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Abstract. We study the following Constrained Bipartite Edge Coloring
(CBEC) problem: We are given a bipartite graph G(U, V, E) of maximum
degree l with n vertices, in which some of the edges have been legally
colored with c colors. We wish to complete the coloring of the edges of G
minimizing the total number of colors used. The problem has been proved
to be NP–hard even for bipartite graphs of maximum degree three [5].
In previous work Caragiannis et al. [2] consider two special cases of the
problem and proved tight bounds on the optimal number of colors by
decomposing the bipartite graph into matchings which are colored into
pairs using detailed potential and averaging arguments. Their techniques
lead to 3/2–aproximation algorithms for both problems. In this paper
we present a randomized (1.37 + o(1))–approximation algorithm for the
general problem in the case where max{l, c} = ω(lnn). Our techniques
are motivated by recent work of Kumar [11] on the Circular Arc Coloring
problem and are essentially different and simpler than those presented
in [2].

1 Introduction

König’s classical result from graph theory [10], states that the edges of a bipartite
graph with maximum degree l can be colored using exactly l colors so that
edges that share an endpoint are assigned different colors (see also [1]). We call
such edge colorings legal colorings. König’s proof [10] is constructive, yielding a
polynomial–time algorithm for finding optimal bipartite edge colorings. Faster
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algorithms have been presented in [3,6,7,15]. These algorithms usually use as a
subroutine an algorithm that finds perfect matchings in bipartite graphs [8,15].

Bipartite edge coloring can be used to model scheduling problems such as
timetabling. An instance of timetabling consists of a set of teachers, a set of
classes, and a list of pairs (t, c) indicating that the teacher t has to teach class c
during a time slot within the time span of the schedule [15]. A timetable is an
assignment of the pairs to time slots in such a way that no teacher t and no class
c occurs in two pairs that are assigned to the same time slot. This problem can
be modelled as an edge coloring problem on a bipartite graph.

In real–life situations, the problem is made somehow harder due to addi-
tional constraints that are imposed on the solutions. This is a general feature
of practical optimization problems and it is due to the fact that an optimiza-
tion problem at hand is most of the time just a subproblem of a larger–scale
optimazition that one seeks to obtain. In the example of scheduling classes and
teachers, it is sometimes the case that some teachers have been assigned to a
timeslot because of some other duties that they have to attend during other time
slots; thus, assignments will have to take into account this extra restriction. So,
usually, additional constraints that are put on a timetable make the problem
NP–complete [4].

Caragiannis et al. in [2] study two special cases of problem CBEC that arise
from algorithmic problems in optical networks (see [12,9]). Their results can be
summarized as follows:

– Problem A: Some of the edges adjacent to a specific pair of opposite vertices
of an l–regular bipartite graph are already colored with S colors that appear
only on one edge (single colors) and D colors that appear on two edges
(double colors). They show that the rest of the edges can be colored using at
most max{min{l + D, 3l

2 }, l + S+D
2 } total colors. They also show that this

bound is tight by constructing instances in which max{min{l + D, 3l
2 }, l +

S+D
2 } colors are indeed necessary.

– Problem B: Some of the edges of an l–regular bipartite graph are already
colored with S colors that appear only on one edge. They show that the
rest of the edges can be colored using at most max{l + S/2, S} total colors.
They also show that this bound is tight by constructing instances in which
max{l + S/2, S} total colors are necessary.

Their techniques are based on the decomposition of the bipartite graph into
matchings which are colored into pairs using detailed potential and averaging
arguments. Their results imply 3/2–aproximation algorithms for both problems.

The original proofs in [2] consider l–regular bipartite graphs G(U, V,E) with
|U | = |V | = n/2. However, these results extend to bipartite graphs of maxi-
mum degree l with n vertices using a simple observation presented in Section 2.
Note that CBEC has been proved to be NP–hard even for bipartite graphs of
maximum degree three [5].
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Our approach. In this paper, motivated by recent work of Kumar [11] on the
circular arc coloring problem, the steps we follow to obtain a provably good
approximation to problem CBEC are summarized below:

– Given a bipartite graph of maximum degree l in which some of the edges
are legally colored with c colors, we reduce the problem to an integral mul-
ticommodity flow problem with constraints.

– We formulate the multicommodity flow problem as a 0–1 integer linear pro-
gram.

– We relax the integrality constraint, and solve the linear programming relax-
ation obtaining an optimal fractional solution.

– We use randomized rounding to obtain a provably good integer solution of
the integral multicommodity flow problem which corresponds to a partial
edge coloring.

– We extend the edge coloring by assigning extra colors to uncolored edges.

In this way we extend the coloring of the edges of G using a total number of
colors which is provably close to the optimal one. Our algorithm is randomized
and works with high probability provided that the optimal number of colors is
large (i.e., ω(log n)).

Roadmap. The rest of the paper is structured as follows. We present the reduc-
tion from the costrained bipartite edge coloring problem to an integral multi-
commodity flow problem in Section 2. In Section 3 we demostrate how to ap-
proximate the solution of the integral multicommodity flow problem and prove
that this solution corresponds to an approximate edge coloring. An improvement
to our approach is presented in Section 4.

2 Bipartite Edge Coloring and Multicommodity Flows

In this section we describe the reduction of an instance of problem CBEC to an
instance of an integral multicommodity flow problem with constraints. We first
present a reduction of the initial instance of the CBEC problem to the following
one.

Let G = (U, V,E) be a bipartite graph with n = n1 + n2 vertices, with
U = {u1, ..., un1}, V = {v1, ..., vn2}, and with maximum degree l, in which some
of the edges in E are already legally colored. For any integer k ≥ 0, we construct
the bipartite graph Gk = (A,B,E(Gk)) where the sets of vertices A and B are
defined as

A = {xi|ui ∈ U} ∪ {y′
i|vi ∈ V },

and
B = {yi|vi ∈ V } ∪ {x′

i|ui ∈ U}.
For graph G0, the set of edges E(G0) is defined as follows. For any edge (ui, vj) ∈
E(G) with ui ∈ U and vj ∈ V , E(G0) contains two edges: (xi, yj) and (x′

i, y
′
j).

We call these edges regular edges. Also, let l be the maximum degree of G and
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let d(ui) (resp. d(vi)) be the degree of a vertex ui ∈ U (resp. vi ∈ V ) in G. The
edge set E(G0) also contains l − d(ui) copies of (xi, x

′
i) for i = 1, ..., n1, and

l − d(vi) copies of (yi, y
′
i) for i = 1, ..., n2. These edges are called cross edges.

Graph Gk for k ≥ 0 is obtained from G0, by adding k copies of the edges (xi, x
′
i)

for i = 1, ..., n1, and k copies of the edges (yi, y
′
i), for i = 1, ..., n2. An example

for the construction of graph Gk from G is depicted in Figure 1.
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Fig. 1. The graph G, the graph G1, and the corresponding multicommodity network
H1.

Lemma 1. G can be edge colored with l + k colors iff Gk can be edge colored
with l + k colors.

Proof. Since G is a subgraph of Gk, any legal edge coloring of Gk trivially yields
a legal edge coloring of G.

Assume that we have a legal edge coloring of G with l + k colors. Then, the
edges of Gk can be colored with l + k colors as follows. For any edge (ui, vj) ∈
E(G) colored with a color χ, we color the edges (xi, yj) and (x′

i, y
′
j) of E(Gk)

with χ. This gives a partial edge coloring of Gk in which the cross edges are
uncolored. Let ui ∈ U (resp. vi ∈ V ) and let d(ui) (resp. d(vi)) be the degree of
ui (resp. vi) in G. The cross edges between xi and x′

i (resp. between yi and y′
i) are

now constrained by d(ui) (resp. d(vi)) colors. Thus, we can use the l+ k − d(ui)
(resp. l + k − d(vi)) colors not used by edges adjacent to ui (resp. vi) to color
the cross edges between xi and x′

i (resp. yi and y′
i). This completes the coloring

of Gk with l + k colors. �	
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Now, for any integer k ≥ 0, consider the multicommodity network Hk =
(W,A,B,Z,E(Hk)) constructed as follows. Sets of vertices A and B are the
same with those of graph Gk. Also,

W = {w1, ..., wl+k}

and
Z = {z1, ..., zl+k}.

The set E(Hk) is defined as

E(Hk) = E(Gk)
∪{(wi, xj)|1 ≤ i ≤ l + k, 1 ≤ j ≤ n1}
∪{(wi, y

′
j)|1 ≤ i ≤ l + k, 1 ≤ j ≤ n2}

∪{(yj , zi)|1 ≤ i ≤ l + k, 1 ≤ j ≤ n2}
∪{(x′

j , zi)|1 ≤ i ≤ l + k, 1 ≤ j ≤ n1}

All the edges in E(Hk) have unit capacity, and an edge can carry only an
integral amount of flow for each commodity. The source for the i–th commodity
is located at wi, while the corresponding sink is located at zi. An example for
the construction of network Hk from graph Gk is depicted in Figure 1.

Intuitively, an integral flow of the l+k commodities corresponds to a (partial)
legal coloring of the edges of Gk: an edge between A and B carrying one unit of
flow for commodity i in Hk corresponds to an edge colored with color i in Gk.

Since some of the the edges of the graph Gk are precolored, our multicom-
modity flow problem has some additional constraints. If an edge is precolored
with color i in Gk, it is constrained to carry a unit amount of flow for commodity
i in Hk. So, we can reduce an instance of CBEC to multicommodity flow with
constraints using the following observation.

Lemma 2. Gk can be edge colored with l + k colors iff there is an integral
(constrained) flow of value n(l + k) for commodities 1, ..., l + k in network Hk.

In the next section we show how to approximate the corresponding integral
constrained multicommodity flow problem, and, using the reduction above, we
obtain a provably good solution for the initial instance of CBEC.

3 Approximating the Multicommodity Flow Problem

In general, integral multicommodity flow (without constraints) is NP–complete
[4]. However, it is straightforward to formulate the constrained multicommodity
flow problem as a 0–1 integer linear program and solve its linear programming
relaxation by setting aside the integrality constraint. In this way, we obtain an
optimal fractional solution.

Clearly, max{l, c} is a lower bound on the minimum number of colors suf-
ficient for extending the partial edge–coloring of G. We begin with network
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Hmax{l,c}−l, solving the corresponding linear program LPmax{l,c}−l. If the max-
imum flow is smaller than nmax{l, c}, this means that the integer linear pro-
gram has no flow with value nmax{l, c}, meaning (by Lemma 2) that there exist
no coloring of Gmax{l,c}−l with max{l, c} colors. We continue with networks
Hmax{l,c}−l+1, Hmax{l,c}−l+2, ..., until we find some L such that the solution of
LPL−l gives a fractional (constrained) multicommodity flow of value nL. Clearly,
L is a lower bound for the minimum number of colors sufficient for coloring the
edges of GL−l.

Now, we will use the fractional solution of the linear program LPL−l in
order to obtain a solution for the corresponding integer linear program ILPL−l

which is provably close to the optimal one. We will use the randomized rounding
technique proposed by Raghavan [14].

Let f be the flow obtained by solving LPL−l. Flow f can be decomposed into
L flows f1, f2, ..., fL; one for each commodity. Each fi can be further broken up
into sets Pi,1, Pi,2, ..., of n vertex–disjoint paths from wi to zi (i.e., the edges
between A and B in each set of vertex–disjoint paths forms a perfect matching)
each carrying an amount mi,j of flow for commodity i, such that

∑ti

j=1 mi,j =
fi = 1. We call the procedure of decomposing flow matching stripping (since it
is similar in spirit to the path stripping technique proposed in [14]).

Lemma 3. Matching stripping can be done in polynomial time.

Proof. Matching stripping can be performed as follows. Consider a solution to
LPk and the associated flows for commodity i in network Hk. Set j = 1. Let ej

be the edge carrying the smallest non–zero amount mi,j of flow for commodity
i. Find a set Pi,j of n vertex–disjoint paths from wi to zi containing edges that
carry non–zero amount of flow for commodity i including ej . Associate amount
mi,j with Pi,j and subtract amount mi,j from the flow for commodity i carried
by each edge in Pi,j . Repeat this process for j = 2, 3, ..., until no flow remains.
This will decompose the flow fi into sets of n vertex–disjoint paths Pi,j between
wi and zi each carrying amount mi,j of flow for commodity i.

We first inductively prove that a set of n vertex–disjoint paths Pi,j from
wi to zi can be found at any execution of the above process. Let e1 be the
edge carrying the smallest non–zero amount mi,1 of flow for commodity i in the
beginning of the first execution. Assume that any set of vertex–disjoint paths
from wi to zi containing edges that carry non–zero amount of flow for commodity
i including ej has size at most n−1. This means that there is no perfect matching
containing e1 in the subgraph of Hk containing the vertex sets A and B and the
edges between them that carry non–zero amount of flow for commodity i. By
Hall’s Matching Theorem (see [1]), we obtain that there exists a set S ⊆ A (such
that e1 is incident to one of its vertices) with neighborhood N(S) ⊆ B of size
|N(S)| ≤ |S| − 1. Observe that since the solution of LPk is optimal the edges
incident to a vertex of A carry unit total amount of flow for commodity i. Thus,
the edges incident to S carry a total amount |S| of flow for commodity i and,
since |N(S)| ≤ |S| − 1, the capacity constraints for some of the edges incident
to N(S) are violated. Thus, a perfect matching Mi,1 containing edges between



Approximate Constrained Bipartite Edge Coloring 27

A and B including e1 exists. The set Pi,1 of vertex–disjoint paths is constructed
by adding all edges between wi and A and all edges between B and zi to Mi,1.

Assume now that j − 1 sets of n vertex disjoint paths Pi,1, Pi,2, ..., Pi,j−1
between wi and zi have been constructed in the beginning of the j–th execution
of the above process and let mi,1, mi,2, ..., mi,j−1 be the associated flows for
commodity i. Furthermore, assume that there still exists an edge which carries
non–zero amount of flow for commodity i. Note that an amount of

∑j−1
t=1 mi,t

of flow for commodity i has been subtracted from each edge between wi and A,
from each edge between B and zi, from the edges between A and B incident to
each vertex of A, and, similarly, from the edges between A and B incident to
each vertex of B. Following the same reasoning as above, we consider the edge
ej carrying the smallest non–zero amount of flow and we obtain that there exists
a perfect matching Mi,j between A and B containing edges that carry non–zero
amount of flow for commodity i including ej (otherwise, some the edge capacity
contraints in the original solution of LPk would have been violated). Again, the
set Pi,j of vertex–disjoint paths is constructed by adding all edges between wi

and A and all edges between B and zi to Mi,j .
We now easily prove that the number ti of executions of the above process

is polynomial. Observe that after the j–th execution, there exists at least one
edge (ej) which carry zero amount of flow, and, thus, it will not be considered
in the construction of paths Pi,t for t > j. Thus, the number of executions of
the process is at most the number of edges between A and B, i.e., ti ≤ n(l+ k).

The lemma follows since maximum bipartite matching can be solved in poly-
nomial time. �	

In order to obtain an integer solution for ILPL−l, for each commodity i,
we will select one out of the ti sets of vertex–disjoint paths, and use its edges
to route commodity i. To select a set of vertex–disjoint paths for commodity
i, we cast a ti–faced die (one face per each of the ti sets of vertex–disjoint
paths) where mi,j are the probabilities associated with the faces. The selection
is performed independently for each commodity. Performing this procedure for
each commodity, we obtain L sets of n vertex–disjoint paths to route the L
commodities.

However, these sets of n vertex–disjoint paths may not constitute a feasible
integer solution to ILPL−l since some edge capacities may be violated. Since
in the fractional solution an edge between A and B may carry more than one
commodity, it is possible that, during the rounding procedure, more than one
commodities may select sets of vertex–disjoint paths that contain that edge.

Next, in each edge between A and B that was selected by more than one
commodities we arbitrarily select one commodity that will use this edge. In this
way, we obtain a feasible integer solution for ILPL−l.

Note that the feasible solution of the integral multicommodity flow problem
in HL−l corresponds to a partial edge coloring of GL−l with L colors. We also
have to assign extra colors to the edges that do not belong to the sets of vertex–
disjoint paths that were selected by the rounding procedure. Let G′

L−l be the
(random) subgraph of GL−l that contains all vertices of GL−l and the edges
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that do not correspond to edges of HL−l that were selected by the rounding
procedure.

Next, in Lemma 5, we will provide an upper bound on the maximum degree
of graph G′

L−l. Our proof is based on the following technical lemma on a well–
known occupancy problem. A proof can be found in Kumar [11] (see also [13]).

Lemma 4. Consider the process of randomly throwing m1 balls into m2 bins
such that the expectation of the number of balls thrown into any bin is at most
one. For the random variable Z denoting the number of empty bins, it holds that

Pr[Z ≥ m2 − m1 +m1/e+ λ
√
m1] ≤ 2 exp(−λ2/2).

Lemma 5. The maximum degree of G′
L−l is at most L/e+2

√
L lnn, with prob-

ability at least 1− 4/n.

Proof. During randomized rounding, each commodity i randomly selects a set
of n vertex–disjoint paths between the source wi and destination zi in HL−l.
Thus, for each node u of GL−l, one of the L edges incident to u is selected to
carry unit flow for a specific commodity. Intuitively, we can think of the integral
flow for each commodity as a ball and the edges incident to a vertex u as bins.
The randomized rounding procedure can be modelled by the classical occupancy
problem where L balls are to be randomly and independently thrown into L bins
with the restriction that the expectation of the number of balls thrown into any
bin is at most one (this is due to the edge capacity constraints of the flow
problem). Using Lemma 4 with m1 = m2 = L and λ = 2

√
lnn, we obtain that

the random variable denoting the number of empty bins, i.e., the number of
edges incident to u which are not selected for carrying flow for any commodity,
is at most L/e+ 2

√
L lnn with probability at least 1− 2/n2.

Thus, the probability that more than L/e+2
√
L lnn edges incident to some of

the 2n vertices ofGk have not been selected after the execution of the randomized
rounding procedure is at most 2n · 2/n2 = 4/n. The lemma follows. �	

By Lemma 5, the edges of G′
L−l can be colored with at most L/e+2

√
L lnn

extra colors, with high probability. Thus, in the case where L is large (i.e.,
L = ω(lnn)), we have proved the following theorem.

Theorem 1. With very high probability, the algorithm uses at most (1+1/e)L+
o(L) total colors.

Since L is a lower bound to the optimal number of colors sufficient for coloring
the edges of the bipartite graph, we obtain that our algorithm has approximation
ratio 1 + 1/e+ o(1) = 1.37 + o(1).

4 Decreasing the Number of Colors

In this section we discuss some modifications of our algorithm which lead to a
better upper bound on the total number of colors sufficient for solving instances
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of CBEC. Note that this improved result does not imply an approximation ratio
better than the one obtained in Section 3.

We slightly modify the reduction described in Section 2. Consider again the
bipartite graphs Gk = (A,B,E(Gk)) (for integer k ≥ 0) defined in Section 2. For
any integer k ≥ max{l, c} − l, we construct the multicommodity flow network
H ′

k = (W ′, A,B, Z ′, E(H ′
k)) where now

W ′ = {w1, ..., wmax{l,c}}

and
Z ′ = {z1, ..., zmax{l,c}}.

The set E(H ′
k) is defined as

E(H ′
k) = E(Gk)

∪{(wi, xj)|1 ≤ i ≤ max{l, c}, 1 ≤ j ≤ n1}
∪{(wi, y

′
j)|1 ≤ i ≤ max{l, c}, 1 ≤ j ≤ n2}

∪{(yj , zi)|1 ≤ i ≤ max{l, c}, 1 ≤ j ≤ n2}
∪{(x′

j , zi)|1 ≤ i ≤ max{l, c}, 1 ≤ j ≤ n1}

Our reduction is now based on the following lemma.

Lemma 6. Gk can be edge colored with l + k colors iff there is an integral
(constrained) flow of value nmax{l, c} for commodities in network H ′

k.

Proof. A coloring of Gk with l + k colors can be reduced to an integral (con-
strained) flow of value nmax{l, c} for commodities in networkH ′

k by making each
edge between A and B colored with some color i in Gk (for 1 ≤ i ≤ max{l, c})
carry a unit amount of flow for commodity i.

Given an integral (constrained) flow of value nmax{l, c} for commodities in
network H ′

k, we can achieve a partial coloring of Gk with max{l, c} colors by
using color i (for 1 ≤ i ≤ max{l, c}) to color an edge which carries a unit amount
of flow for commodity i. We observe that the vertex–induced subgraph of Gk

which contains the edges of Gk left uncolored is (l+k−max{l, c})–regular. Thus,
l+ k −max{l, c} colors can be used to complete the coloring of the edges of Gk

with l + k colors in total. �	

The general structure of our approach is the same with the one described
in Section 3. We begin with network H ′

max{l,c}−l, solving the corresponding lin-
ear program LPmax{l,c}−l. If the maximum flow is smaller than nmax{l, c}, this
means that the integer linear program has no flow with value nmax{l, c}, mean-
ing (by Lemma 6) that there exist no coloring of Gmax{l,c}−l with max{l, c}
colors. We continue with networks H ′

max{l,c}−l+1, H
′
max{l,c}−l+2, ..., until we find

some L such that the solution of LPL−l gives a fractional (constrained) multi-
commodity flow of value nmax{l, c}. By Lemma 6, L is a lower bound for the
minimum number of colors sufficient for coloring the edges of GL−l.
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Then, we use the fractional solution of LPL−l to obtain a feasible solution of
ILPL−l using randomized rounding. Again, we can prove that matching stripping
can be correctly performed in polynomial time; however, some minor modifica-
tions are needed in the proof of Lemma 3.

In order to obtain an upper bound on the degree of the graph G′
L−l (the

subgraph of GL−l containing edges of GL−l left uncolored after the application
of the rounding procedure), we again use Lemma 4 (with m1 = max{l, c} and
m2 = L) to show thatG′

L−l can be edge colored with L−max{l, c}+max{l, c}/e+
o(max{l, c}) additional colors. In this way, when max{l, c} = ω(lnn), we obtain
the following.

Theorem 2. With very high probability, the algorithm uses at most L+max{l,c}
e +

o(max{l, c}) total colors.
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