a set of paths P of load kZ (where Z is an integer) on
a graph G has a family of fractional k-coloring functions, then it has a frac-
tional k-coloring of cost exactly Z since the weight function x defined as
x(I) =

∑Z
i=1 xi(I) for I ∈ I, is a fractional k-coloring of P of cost Z. The

opposite also holds as the following lemma states.

Lemma 3 Let k ≥ 1 be an integer constant and let P be a normal set of paths
of load kZ (where Z is integer) on a graph G. Given a fractional k-coloring x
of P of cost Z, we can construct a family of fractional k-coloring functions yj

for j = 1, ..., Z.

The following lemma implies that, for any set of paths, there exists a superset
which has a family of fractional k-coloring functions.

Lemma 4 Let k > 0 be an integer and let P be a set of paths on a graph G.
Consider the normal set of paths P ′ of load k(1 + �fk(P, G)�) on G obtained by
adding single-hop paths to P . It is fk(P ′, G) = 1 + �fk(P, G)�.

We are now ready to describe the randomized rounding technique. The tech-
nique applies to normal sets of paths having a family of fractional k-coloring
functions. On input a set of paths P of load kfk(P, G) (where fk(P, G) is inte-
ger) on a graph G, the randomized rounding technique uses a parameter q > 0
and a family of fractional k-coloring functions xi, i = 1, ..., fk(P, G) for P to
properly k-color some of the paths of P as follows. Initially, all paths of P are
uncolored. For each i = 1, ..., fk(P, G), randomized rounding proceeds by toss-
ing a coin with Pr[HEADS] = q − �q�. On HEADS, it executes �q� + 1 rounds,
otherwise it executes �q� rounds. In each round associated with some i, a k-
independent set is selected by casting a die with a face for each k-independent
set with xi(I) > 0 and probability xi(I) associated with the face corresponding
to the k-independent set I. At the end of the round, all the paths of the selected
k-independent set which are still uncolored are colored with a new color.

In the rest of this section we will use the randomized rounding technique
either to prove existential upper bounds on the minimum number of colors suf-
ficient to k-color a set of paths or to obtain polynomial time approximation
algorithms for k-coloring sets of paths using a provably small number of colors.



Approximate Path Coloring with Applications to Wavelength Assignment 263

3.1 Existential Upper Bounds

An upper bound of fk(P, G)(1 + ln(km)) for wk(P, G) can be obtained by using
the techniques of Lovász [14]. In the following we give better upper bounds for
wk(P, G) provided that fk(P, G) is sufficiently large.

Lemma 5 Let P be a set of paths on a graph G with m > 3 edges, k > 0 be an
integer and β be such that

β ≥ max
P ′⊆P

{
kwk(P ′, G)
L(P ′, G)

}

where L(P ′, G) denotes the load of the set of paths P ′ on G. If fk(P, G) =
Ω

(
β2 ln m

ln β

)
, then wk(P, G) ≤ fk(P, G)O(lnβ), and, if fk(P, G) = ω

(
β2 ln m

ln β

)
,

then wk(P, G) ≤ fk(P, G)(1 + lnβ + o(1)).

Proof. Let P ′ be the normal set of paths of load k(1 + �fk(P, G)�) obtained by
adding single-hop paths to P . By Lemma 4, it is fk(P ′, G) = 1+ �fk(P, G)� and
P ′ has a family of fractional k-coloring functions xi for i = 1, ..., 1 + �fk(P, G)�.
We apply randomized rounding to P ′ with q = lnβ using the family of fractional
k-coloring functions xi. We define Z = 1 + �fk(P, G)�.

Let R be the random variable denoting the number of rounds, e be an edge
of G and Qe be the random variable representing the number of paths traversing
e which are left uncolored after the application of randomized rounding. We may
view the randomized rounding as a balls-to-bins process like the one described
in Section 2. The random variable R corresponds to the number of rounds in the
balls-to-bins process. The paths traversing edge e are the bins and the paths of
the k-independent set traversing e which are selected during a round correspond
to copies of a ball thrown into the k corresponding bins. The probabilities on the
sets of k bins where copies of balls are thrown in the corresponding balls-to-bins
process are defined by the family of fractional k-coloring functions. Thus, the
random variable Qe corresponds to the number of empty bins in the balls-to-bins
process.

By Lemma 1, we obtain that E[R] = Z lnβ and that, for any λ > 0, the
probability that R ≥ E[R]+λ is at most exp

(
− λ2

4Z

)
. By setting λ = 2

√
Z lnm,

we have that the probability that the number of colors used during rounding
exceeds Z lnβ + 2

√
Z lnm is at most 1/m.

Using Lemma 1, we obtain that E[Qe] ≤ kZ
β and that, for any λ > 0,

the probability that Qe ≥ E[Qe] + λ is at most 2 exp
(
− λ2

2k2Z�ln β�
)
. By set-

ting λ = 2k
√

Z�lnβ� lnm, we have that the probability that Qe exceeds
kZ
β + 2k

√
Z�lnβ� lnm is less than 2/m2. Since there are m edges in G, the

load of the paths left uncolored after the application of the randomized round-
ing technique is at most kZ

β +2k
√

Z�lnβ� lnm, with probability at least 1−2/m.
Now, using the definition of β, it can be easily verified that, since the set

of paths left uncolored after rounding consists of a subset of the original set of
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paths P and (possibly) some additional single-hop paths, it can be k-colored
with at most β/k times its load colors.

Hence, with probability at least 1 − 3/m > 0, the total number of colors is
at most

Z lnβ + 2
√

Z lnm + Z + 2β
√

Z�lnβ� lnm.

The proof completes by observing that if fk(P, G) = Ω
(

β2 ln m
ln β

)
(resp.

ω
(

β2 ln m
ln β

)
), then the sum of the second and the fourth term in the above ex-

pression is of order O(fk(P, G) lnβ) (resp. o(fk(P, G) lnβ)). 	

We will apply Lemma 5 to obtain existential upper bounds for wk(P, G) in

general (directed or undirected graphs) and in bidirected trees.

Theorem 6 Let P be a set of paths on a graph G with dilation D and k > 0 be
an integer. If fk(P, G) = Ω

(
D2 ln m

ln D

)
, then wk(P, G) ≤ fk(P, G)O(lnD), and, if

fk(P, G) = ω
(

D2 ln m
ln D

)
, then wk(P, G) ≤ fk(P, G)(1 + lnD + o(1)).

Proof. Observe that the conflict graph of any set of paths of dilation D and
load L has degree at most D(L − 1) and, hence, can be k-colored with at most⌈

DL−D+1
k

⌉
colors. The proof completes by applying Lemma 5 with β = D. 	


Theorem 7 Let k > 0 be an integer and P be a set of paths of load ω(k lnm)
on a bidirected tree T with m directed edges. It holds that wk(P, T ) ≤ (1.511 +
o(1))fk(P, T ).

Proof. Erlebach et al. [5] present an algorithm which colors any set of paths of
load L on a bidirected tree with at most 5L/3 colors. Clearly, it can be slightly
modified to k-color any set of paths of load L with at most

⌈ 5L
3k

⌉
colors. Thus,

we may apply Lemma 5 with β = 5
3 + 1

ln m (observe that the lower bound on the
load implies that fk(P, T ) = ω(lnm)) and obtain the desired bound. 	


3.2 Algorithmic Applications

Observe that the path k-coloring algorithm we used in the proof of Lemma 5
would run in polynomial time on input a set of paths P on a graph G if (1) a
normal superset P ′ of P of load k�fk(P, G)� on G can be computed in polynomial
time, (2) die-casting according to a family of fractional k-coloring functions
implied by the fractional k-coloring of P ′ can be performed in polynomial time,
and (3) for any set of paths P , a k-coloring of the paths in P with at most β/k
times the load of P colors can be computed in polynomial time. Although in both
Theorems 6 and 7 property (3) is guaranteed by a polynomial time algorithm,
(1) and (2) are infeasible in general unless P = NP . This is due to the fact that
fractional path coloring is as hard to approximate as fractional graph coloring
(it is easy to see that for any graph H, we can construct a set of paths on a
graph G having H as its conflict graph) which, in turn, is almost as hard to
approximate as graph coloring [8,14]. Moreover, a family of fractional k-coloring
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functions xi may have xi(I) > 0 for exponentially many k-independent sets of
P .

In Section 4, given a set of paths P on a graph G which is either a bidirected
tree of bounded degree or a ring, we show how to construct a normal superset
of P of load kZ having a fractional k-coloring of integer cost Z ≤ 1+ �fk(P, G)�
and how to perform die-casting according to a family of fractional k-coloring
functions implied by this fractional k-coloring, both in polynomial time when
k > 0 is an integer constant.

For bidirected trees of bounded degree, following this approach, applying
randomized rounding with q = ln 5

3 ≈ 0.511, and using the algorithm of Erlebach
et al. [5] to k-color the paths left uncolored after the application of randomized
rounding, we obtain the following result.

Theorem 8 Let k ≥ 1 be an integer constant. There exists a polynomial-time
algorithm which, on input a set of paths P of load ω(lnm) on a bounded-degree
bidirected tree with m directed edges, computes a (1.511 + o(1))-approximate k-
coloring of P , with high probability.

For sets of paths of load L on binary trees of depth o(L1/3), there exists a
randomized algorithm that colors them using at most 7L/5 + o(L) colors, with
high probability [1]. Thus, we may follow the same approach used for bounded-
degree trees, apply randomized rounding with q = ln 7

5 ≈ 0.336, and use this
randomized algorithm to k-color the paths left uncolored to obtain the following
result.

Theorem 9 Let k ≥ 1 be an integer constant. There exists a polynomial-time
algorithm which, on input a set of paths P of load ω(lnm) on a binary bidirected
tree with m directed edges and of depth o(L1/3), computes a (1.336 + o(1))-
approximate k-coloring of P , with high probability.

We now present an improved approximation for some instances of the path
coloring problem in rings. On input a set of paths P on a ring, we use randomized
rounding with q = ln l−1

l−2 where l is the minimum number of paths of P necessary
to cover the ring, and Tucker’s algorithm [19] to color the paths left uncolored
after randomized rounding. Li and Simha [13] and, independently, Valencia-
Pabon [20] show that Tucker’s algorithm colors P with at most

⌈
l−1
l−2L

⌉
+ 1

colors. We obtain the following result.

Theorem 10 There exists a polynomial-time algorithm which, on input a set of
paths P of load ω(lnm) on a ring with m edges, computes a

(
1 + ln l−1

l−2 + o(1)
)
-

approximate coloring of P , with high probability, where l is the minimum number
of paths in P necessary to cover the ring.

For sets of paths with l ≥ 5, the approximation ratio of our algorithm is
better than the approximation ratio of the algorithms in [11], [20], and [13].

We can also improve the best known approximation ratio for k-coloring of
sets of paths in rings by using randomized rounding with q = ln(1 + 1/k) and
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an algorithm presented in [15,12] to complete the k-coloring. This algorithm k-
colors any set of paths of load L on a ring using at most

(
1 + 1

k

)
L
k + ck colors

(where ck may depend on k). We obtain the following result.

Theorem 11 Let k ≥ 2 be an integer constant. There exists a polynomial-time
algorithm which, on input a set of paths P of load ω(lnm) on a ring with m
edges, computes a (1 + ln(1 + 1/k) + o(1))-approximate k-coloring of P , with
high probability.

4 Computing Families of Fractional k-Coloring Functions

In this section, given a set of paths P on a bounded-degree tree or on a ring, we
show how to compute normal supersets of P of load kZ which have a fractional
k-coloring of integer cost Z ≤ 1 + �fk(P, G)�.

In both cases, we follow the same augmentation procedure. Starting with a
set of paths P of load L on a network G, we construct a normal superset P0 of
P having load the first multiple of k greater or equal to L (i.e., k�L/k�). This
is done by adding single-hop paths traversing the edges of the tree which are
not fully loaded. We run a procedure called checker on the set of paths P0. The
checker returns YES if the set of paths taken as input has a fractional k-coloring
of cost equal to its load over k; it returns NO otherwise. If the checker returns
NO, we continue this procedure for i = 1, 2, ..., by constructing a normal superset
Pi of P of load k(i+�L/k�) and running the checker on Pi, until it returns YES.

By Lemma 4, we know that the augmentation procedure terminates after at
most 2 + �fk(P, G)� − �L/k� executions of the checker. Clearly, �fk(P, G)� is
polynomial in L and the size of the graph. Furthermore, the load of the set of
paths given as input to the checker in each execution is also polynomial in L and
the size of the graph. In what follows, we will describe how the checker works
in bounded-degree bidirected trees and in rings and we will claim that it runs
in polynomial time in terms of the load of the set of paths taken as input and
the size of the graph. As a result, we will obtain that the whole augmentation
procedure runs in polynomial time. In both cases, we can also show how to use
the fractional k-coloring computed during the last execution of the checker to
perform die-casting in polynomial time according to a family of fractional k-
coloring functions implied by this fractional k-coloring. Due to lack of space,
formal proofs have been omitted. They will be included in the final version of
the paper.

4.1 Bidirected Trees

In this section, we will describe the checker TREE-k-CHECKER for checking
whether a normal set of paths P of load L which is a multiple of k on a bidirected
tree T has a fractional k-coloring of cost L/k.

Given a non-leaf node v of the tree, consider the subset Pv of P containing
the paths that touch node v. We denote by I(Pv) the set of all k-independent
sets of paths of Pv which have full load k on each directed edge adjacent to v.
TREE-k-CHECKER constructs the linear program described in the following:
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The linear program has a non-negative weight x(I) for each k-
independent set of I(Pv), for any non-leaf node v of the tree. The ob-
jective is to maximize the sum of the weights of the k-independent sets
of I(Pr), where r is a specific non-leaf node of T . There are constraints
of two types. The first type of constraints is that, for each path p ∈ P
and for each non-leaf node v it touches, the sum of the weights of the
k-independent sets of I(Pv) it belongs to is constrained to be at most 1.
The second type of contraints is that, for any pair of adjacent non-leaf
nodes v and u of the tree, and any set of k paths p1, ..., pk traversing the
directed edge (v, u) and any set of k paths q1, ..., qk traversing the op-
posite directed edge (u, v), the sum of the weights of the k-independent
sets of I(Pu) that contain p1, ..., pk, q1, ...qk is constrained to be equal
to the sum of weights of the k-independent sets of I(Pv) that contain
p1, ..., pk, q1, ...qk.

TREE-k-CHECKER solves the above linear program and returns YES if it
has a solution of cost L/k. Otherwise, it returns NO.

Lemma 12 Let k > 0 be an integer constant. On input a normal set of paths P
of load L which is a multiple of k on a bidirected tree T of bounded degree, TREE-
k-CHECKER runs in polynomial time and returns YES iff P has a fractional
k-coloring of cost L/k.

Now consider the application of the augmentation procedure on the orig-
inal set of paths P of load L on the tree T using TREE-k-CHECKER as
checker. We denote by PZ−�L/k� the normal set of paths of load kZ (where
Z is an integer) produced when the augmentation procedure terminates. By
the definition of the augmentation procedure and by Lemma 12, it is clear that
Z = �fk(PZ−�L/k�, T )� which, by Lemma 4, is at most 1 + �fk(P, T )�.

When the augmentation procedure terminates we use the solution of the
linear program to implicitly build a family of fractional k-coloring functions
and perform die-casting according them. We can show that this can be done in
polynomial time.

4.2 Rings

In this section, we describe the checker RING-k-CHECKER. It receives as input
a normal set of paths P of load L which is a multiple of k on a ring C with m
edges and checks whether P has a fractional k-coloring of cost L/k.

We denote by e0, e1, ..., em−1 the edges of the ring C (edges ei and ei+1 mod m

are consecutive), by Pei the subset of P consisted of the paths of P traversing
edge ei, and by I(Pei) the set of all subsets of Pei of size k. Note that each
set of paths in I(Pei) is a k-independent set. RING-k-CHECKER considers the
following multicommodity flow network H(P, C).

The network has m + 1 levels of nodes. Levels 0, ..., m − 1 correspond
to the edges e0, e1, ..., em−1 of the ring C while level m corresponds to
edge e0 of C as well. In each of these levels corresponding to the edge ei,
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the network has N =
(
L
k

)
nodes; one node per each k-independent set of

I(Pei). For each node u of level i < m corresponding to a k-independent
set I, we define the forward set of u to be the set of paths of I which
traverse edge ei+1 mod m. For each node u of level i > 0 corresponding to
a k-independent set I, we define the backward set of u to be the set of
paths of I which traverse edge ei−1. The network H(P, C) has a directed
edge from a node u of level i to a node v of level i + 1 iff the forward
set of u is the same with the backward set of v. The network H(P, C)
has N commodities. Each node of level 0 is the source of a commodity.
The sink for each commodity is located at the node of level m which
corresponds to the same k-independent set of I(Pe0) with its source.

RING-k-CHECKER solves the maximum multicommodity flow problem on
the network H(P, C) under the constraint that for each path p of P , and for each
edge ei traversed by p, the total flow entering (leaving) all the nodes of H(P, C)
of level i corresponding to k-independent sets of I(Pei) that contain the path
p is at most 1. RING-k-CHECKER returns YES if there is a total flow of size
L/k. Otherwise, it returns NO.

Lemma 13 Let k > 0 be an integer constant. On input a normal set of paths
P of load L which is a multiple of k on a ring C, RING-k-CHECKER runs in
polynomial time and returns YES iff P has a fractional k-coloring of cost L/k.

Now consider the application of the augmentation procedure on the orig-
inal set of paths P of load L on the ring C using RING-k-CHECKER as
checker. We denote by PZ−�L/k� the normal set of paths of load kZ (where
Z is an integer) produced when the augmentation procedure terminates. By
the definition of the augmentation procedure and by Lemma 13, it is clear that
Z = �fk(PZ−�L/k�, C)� which, by Lemma 4, is at most 1 + �fk(P, C)�.

When the augmentation procedure terminates, we use the solution to the
multicommodity flow problem on the network H(PZ−�L/k�, C) to obtain a frac-
tional k-coloring x. This is done by decomposing the flow for each commodity
on H(PZ−�L/k�, C) into flow paths, mapping the flow paths into k-independent
sets of PZ−�L/k�, and assigning to each of these k-independent sets I weight x(I)
equal to the flow carried by the corresponding flow path. Using x, we can obtain a
family of fractional k-coloring functions yj for PZ−�L/k� and perform die-casting
according them. Again, we can show that this can be done in polynomial time.
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