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Abstract. Motivated by the problem of allocating optical bandwidth
in tree—shaped WDM networks, we study the fractional path coloring
problem in trees. We consider the class of locally-symmetric sets of paths
on binary trees and prove that any such set of paths has a fractional
coloring of cost at most 1.367L, where L denotes the load of the set of
paths. Using this result, we obtain a randomized algorithm that colors
any locally-symmetric set of paths of load L on a binary tree (with
reasonable restrictions on its depth) using at most 1.367L + o(L) colors,
with high probability.

1 Introduction

Let T(V, E) be a bidirected tree, i.e., a tree with each edge consisting of two
opposite directed edges. Let P be a set of directed paths on T'. The path color-
ing problem (or integral path coloring problem) is to assign colors to paths in
‘P so that no two paths that share a directed edge of T are assigned the same
color and the total number of colors used is minimized. The problem has ap-
plications to WDM (Wavelength Division Multiplexing) routing in tree-shaped
all-optical networks. In such networks, communication requests are considered
as ordered transmitter-receiver pairs of network nodes. WDM technology es-
tablishes communication by finding transmitter—receiver paths and assigning a
wavelength to each path, so that no two paths going through the same fiber
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are assigned the same wavelength. Since state-of-the-art technology [10] allows
for a limited number of wavelengths, the important engineering question to be
solved is to establish communication so that the total number of wavelengths
used is minimized.

The path coloring problem in trees has been proved to be NP-hard in [5], thus
the work on the topic mainly focuses on the design and analysis of approximation
algorithms. Known results are expressed in terms of the load L of P, i.e., the
maximum number of paths that share a directed edge of T. Note that, for any
set of paths, its load is a lower bound on the optimal number of colors. An
algorithm that assigns at most 2L colors to any set of paths is implicit in the
work of Raghavan and Upfal [9]. The best known upper bound for arbitrary trees
is 5L/3 [6]. A randomized (1.613 + o(1))-approximation algorithm for trees of
bounded degree is presented in [2].

The path coloring problem is still NP-hard when the input instances are
restricted to sets of paths on binary trees [5]. A randomized path coloring algo-
rithm for binary trees is presented in [1]. This algorithm colors any set of paths
of load L on a binary tree (with some restrictions on its depth) using at most
7L/5+0(L) colors. In [8], it is proved that there are sets of paths on binary trees
whose optimal path colorings require at least 5L/4 colors.

The path coloring problem is still NP-hard when the input instances are
restricted to symmetric sets of paths on binary trees [3]. A set of paths P is
called symmetric if it can be partitioned into disjoint pairs of symmetric paths,
i.e., (u,v) and (v,u). Symmetric sets of paths are important since many services
which are supported by WDM networks (or are expected to be supported in the
future) require bidirectional reservation of bandwidth. Algorithms that color
any symmetric set of paths of load L on a tree (not necessarily binary) with
3L/2 colors can be obtained by considering each pair of symmetric paths as an
undirected one and then applying an algorithm for coloring undirected paths on
undirected trees [5,9]. For binary trees, the randomized algorithm presented in
[1] gives the best known upper bound in this case. In [3] it is also proved that
there are symmetric sets of paths on binary trees whose optimal path colorings
require at least 5L /4 colors.

The fractional path coloring problem is a natural relaxation of path coloring.
Given a set of paths on a tree, a solution of the path coloring problem is also a
solution for the fractional path coloring problem with cost equal to the number
of colors in the solution of path coloring. Furthermore, the lower bound proofs
in [3] and [8] still hold for fractional path coloring. Finding a fractional path
coloring of optimal cost can be solved in polynomial time in trees of bounded
degree [2]. Fractional path colorings are important since they can be used to
obtain path colorings using a number of colors which is provably close to the
cost of the fractional solution by applying randomized rounding techniques [2,
7]. Moreover, it is interesting to prove upper bounds on the cost of optimal
fractional path colorings in terms of the load, since they give insight to the path
coloring problem. In [2], the result of [1] was extended to prove that any set of
paths of load L on a binary tree has a fractional path coloring of cost 7L/5.
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In this paper, we consider locally-symmetric sets of paths on binary trees. A
set of paths P on a tree is called locally-symmetric if, for any two nodes u and
v of the tree with distance at most 2, the number of paths coming from v and
going to u equals the number of paths coming from u and going to v. Clearly,
the class of locally-symmetric sets of paths on a tree T contain the class of
symmetric sets of paths on T. We prove that any locally-symmetric set of paths
of load L on a binary tree has a fractional path coloring of cost at most 1.367L.
This fractional path coloring has some additional nice properties, and, using this
result and techniques of [1], we obtain a randomized algorithm that colors any
locally-symmetric set of paths of load L on a binary tree (with some restrictions
on its depth) using 1.367L + o(L) colors, with high probability. Since the load
of a set of paths is a lower bound on the minimum number of colors sufficient
for coloring it, our algorithm is an (1.367 + o(1))-approximation algorithm.

The rest of the paper is structured as follows. In Section 2 we give formal
definitions for the (fractional) path coloring problem. In Section 3 we discuss
some properties of locally-symmetric sets of paths which are useful in the analysis
of our algorithms. We describe the fractional path coloring algorithm in Section
4 and present its analysis in Section 5. We discuss the extension of the result for
fractional path coloring to path coloring in Section 6.

2 Fractional Path Colorings

The graph coloring problem can be considered as finding an integral covering
of the vertices of a graph by independent sets of unit weight so that the total
weight (or cost) is minimized. Given a graph G = (V] E), this means solving the
following integer linear program:

minimize ;.7 x(I)
subject to Y z,crz(l)>1 veV
z(I) € {0,1} IeZ

where Z denotes the set of the independent sets of G.
This formulation has a natural relaxation into the following linear program:

minimize ;.7 Z(I)
subject to Y 7., TU)>1 veV
Z(I) >0 IeT

The corresponding combinatorial problem is called the fractional coloring
problem. If T is a valid weight assignment over the independent sets of the graph
G, we call it a fractional coloring of G.

Given a set of paths P on a graph G, we define an independent set of paths as
a set of pairwise edge—disjoint paths. Equivalently, we may think of the conflict
graph of P which is the graph having a node for each path of P and edges between
any two nodes corresponding to conflicting (i.e., not edge-disjoint) paths; an
independent set of paths corresponds to an independent set on the conflict graph.
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The fractional path coloring problem is defined as the fractional coloring problem
on the conflict graph.

In [2] it is proved that optimal fractional path colorings in bounded—degree
trees can be computed by solving a linear program of polynomial (in terms of
the load of the set of paths and the size of the tree) size. These techniques can
be extended to graphs of bounded degree and bounded treewidth. A polynomial
time algorithm for computing optimal fractional path colorings in rings is implicit
in [7].

Although computing an optimal fractional path coloring of a locally-symmetric
set of paths P on a binary tree can be done in polynomial time, in this paper
we are interested in exploring the relation of the cost of the optimal fractional
path coloring with the load of P.

3 Properties of Locally-Symmetric Sets of Paths

In this section we give some useful properties of locally-symmetric sets of paths
on binary trees. Let T be a binary tree. Without loss of generality, we assume
that all nodes of T have degree either 1 or 3. We denote by r (root) a leaf node
of T'. Starting from 7, we assign labels to the nodes of the tree by performing a
breadth-first-search (r is assigned 0). For each non-leaf node v, we will denote
by p(v) the parent of v, and by I(v) and r(v) the left and right child of v,
respectively.

Let P be a locally-symmetric set of paths. We may assume that P is normal,
i.e., it satisfies the following properties:

— It has full load L at each directed edge.
— For every node u, the paths that originate or terminate at u, appear on only
one of the three edges adjacent to wu.

If the initial set of paths is not normal, we can transform it to a normal
one by first adding pairs of symmetric single-hop paths on the edges of the tree
which are not fully-loaded, and then, for each non-leaf node v, by merging paths
terminating at v with paths originating at v that do not traverse the same edge
in opposite directions. It can be easily verified that this can be done in such a
way that the resulting set of paths is locally-symmetric.

Claim. Let P be a locally-symmetric set of paths on a binary tree T' with load
L. There exists a normal locally-symmetric set of paths P’ such that if P’ has
a (fractional) coloring of cost ¢, then P has a (fractional) coloring of cost at
most c.

We partition the set of paths of P that go through v to the following disjoint
subsets: the set M} of the paths that come from p(v) and go to [(v), the set M2
of the paths that come from [(v) and go to p(v), the set M3 of the paths that
come from p(v) and go to r(v), the set M} of the paths that come from r(v)
and go to p(v), the set M of the paths that come from [(v) and go to r(v), and
the set M9 of the paths that come from r(v) and go to I(v). Since P is normal,
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(a) Scenario 1 (b) Scenario IT

Fig. 1. The two cases for paths touching a non-leaf node v. Numbers represent groups
of paths (number 1 implies the set of paths M., etc.).

we only need to consider two cases for the set P, of paths of P touching node
v. These cases are depicted in Figure 1.

— Scenario I: The paths of P, originating from or terminating at v touch
node p(v). We denote by M the set of paths that come from p(v) and stop
at v and by M$ the set of paths that originate from v and go to p(v).

— Scenario II: The paths of P, originating from or terminating at v touch a
child node of v (wlog 7(v)). We denote by M/ the set of paths that originate
from v and go to r(v) and by M$ the set of paths that come from r(v) and
stop at v.

Claim. Let P be a normal locally-symmetric set of paths on a binary tree T with
load L. Let v be a non-leaf node of T and P, be the subset of P that contains
the paths touching v.

— If P, belongs to Scenario I, then [M}| = |M2| = |M2| = |M}| < L/2,
| M| = M| = L — M|, and |M]| = [M}| = L —2|M;|.

— If P, belongs to Scenario II, then |M}| = |[M2| > L/2, |M3| = |M}| =
[M7] = [MJ| = L — M|, and [M]] = [MJ| = 2|M;| - L.

4 The Algorithm

In this section we present our fractional path coloring algorithm. It uses a pa-
rameter D € [2/3, %T‘ﬁ]

Let T be a binary tree and P a locally-symmetric set of paths on 7. We
denote by Z the set of all independent sets of paths in P. Given an edge e, we
denote by Z7 the set of independent sets of Z that contain exactly one path
traversing e in some direction and by ZP the set of independent sets of Z that
contain two paths traversing e (in opposite directions).

Definition 1 (Property 1). A weight assignment x on the independent sets
of T satisfies Property 1 at a node v if
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— Property 1 is satisfied on each node u which has label smaller than the label
of v, and

— either v is a leaf different from the root or for any path p traversing an edge
e between v and a child of v in some direction, it is

> a(I)=1-D.

IelS:pel

Definition 2 (Property 2). A weight assignment x on the independent sets
of T satisfies Property 2 at a node v if

— Property 2 is satisfied on each node u which has label smaller than the label
of v, and

— either v is a leaf different from the root or for any two paths p,q traversing
an edge e between v and a child of v in opposite directions, it is

IelP:p,qel

Definition 3 (Property 3). A weight assignment x on the independent sets of
T satisfies Property 3 at a node v if for any independent set I of T that contains
at least one path touching neither v nor nodes of label smaller than v’s, it is
xz(I) =0.

Definition 4 (Property 4). A weight assignment x on the independent sets
of T satisfies Property 4 if

4D? — 4D + 4
Yoy < 2T AP,
3D
IeT

Our algorithm assigns weights = to the independent sets of Z such that x is
a valid fractional coloring of small cost.
First, the algorithm performs the following initialization step:

— For each independent set I € 7 consisting only of one path that terminates
at or originates from r, it sets ,.(I) =1 — D.

— For each independent set I € 7 consisting only of two opposite directed paths
one terminating at and the other originating from r, it sets z,.(I) = D/L.

— For any other independent set I € Z, it sets z,(I) = 0.

Then, for i = 1,...,n — 1 (where n is the number of nodes of the tree) , the
algorithm executes the procedure FRACT-COLOR on node v with label .

The procedure FRACT-COLOR at a node v takes as input the set P, of paths
touching node v and a non-negative weight assignment (., which satisfies Prop-
erties 1, 2 and 3 at node p(v) and Property 4. If v is a leaf, the procedure FRACT-
CoOLOR sets the weight assignment z, equal to z,.,) and stops. Otherwise, it
computes a new non-negative weight assignment x,, which satisfies Properties 1,
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2 and 3 at node v and Property 4. It also sets the weight assignments z,, for all
the nodes u with label smaller than v’s equal to x,,.

Finally, the algorithm outputs a weight assignment x = z, where u is the
node with label n — 1.

FrACT-COLOR will be precisely described in the next section. For now, we use
its input-output specification to show inductively that the algorithm produces
a weight assignment z which satisfies Properties 1, 2 and 3 at each node of
T and Property 4. Clearly, after the initialization step, the assignment z, is
non-negative and satisfies Properties 1, 2 and 3 at node r. Also, under weight
assignment x,, there are 2L independent sets with weight 1 — D, L? independent
sets with weight D/L while all other independent sets have zero weight. Thus,
Property 4 is satisfied since

4D? — 4D + 4

I;xr(f) =Q2-DL<——F5—1L

Assuming that the execution of FRACT-COLOR at a node u with label i has
produced a non-negative weight assignment x,, that satisfies Properties 1, 2 and
3 at u and Property 4, we can easily show that the execution of FRACT-COLOR
at a node v with label ¢ 4+ 1 creates a non-negative weight assignment x, that
satisfies Properties 1, 2 and 3 at node v and Property 4. By the description of
FRACT-COLOR, we just have to show that the weight assignment x, which is
part of the input of the execution of FRACT-COLOR at node v satisfies Properties
1, 2 and 3 at node p(v) and Property 4. Property 4 is obviously satisfied. Since
either p(v) = u or p(v) has a label smaller than u’s, x, satisfies Properties 1, 2
and 3 at p(v).

Let p be a path traversing an edge e between some node v and a child of v in
some direction. Note that p is contained only in independent sets of the disjoint
sets 15 and I”. Furthermore, z satisfies Properties 1, 2 and 3 at node v and
there are L paths that traverse the edge e in opposite direction to p. We obtain

that
SN oa= Y D+ Y x(I)=1

IeT:pel IEIf:pEI IEIeD:pEI

Also, x is non-negative. Thus, the algorithm specified above finds a fractional
coloring z of the paths of P of cost at most %#L. In the following section,
we describe the procedure FRACT-COLOR and prove that it works correctly (i.e.,
as specified above) provided that D € [2/3, 2+T\/§] Substituting D = %, we
obtain the following theorem.

Theorem 1. For any locally-symmetric set of paths P of load L on a binary
tree T, there exists a fractional coloring of cost at most 1.367L.

5 The Procedure FrRaACT-COLOR

Let T be a binary tree and P a normal locally-symmetric set of paths on T
We show how the procedure FRACT-COLOR works when executed at a non-leaf
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node v. Let P, be the set of paths of P touching node v. We have to consider
two cases: one for Scenario I and one for Scenario II. Due to lack of space, we
present only the case of Scenario I here.

We denote by I, the set of independent sets of Z that contain only paths
touching nodes with label smaller than v. We denote by I? the set of independent
sets in I, that do not contain paths traversing the edge between v and its parent
in some direction. We denote by I for i = 1,2,3,4,7,8, the set of independent
sets of I, which contain a path p of M{ and no path traversing the edge between
v and its parent in opposite direction to p, and by I¥ the set of independent
sets of Z which contain a path of M} and a path of M, such that paths of M}
traverse the edge between v and its parent in opposite direction than paths in
M,

When executed at v, FRACT-COLOR takes as input the set P, and a non-
negative weight assignment x,(,)(/) on the independent sets of Z that satisfies
Properties 1, 2, and 3 at p(v) and Property 4. FRACT-COLOR computes a non-
negative weight assignment x,(I) on the independent sets of Z that satisfies
Properties 1, 2, and 3 at v and Property 4. This is done in the following way:

— For each independent set I’ of I} and I} and each path p of M3, we set to
x,(I) = ﬁwxp(v)(l ") the weight of the independent set consisting of the
paths of I’ and path p and z,(I") = (1 — @)z (I').

— For each independent set I’ of I2 and I and each path p of M, we set to
x,(I) = ﬁwxp(v)(l ") the weight of the independent set consisting of the
paths of I” and path p and x,(I") = (1 — @)z, (I').

— For each independent set I’ of I}* and each path p of M2, we set to z,(I) =
%xp(v)(l ") the weight of the independent set consisting of the paths of
I and path p and z,(I") = (1 — B)zp)(I').

— For each independent set I’ of 123 and each path p of MY, we set to z,(I) =
%xp(v)(l ") the weight of the independent set consisting of the paths of
I" and path p and 2, (I") = (1 — B)z ) ().

— For each independent set I’ of I'® and I2” and each path p of M?, we set to
x,(I) = #Mglxp(v)(f’) the weight of the independent set consisting of the
paths of I" and path p and x,(I') = (1 — )2y (I").

— For each independent set I’ of I27 and I2® and each path p of M$, we set to
x,(I) = #lelxp(v)(f ") the weight of the independent set consisting of the

paths of I” and path p and x,(I") = (1 = 7)zp()(I).

— Let
k‘l = Z ZL'p(U)(I)

IeIfuITuUIBUITS

and
D(L — M, |)?
T .
— For each independent set I’ of IO U I7 U IS U I7® and each path p of M? and
M, we set to z,(I) = mxp(v)(l’) the weight of the independent set

v

ko = 2n(L — |M}|) +

consisting of the paths of I’ and path p.
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— For each independent set I’ of IUIT UISUIT® and each pair of paths p, g of
M? and M$ respectively, we set to z,(I) = m%(v)(.”) the weight
of the independent set consisting of the paths of I’ and paths p and q.

— For each independent set I of 10 U IT U IS U I8 we set x,(I) = max{0,1 —
k
ﬁ }.’I}p(v) (I) .

— For each path p of MJ and M$, we set to z,(I) = nmax{0,1 — {2} the
weight of the independent set consisting only of p.

— For each pair of paths p,q of M2 and MP respectively, we set to z,(I) =
% max{0,1— %} the weight of the independent set consisting only of p and
q.

— For all other independent sets I (i.e., independent sets that contain at least
one path touching only nodes with label greater than v’s) we set z,(I) = 0.

Now, we have to set values to the parameters «, 3, y, n so that FRACT-COLOR
is correct (i.e., it matches the input-output specification given in the previous
section). The next lemma gives sufficient conditions for this purpose.

Lemma 1 (Correctness conditions). If

0<a,p,7<1 (1)

n>0 (2)

OL(1 ~ D) + BIMYD + (L~ 2ML)D = DL ~ M) )

AMIED + 0L~ M) = (L~ M) - D)L —DIMY) ()
2 _ 1|2

(- ) < 2 g apyany - 2PREE )

then FRACT-COLOR 1is correct.

Proof. Tt can be easily verified that conditions (1) and (2) and the fact that the
weight assignment ), is non-negative guarantee that x, is non-negative. Also,
by the definition of FRACT-COLOR, z, satisfies Property 3.

By making calculations, it can be verified that

> @ (I) =Y ap) (1) + max{0, ky — k1 }.

Iez IeT

If k1 > ks, x, satisfies Property 4 since Tp(v) satisfies Property 4. If k1 < ko,
condition (5) and the fact that x,,) satisfies Property 4 guarantee that x,, satisfy
Property 4 as well.

Now, in order to prove Properties 1 and 2 at node v, we have to prove that
for any edge e between a node u with label at most the label of v and a child of
u, for any path p traversing e, it is Zlejcs:pel 2y(I) =1 — D and for any set of
paths p, g traversing e in opposite directions, it is ZIeICD pqel To (I)=D/L. We
have to distinguish between two cases for e: (i) e is an edge between a node u
with label smaller than v’s and a child of v and (ii) e is an edge between v and
a child of v.
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First, we give the proof for case (i). Given an independent set I of I,,, we
denote by J,(I) the set of independent sets that contain all paths of I, (possibly)
paths of M2 and M9, and no other paths. Since z, satisfies Property 3 at node
v, it is z,(I) = 0 for any independent set I not belonging to (J;c; Ju(1). By
carefully reading the procedure FRACT-COLOR, we can see that the weight of T
under z,(,) equals the sum of weights of the independent sets in .J,(I) under x,.
Also, since x(, satisfies Property 3 at p(v), it is x,(,) = 0 for all independent
sets not belonging to I,,. Furthermore, x,,) satisfies Properties 1 and 2 at p(v).

We obtain that
> owm= 3 3 wll)

IeIS:pel IeISnI,:pel I'eJ,(I)

= Z :L'p(v)(‘[)

IelSnI,:pel
= Y awd)=1-D
Iel$:pel
and

Z z,(I) = Z Z z,(I")

I€lP:p,qel IeIiPnl,:p,qel I'eJ,(I)

= Z Tp(v) (1)
IeIPnI,:p,qel

= Y zw)=D/L

IciP:p,qel

Proving case (ii) is lengthy. We have to prove it for e € {(v,1(v)), (v,7(v))},
and, in each case, we have to dinstinguish between subcases for paths p and gq.
We will just show that for edge e = (v,l(v)) for a path p € MJ and a path

q € My, itis 3 rp, ey @o(l) = D/L.

> w)= > z,(I') + > (1)

IelP:pqgel IEIi:qEI IGIs4zq€I
I'eJ,(I):pel I'eJ,(I):pel

+ > (1)

Ierl®.qer
I'eJ,(I):perl’

a B
:L—|M1| Z mp(v)(I)+L_|M1‘ Z Tp(v) (1)
Vi Iellqel vl Ielltiqel

Y
e Ty (1)
L — M} Z P
aL(1 — D)+ BD|M}| +~yD(L — 2|M}|)
L(L — |M}))

=D/L
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The last equality follows by condition (3). Conditions (3) and (4) are enough
to prove all possible subcases. a

In order to prove that FRACT-COLOR is correct, we will compute values for
a, 3,7, n such that the correctness conditions (1)—(5) of Lemma 1 are satisfied.
We distinguish between two cases according to the size of M.

CASE 1. |M}| > Y52 L. In this case, we have the following settings

a=1
5= (L — |M,])(D|M;| — (1 - D)L)
DIM|?
B L(1- D)
~IM}D
n=>0

Clearly, a satisfies condition (1) and n satisfies condition (2). By simple
calculations, we obtain that (3), (4), and (5) are also satisfied. Since |M}| >
LB L, it is 8> 0. Also,

(L — |M,)(D|M,| — (1 — D)L) — D|M,|?

1=
P DM
_ —2D|M}]*+ L|M}| — (1 - D)L?
- D|MLP?

The expression in the last line is always non-positive provided that D &€ [2 /3,

%}. Thus, 3 satisfies condition (1). Also, since 2L < |M}| < L/2, v
satisfies (1).

CASE II. |M}| < 252 L. In this case, we have the following settings

D|M, |
(1-D)L
6=0
vy=1
D| M|
L
Clearly, 8 and + satisfy condition (1). By making simple calculations, we ob-
tain that (3), (4), and (5) are satisfied. Since [M}| < 372 L, n satisfies condition
(2). Also, since 0 < [M}| < 12 L, « satisfies condition (1).

n=1—-D —

6 Extensions to the Path Coloring Problem

In this section we outline our path coloring algorithm. Similar ideas are used in
[1] to prove a weaker result for general (i.e., non-locally-symmetric) sets of paths
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on binary trees. Let T be a binary tree and P a normal locally-symmetric set of

paths on T. Our algorithm uses a rational parameter D € [2/3, 2+4‘/§). We start
with a few definitions.

Definition 5. Let v be a node of T different from the root and P a mnormal
locally-symmetric set of paths. A probability distribution Q over all proper color-
ings of paths of P traversing the edge e between v and its parent with (2 — D)L
colors is weakly uniform if for any two paths p,q € P that traverse e in opposite
directions, the probability that p and q have the same color is D/ L.

Let v be a non-leaf node of T" and let C be a coloring of paths of P that
traverse the edge e between v and its parent. Let x be a color used by C. x is
called single color if it is used in only one path traversing e and double color if
it is used in two paths traversing e in opposite directions. We denote by A’ the
set of single colors assigned to paths in M, and by A% the set of double colors
assigned to paths in M¢ and M}.

Definition 6. Let v be a non-leaf node of T and P a normal locally-symmetric
set of paths. A weakly uniform probability distribution Q over all proper colorings
of paths of P traversing the edge e between v and its parent with (2— D)L colors
is strongly uniform if _ _
DM, || M7]

L

for any pair i,j such that paths of M! traverse e in opposite direction to paths
of M.

4| =

First, the algorithm performs the following initialization step to produce a
random coloring of the paths touching r with (2 — D)L colors according to the
weakly uniform probability distribution. It colors the paths originating from the
root 7. It selects uniformly at random without replacement DL colors of the L
colors used to color the paths originating from r and assigns them to DL paths
which are selected uniformly at random without replacement from the L paths
terminating at r. It also assigns (1 — D)L new colors to the paths terminating
at r which have not been colored.

Then, for : = 1,...,n — 1, the algorithm executes the procedures RECOLOR
and COLOR at node v with label 7.

The procedure RECOLOR at a node v takes as input a random coloring C,
of the paths traversing the edge between v and its parent with (2 — D)L colors
according to the weakly uniform probability distribution. RECOLOR stops if v is
a leaf. Otherwise, it produces a new random coloring C, of the paths traversing
the edge between v and its parent with (2— D)L colors according to the strongly
uniform probability distribution.

The procedure COLOR at a node v takes as input a random coloring C! of
the paths traversing the edge between v and its parent with (2 — D)L colors
according to the strongly uniform probability distribution. COLOR stops if v is
a leaf. Otherwise, it produces a random coloring C!/ of the paths touching node
v in such a way that:
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— The restriction Cy(, of C;/ on the paths traversing the edge between v and I(v)
is a random coloring with (2 — D)L colors according to the weakly uniform
probability distribution.

— The restriction C,(,y of C; on the paths traversing the edge between v and
r(v) is a random coloring with (2 — D)L colors according to the weakly
uniform probability distribution.

— The coloring C; uses at most 4[)%# colors.

Finally, the algorithm uses a deterministic algorithm to color the set of paths
whose color has been changed by RECOLOR.

In the following we briefly discuss the main ideas used for the precise def-
inition of procedures RECOLOR and COLOR. We remark that the procedures
RECOLOR and COLOR can be implemented to run in time polynomial in L,
thus, our algorithm runs in time polynomial in L and the number of nodes of
the tree.

Let v be a non-leaf node of T'. Observe that if C, is a random coloring of the
paths traversing the edge between v and its parent, then the numbers |A| are
random variables with expectation

y M?||M?|D

gflay)) = RAMEID

In [1], it is shown that |A%|’s follow a hypergeometrical-like distribution and are
sharply concentrated around their expectations. The procedure RECOLOR uses
this property and, with high probability, by recoloring a small number of paths
traversing the edge between v and its parent, it produces a random coloring C.,
which follows the strongly uniform probability distribution. This is done in such
a way that after all executions of RECOLOR the load of the paths of P whose
color has been changed at least once is o(L) with high probability.

The procedure COLOR mimics FRACT-COLOR in some sense. During its ex-
ecution at a non-leaf node v such that P, belongs to Scenario I (the case of
Scenario II is similar to Scenario II of FRACT-COLOR) it colors the paths of M?
and M9 using colors of A? and A% in such a way that the probability that two
paths traversing one of the edges between v and a child of v in opposite directions
are assigned the same color equals D/L (recall that this equals the sum of the
weights x,, produced by FRACT-COLOR of the independent sets containing both
paths). The analysis is much similar to the analysis of FRACT-COLOR. By work-
ing on the details of the analysis, we conclude to similar correctness conditions
with those of FRACT-COLOR.

We now state our result for the path coloring of locally-symmetric sets of
paths.

Theorem 2. There exists a randomized polynomial-time algorithm which, for
any constant § < 1/3, colors any locally-symmetric set of paths of load L on
a binary tree of depth at most L°/8, using at most 1.367L + o(L) colors, with
probability at least 1 — exp (—£2(L%)).
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The restriction in the depth of the tree is necessary so that the upper bound

on the number of colors is guaranteed with high probability. The number of
nodes of the tree may be exponential in L (i.e., up to 2L5/8).
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