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{iannis, karl}@cs.au.dk

Abstract
We study the PAC learnability of multiwinner voting, focus-
ing on the class of approval-based committee scoring (ABCS)
rules. These are voting rules applied on profiles with approval
ballots, where each voter approves some of the candidates.
According to ABCS rules, each committee of k candidates
collects from each voter a score, that depends on the size
of the voter’s ballot and on the size of its intersection with
the committee. Then, committees of maximum score are the
winning ones. Our goal is to learn a target rule (i.e., to learn
the corresponding scoring function) using information about
the winning committees of a small number of sampled pro-
files. Despite the existence of exponentially many outcomes
compared to single-winner elections, we show that the sample
complexity is still low: a polynomial number of samples car-
ries enough information for learning the target rule with high
confidence and accuracy. Unfortunately, even simple tasks
that need to be solved for learning from these samples are
intractable. We prove that deciding whether there exists some
ABCS rule that makes a given committee winning in a given
profile is a computationally hard problem. Our results extend
to the class of sequential Thiele rules, which have received
attention due to their simplicity.

1 Introduction
Voting has been used for centuries to aggregate individual
preferences into a common decision. In addition to its tra-
ditional use for electing governments or for decision mak-
ing in management boards, it has also been proved useful
in novel applications where individual ratings need to be
summarized as collective knowledge. But, is there a gen-
eral recipe on how preferences should be aggregated? For-
tunately, there is no “golden” voting rule and this has led
social choice theory —and, in particular, its modern compu-
tational branch (Brandt et al. 2016)— onto exciting research
endeavours.

A popular approach has aimed, quite successfully, to eval-
uate voting rules in terms of desirable axioms they must
satisfy. Well-known impossibilities, e.g., see Arrow (1951),
showcase the limitations of this approach. Deviating from
this axiomatic treatment, recent works view voting rules as
optimized decision making methods, perhaps tailored to par-
ticular applications. In this context, the data-driven design
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of voting rules is a very natural approach. The goal is to
derive a voting rule from a set of known preferences with
the hope that the rule is equally well-suited to more general
preferences. The current paper aims to study the potentials
and limitations of this approach.

We focus on multiwinner voting rules (Faliszewski et al.
2017), which on input the preferences of n voters over m
available candidates, return as outcome one or more com-
mittees of candidates of fixed size k. In particular, we study
approval-based voting (Laslier and Sanver 2010; Lackner
and Skowron 2021a), where the preference of a voter is sim-
ply the set of candidates she approves. And, more concretely,
we consider the class of approval-based committee scoring
(ABCS) rules, defined by Lackner and Skowron (2021b). An
ABCS rule follows a common format. It employs a scor-
ing function, according to which each voter awards a score
to each committee of k candidates. This score depends on
the ballot size (the number of candidates the voter approves)
and the size of its intersection with the committee. Different
scoring functions define different voting rules.

Deciding on the best ABCS rule depends on the applica-
tion at hand. For example, under a rule that favours individ-
ual excellence, each voter assigns to each committee a score
that is equal to the number of candidates in the committee
the voter approves. Another rule could give just one point
to each committee that has non-empty intersection with the
voter’s ballot; such a rule would promote representation of
voters. In practice, situations with such a clear objective for
a voting rule are extremely rare. Instead, it is usually easier
to derive the characteristics of the desired rule from avail-
able data, in the form of preference profiles and correspond-
ing desired winning committees. Arguably, the best rule for
the particular application should at least agree with these
data points, and, ideally, produce desirable outcomes for un-
known preference profiles. Can such a data-driven selection
of an ABCS rule be effective?

We explore this question using the PAC (probably approx-
imately correct) learning framework. We follow a similar
methodological approach with Procaccia et al. (2009), who
addressed the same question for single-winner voting rules.
In the terminology of PAC learning, we would like to deter-
mine the sample complexity of the class of ABCS rules. How
many samples (profiles and corresponding winning commit-
tees) are necessary and sufficient so that an ABCS rule that



agrees with these data points can be learnt? However, the an-
swer to this question addresses our challenge only partially.
Indeed, low sample complexity does not necessarily imply
efficient learning, as the computational problem of finding
an ABCS rule that fits the given data can be hard.

Our contribution and techniques. Our first main result
states that the class of ABCS rules has only polynomial
sample complexity (Section 4). Using the multiclass funda-
mental theorem in PAC learning (Theorem 4), we obtain our
sample complexity bounds by proving asymptotically tight
bounds on the Natarajan dimension of the class of ABCS
rules. In our proofs,1 we establish a connection between the
Natarajan dimension and the number of different sign pat-
terns of a set of linear functions. Then, a result in algebraic
combinatorics —originally proved by Warren (1968) and
later refined by Alon (1996)— is used to bound this number
of sign patterns and, consequently, the Natarajan dimension
and the sample complexity of the class of ABCS rules. To
prove our main result, we need to make a simple but im-
portant observation that improves the use of the multiclass
fundamental theorem (see the discussion at the end of Sec-
tion 3).

On the negative side, we give strong evidence that effi-
cient PAC learnability of ABCS rules is not possible. We
show that given a profile of approval votes and a committee,
deciding whether there is an ABCS rule that makes this com-
mittee winning is a coW[1]-hard2 problem, when parame-
terized by the committee size k (Section 5). Our proof uses
a quite involved reduction from INDEPENDENTSET, which,
on input a graph, defines a profile consisting of several parts
and a committee. Some of the parts of the profile guarantee
that the only ABCS rule that can make the committee win-
ning has a very particular form: it takes into account only
votes with two candidates (ignoring the rest), and mimics
the approval-based CC rule (henceforth, the CC rule), a fa-
mous rule that is inspired by the work of Chamberlin and
Courant (1983). Then, the main part of the profile guaran-
tees that the committee is indeed winning under this rule if
and only if the graph does not have a large independent set.
Our reduction can be modified to give coW[1]-hardness for
the following winner verification problem: given a profile
and a committee, is the committee winning under the CC
rule? This result strengthens a recent one by Sonar, Dey, and
Misra (2020).

We also consider sequential Thiele rules (Section 6).
These can be thought of as greedy approximations of a sub-
class of ABCS rules which originate from the work of Thiele
(1895). However, their definition is considerably different
from ABCS rules, so that our sample complexity analysis
techniques need revision. Still, we are able to show poly-
nomial sample complexity bounds for learning sequential
Thiele rules. Interestingly, the problem of deciding whether
there is some sequential Thiele rule that makes a given com-
mittee winning in a given profile is now fixed-parameter

1Due to lack of space, many proofs are omitted.
2We follow standard notions from parameterized complex-

ity theory, such as W-hierarchy hardness and fixed-parameter
tractability; e.g., see Cygan et al. (2015).

tractable (parameterized by the committee size). Despite this
seemingly positive result, we provide evidence that efficient
learning is out of reach for sequential Thiele rules as well,
by showing NP-hardness. We do so by a novel reduction
from a structured version of 3SAT, which equates the order-
ing in which several candidates are greedily included in the
winning committee with a boolean assignment to the 3SAT
variables. As a corollary, our reduction can be modified to
yield the first NP-hardness result for the winner verification
problem for the sequential CC rule.
Related work. The paper by Procaccia et al. (2009) is the
most related to ours. Among other results, they prove that the
class of single-winner positional voting rules is efficiently
PAC-learnable. We remark that our setting is much more de-
manding. In particular, the number of possible outcomes is
doubly exponential in our case, i.e., 2(

m
k )− 1, the number of

all possible non-empty sets of winning committees, while it
is just m in theirs (where fixed tie-breaking is used to pro-
duce a single winning candidate). Hence, even though we
have not been able to prove efficiency of learning, the low
sample complexity of ABCS rules is rather surprising.

PAC learning in voting has been considered, among other
economic paradigms, by Jha and Zick (2020) and, in relation
to the notion of the distortion, by Boutilier et al. (2015). Ac-
tually, the use of sign patterns has been inspired by the latter
paper, even though the particular way in which we employ
the result of Alon (1996) here is different.

More distantly related to our setting, the data-driven ap-
proach in the design of voting rules has been followed
by a series of papers which focus on particular applica-
tions like rating (Caragiannis et al. 2019), evaluation of
online surveys (Baumeister and Hogrebe 2019), and peer
grading (Caragiannis, Krimpas, and Voudouris 2015, 2020).
Other foundational work in this direction includes the papers
by Faliszewski, Szufa, and Talmon (2018) and Xia (2013).

The computational complexity of multiwinner voting
rules has received much attention; see the survey by Lack-
ner and Skowron (2021a). The CC rule has been central
in most related studies regarding ABCS rules. Procaccia,
Rosenschein, and Zohar (2008) proved NP-hardness for the
problem of deciding whether there is a committee that ex-
ceeds a given threshold under the CC rule on a given profile.
The problem was later proved to be W[2]-hard by Betzler,
Slinko, and Uhlmann (2013). Sonar, Dey, and Misra (2020)
considered the question of whether a given candidate be-
longs to a winning committee for a given profile. They also
prove that winner verification for the CC rule is coNP-hard,
using a reduction from a variant of 3-HITTINGSET. We are
not aware of published hardness results (of a similar spirit)
for sequential Thiele rules.

2 Preliminaries
We consider approval-based voting with a set N of n vot-
ers (or agents), each approving a subset from a set Σ of m
candidates (or alternatives). An approval-based multiwin-
ner voting rule is defined for an integer k with 1 < k < m.
It takes as input a profile P = {σi}i∈N , where σi ⊂ Σ is the
non-empty set of alternatives approved by agent i ∈ N (or,



her approval vote), and returns one or more k-sized subsets
of Σ. We use the term committee to refer to any k-sized set of
alternatives; then, the outcome of a multiwinner voting rule
is one or more winning committees. We are interested in a
specific class of multiwinner voting rules called approval-
based committee scoring (ABCS) rules, defined by Lack-
ner and Skowron (2021b). These rules are specified by a set
of scoring parameters. Using these parameters, an agent’s
approval vote gives a score to each committee and the win-
ning committees are those that receive the highest total score
from all agents.

More formally, an ABCS rule is specified by a bivariate
scoring function f . The parameter f(x, y) denotes the non-
negative score that an approval vote σ gives to the committee
C when σ consists of y alternatives and has x alternatives in
common with C. Notice that, under this interpretation, the
function f needs only be defined over the set of pairs

Xm,k = {(x, y) : y ∈ [m− 1],

x ∈ max{0, y −m+ k}, ...,min{k, y}} .

Indeed, an approval vote with y alternatives can intersect
with a committee in at least max{0, y−m+ k} and at most
min{k, y} alternatives.

Hence, formally f : Xm,k → R≥0. By definition, f is
monotone non-decreasing in its first argument. To keep the
presentation concise, we slightly overload notation and use
f to refer both to the scoring function f and the ABCS rule
specified by f . On input a profile P = {σi}i∈N , the ABCS
rule f assigns a score of

scf (C,P ) =
∑
i∈N

f (|C ∩ σi|, |σi|)

to each committee C; then, any committee of maximum
score is winning in profile P under rule f . We write f(P )
for the set of all winning committees in profile P . We de-
note by Fm,k the class of ABCS rules with m alternatives
and committee size k. We use the term trivial to refer to the
ABCS rule f with f(x, y) = 0 for every (x, y) ∈ Xm,k; ob-
viously, all committees are winning in any profile under this
rule.

An important subclass of ABCS rules is that of Thiele
rules. Thiele rules use scoring functions f where the scoring
parameter f(x, y) does not depend on y. In this case, we can
assume that f is univariate, defined over {0, 1, ..., k}, non-
negative, and monotone non-decreasing. A specific Thiele
rule that we use extensively is the CC rule that uses f(0) = 0
and f(x) = 1 for x > 0.

To bypass the necessity of computing the scores of all
committees, sequential Thiele rules have been introduced
to approximate ABCS rules by computing a winning com-
mittee in a greedy manner. Starting from an empty sub-
committee, such rules build a winning committee gradu-
ally in k steps; in each step, they include an alternative that
increases the score of the current subcommittee the most.
The sequential Thiele rule that uses the univariate scoring
function f computes the intermediate score of a set of al-
ternatives A of size up to k on profile P = {σi}i∈N as
scf (A,P ) =

∑
i∈N f(|A ∩ σi|). Then, given a profile P , a

committee C is winning under the sequential Thiele rule f
in profile P if there is an ordering of the alternatives in C,
e.g., as C = {c1, c2, ..., ck}, so that

ci ∈ argmax
c∈Σ\{c1,...,ci−1}

scf ({c1, ..., ci−1} ∪ {c}, P ),

for every i ∈ [k]. By this definition, a sequential Thiele rule
can return more than one winning committees. We denote by
Fk

seq the class of sequential Thiele rules for committee size k
and any number of alternatives m higher than k. Again, the
term “trivial” is reserved for the sequential Thiele rule that
uses a scoring function f with f(x) = 0 for every x.

We conclude this section by defining the two deci-
sion problems we study: TARGETABCS and TARGETSE-
QTHIELE. In both, we are given a profile of approval votes
P = {σi}i∈N over the set Σ of m alternatives and a k-
sized subset C of Σ. Our goal is to find a non-trivial rule
f from Fm,k (for TARGETABCS) or Fk

seq (for TARGETSE-
QTHIELE), so that C is a winning committee in profile P
according to f , or to return that no such rule exists.

3 PAC Learning Background
We follow a standard PAC learning model. In this model,
a learning algorithm has to learn a target function from a
hypothesis class H of functions which assign labels from
the set Y to the points of a set Z. The learning algorithm is
given a training set of examples T consisting of points from
the sample space Z and labels from Y , which are sampled
i.i.d. according to some probability distribution D over Z.
We consider the realizable case and assume that there exists
a function h∗ ∈ H that is used to label the examples in the
training set as {(z, h∗(z))}z∈T . The learning algorithm out-
puts a function h ∈ H. The error of function h is defined
as

err(h) = Pr
z∼D

[h(z) ̸= h∗(z)].

Clearly, err(h∗) = 0. The terms “probably” and “approx-
imately correct” refer to the existence of two parameters
δ, ϵ ∈ (0, 1), indicating the required confidence and accu-
racy of learning, respectively.

Definition 1 (PAC learnability). A hypothesis class H of
functions from set Z to set Y is PAC-learnable if there exist
a function s : (0, 1)2 → N —the sample complexity of H—
and a learning algorithm A with the following property: For
every δ, ϵ ∈ (0, 1), every distribution D over Z, and every
function h∗ from H, on input a training set of at least s(δ, ϵ)
examples generated by D and labelled by h∗, the probability
(over the choice of the training examples) that algorithm A
returns a hypothesis h of error more than ϵ is at most δ.

Extending the relation of the well-known VC dimension
with the PAC learnability of boolean functions, Natarajan
(1989) relates the sample complexity of a hypothesis class
H to the notion of generalized (or Natarajan) dimension,
which captures the combinatorial richness of H. To define
the Natarajan dimension, we need to define the notion of
shattering first.



Definition 2 (shattering). Let H be a class of functions from
Z to Y . We say that H shatters T ⊆ Z if there exist two
functions g1, g2 ∈ H such that
1. For all z ∈ T , g1(z) ̸= g2(z).
2. For all S ⊆ T , there exists hS ∈ H such that hS(z) =

g1(z) for all z ∈ S, and hS(z) = g2(z), for all z ∈ T \S.
Definition 3 (generalized dimension; Natarajan 1989,
1991). Let H be a class of functions from a set Z to a set Y .
The generalized dimension (or Natarajan dimension) of H,
denoted by DG(H), is the greatest integer d such that there
exists a set of cardinality d that is shattered by H.

The relation of Natarajan dimension to sample complex-
ity is given by the next statement. The upper bound depends
also on the quantity Ψ(H) = maxz∈Z |{h(z) : h ∈ H}|,
which denotes the maximum number of labels in Y a point
in Z can have according any function from H.
Theorem 4 (multiclass fundamental theorem;
see Shalev-Shwartz and Ben-David 2014). There exist
constants C1, C2 > 0 such that the hypothesis class H
is PAC-learnable (assuming realizability) with sample
complexity

s(δ, ϵ) ≥ C1 ·
DG(H) + ln (1/δ)

ϵ
,

s(δ, ϵ) ≤ C2 ·
DG(H) · ln

(
Ψ(H)·DG(H)

ϵ

)
+ ln (1/δ)

ϵ
.

We remark that the upper bound in Theorem 4 is rather
non-standard and, usually, the quantity Ψ(H) is replaced by
the larger quantity |Y |. However, observe that every function
h in the hypothesis class H can be encoded by a function ĥ
which maps the points of Z to positive integers. Assume an
ordering of the elements in set Y . We say that an element
y of Y is feasible for point z ∈ Z if there exists a function
h ∈ H so that h(z) = y. Now, for z ∈ Z, define ĥ(z) so that
h(z) is the ĥ(z)-th (according to the ordering of Y ) feasible
element of Y for point z. Let Ĥ be the hypothesis class con-
sisting of functions ĥ for each function h ∈ H. Now, PAC
learning in hypothesis classes H and Ĥ are equivalent tasks
(ignoring the computational burden of encoding an outcome
of function h ∈ H to the outcome of the corresponding func-
tion ĥ and vice-versa). The range of the functions in Ĥ has
size only Ψ(H) and our version of Theorem 4 follows by
standard statements in PAC learning theory; e.g., see Shalev-
Shwartz and Ben-David (2014), Theorem 29.3.

4 The Learnability of ABCS Rules
We are ready to prove that the class Fm,k of ABCS rules is
PAC-learnable with sample complexity that depends poly-
nomially on the number of alternatives m and the committee
size k.
Theorem 5. The class Fm,k of ABCS rules with
m alternatives and committee size k is PAC-
learnable with sample complexity s(δ, ϵ) such that
s(δ, ϵ) ∈ Ω

(
ϵ−1 (|Xm,k|+ ln (1/δ))

)
and s(δ, ϵ) ∈

O
(
ϵ−1

(
|Xm,k|2k lnm+ |Xm,k| ln (1/ϵ) + ln (1/δ)

))
.

Notice that |Xm,k| ∈ Θ(k(m − k)); so the sample com-
plexity grows only polynomially in m, k, and 1/ϵ, and log-
arithmically in 1/δ. Our proof of Theorem 5 will follow by
Theorem 4 using upper and lower bounds on the Natarajan
dimension of Fm,k and an upper bound on the maximum
number of labels per example Ψ(Fm,k) used in Theorem 4.

Upper-bounding the Natarajan dimension. To bound
the Natarajan dimension, we will use an important result in
algebraic combinatorics that bounds the number of different
sign patterns a set of polynomials may have. Consider a set
L of K polynomials p1, p2, ..., pK , each defined over the ℓ
real variables x1, x2, ..., xℓ (i.e., pi : Rℓ → R for i ∈ [K]).
A sign pattern s is just a vector of values in {−1, 0,+1} with
K entries. We say that the set of polynomials L realizes the
sign pattern s if there exists values x∗

1, x
∗
2, ..., x

∗
ℓ for the vari-

ables x1, x2, ..., xℓ such that sgn(pi(x∗
1, x

∗
2, ..., x

∗
ℓ )) = si,

for i = 1, 2, ...,K. Here, sgn is the signum function return-
ing −1, 0, or +1, depending on whether its argument is neg-
ative, zero, or positive.

Clearly, the number of different sign patterns K polyno-
mials may realize is at most 3K . Usually, this is a very weak
upper bound; Alon (1996) provides a much better bound,
extending a previous statement due to Warren (1968).

Theorem 6 (Alon 1996, Warren 1968). The number of dif-
ferent sign patterns a set of K polynomials of degree τ over
ℓ real variables may realize is at most

(
8eτK

ℓ

)ℓ
.

Using Theorem 6, we can prove the next upper bound.

Lemma 7. DG(Fm,k) ∈ O(|Xm,k|).

Proof. Assume that the Natarajan dimension of Fm,k is N .
Thus, we have a set of N different profiles {Pj}j∈[N ] and
two voting rules f, g ∈ Fm,k such that f(Pj) ̸= g(Pj) for
every j ∈ [N ]. Hence, the two sets of committees f(Pj) and
g(Pj) differ in at least one committee. For any profile Pj ,
this allows us to pick two committees Cj ∈ f(Pj), Dj ∈
g(Pj) such that either Cj /∈ g(Pj) or Dj /∈ f(Pj) (not
necessarily exclusively). We now define

Lj
Cj ,Dj

(s) = scs(Cj , Pj)− scs(Dj , Pj),

where s is any scoring function specifying a voting rule in
Fm,k. Let Pj = {σj

i }i∈N ; then

Lj
Cj ,Dj

(s)

=
∑
i∈N

s
(
|Cj ∩ σj

i |, |σ
j
i |
)
−
∑
i∈N

s
(
|Dj ∩ σj

i |, |σ
j
i |
)
.

Hence, Lj
Cj ,Dj

(s) is a linear function (a polynomial of de-
gree 1) on the variables s(x, y) for (x, y) ∈ Xm,k. Let
L = {Lj

Cj ,Dj
(s) : j ∈ [N ]} be the set of linear functions

defined for the N different profiles.
By our assumption of a Natarajan dimension of N and

Definitions 2 and 3, we know that for each set S ⊆ [N ], there
exists a voting rule hS ∈ Fm,k such that hS(Pj) = f(Pj)
for all j ∈ S and hS(Pj) = g(Pj) for all j ∈ [N ] \ S.
Now, consider two different subsets S and S′ of [N ] such



that S ̸⊆ S′ (notice that this is without loss of generality).
Let j∗ be such that j∗ ∈ S and j∗ ̸∈ S′. Then,

sgn
(
Lj∗

Cj∗ ,Dj∗
(hS)

)
= sgn (schS

(Cj∗ , Pj∗)− schS
(Dj∗ , Pj∗))

=

{
0, if Dj∗ ∈ f(Pj∗)

+1, if Dj∗ /∈ f(Pj∗)

and

sgn
(
Lj∗

Cj∗ ,Dj∗
(hS′)

)
= sgn

(
schS′ (Cj∗ , Pj∗)− schS′ (Dj∗ , Pj∗)

)
=

{
−1, if Cj∗ /∈ g(Pj∗)

0, if Cj∗ ∈ g(Pj∗)

Since, by the definition of committees Cj∗ and Dj∗ , it
is either Cj∗ /∈ g(Pj∗) or Dj∗ /∈ f(Pj∗), we get that

sgn
(
Lj∗

Cj∗ ,Dj∗
(hS)

)
̸= sgn

(
Lj∗

Cj∗ ,Dj∗
(hS′)

)
. Hence, each

of the 2N voting rules hS for S ⊆ [N ] —corresponding to
a distinct assignment of values s(x, y) for (x, y) ∈ Xm,k—
yields a different sign pattern to the set of polynomials L.

We now apply Theorem 6 to L for K = N , τ = 1, ℓ =

|Xm,k|. This gives an upper bound of
(

8eN
|Xm,k|

)|Xm,k|
on the

number of different sign patterns with entries in {−1, 0,+1}
for the set of polynomials L. Hence,

2N ≤
(

8eN

|Xm,k|

)|Xm,k|

and, equivalently,

|Xm,k| · 2N/|Xm,k| − 8eN ≤ 0. (1)

The derivative of the LHS of (1) with respect to N is
2N/|Xm,k| · ln 2−8e, i.e., increasing in N . For N = 8|Xm,k|,
its value is 28 · ln 2 − 8e, i.e., already positive. Hence, for
N > 8|Xm,k|, the LHS of (1) is larger than (28 − 64e) ·
|Xm,k| > 0, contradicting inequality (1). Thus, the condi-
tion N ≤ 8|Xm,k| is necessary so that inequality (1) holds
and the proof of Lemma 7 is complete.

A tight lower bound. We now prove an asymptotically
tight lower bound on DG(Fm,k). In our proof, we construct
a large set of profiles that can be shattered by the set of
ABCS rules Fm,k.

Lemma 8. DG(Fm,k) ∈ Ω(|Xm,k|).

Proof. For a given m ≥ 3 and k such that 2 ≤ k ≤ m − 1,
consider the set of alternatives

Σ = {a, b1, . . . , bk−1, c, d1, . . . , dm−k−1}.

Our goal is to define a set of profiles, where for each pro-
file we are able to pick rules from Fm,k such that ei-
ther committee A = {a, b1, . . . , bk−1} or committee C =
{b1, . . . , bk−1, c} is the single winning committee under the
respective rule.

Let Tm,k be the following set of pairs:

Tm,k =
{
(x, y) : y ∈ {2, . . . ,m− 1},

x ∈
{
1 + max{0, y −m+ k}, . . . ,min{k, y}

}}
\ {(k, k)}.

Even though some of the pairs of set Xm,k have been omitted
from Tm,k, they have asymptotically the same size as the
next lemma indicates.

Lemma 9. |Tm,k| ∈ Ω(|Xm,k|).
We now define the set of profiles {Pxy}(x,y)∈Tm,k

. Each
profile Pxy contains four approval votes:

σxy
1 = {a}, σxy

2 = A, σxy
3 = C,

and
σxy
4 = {b1, . . . , bx−1, c, d1, . . . , dy−x}.

We introduce the family of rules F ⊆ Fm,k which, for every
subset S ⊆ Tm,k, contains the voting rule hS defined as:

hS(1, 1) = 1,

hS(k, k) = 4k − 1,

hS(max{0, y −m+ k}, y) = 0, for y ∈ [m− 1],

hS(x, y)− hS(x− 1, y) =

{
0, (x, y) ∈ S,

2, (x, y) ∈ Tm,k \ S.
Notice that the function hS is monotonically non-decreasing
in its first argument, as required by the definition of voting
rules in Fm,k.

We will show that the family F shatters the set of pro-
files {Pxy}(x,y)∈Tm,k

. To do so, we will make use of the
following two lemmas. Lemma 10 guarantees that no other
committee besides A and C is ever winning in any profile of
{Pxy}(x,y)∈Tm,k

. Lemma 11 identifies the winning commit-
tee among A and C in each of these profiles for every voting
rule in set F .

Lemma 10. For every committee X ̸= A,C, every profile
Pxy ∈ {Pxy}(x,y)∈Tm,k

and any voting rule h ∈ F , it holds
that sch(A,Pxy)− sch(X,Pxy) ≥ 1.

Lemma 11. Let S ⊆ Tm,k. For every profile Pxy ∈
{Pxy}(x,y)∈Tm,k

, it holds that

schS
(A,Pxy)− schS

(C,Pxy) =

{
1, (x, y) ∈ S

−1, (x, y) ∈ Tm,k \ S
Together, Lemmas 10 and 11 imply that, when applied to

profile Pxy , the voting rule hS returns

• A as the unique winning committee if (x, y) ∈ S, and
• C as the unique winning committee if (x, y) ∈ Tm,k \S.

By Definition 2, this implies that the family F (and, con-
sequently, the family Fm,k) shatters the set of profiles
{Pxy}(x,y)∈Tm,k

. Indeed, it suffices to define functions g1
and g2 as g1 = hTm,k

and g2 = h∅, while the set of
profiles {Pxy}(x,y)∈Tm,k

plays the role of set T in Defini-
tion 2. By Definition 3, we conclude that the Natarajan di-
mension of Fm,k is at least |Tm,k|. Lemma 8 now follows
from Lemma 9.



Bounding the maximum number of labels. To bound
Ψ(Fm,k), we use again sign patterns and Theorem 6. Let
P be a profile and consider the square matrix Ms whose
columns and rows correspond to committees. The entry
Ms(A,C) at the row corresponding to committee A and the
column corresponding to committee C has the outcome of
the linear function

Ms(A,C) = scs(A,P )− scs(C,P ).

The important observation is the following: A set W of com-
mittees is the set of winning committees for some voting rule
s only if the following is true:

• for every A ∈ W , Ms(A,C) ≥ 0 for every committee
C, and

• for every A ̸∈ W , there exists a committee C such that
Ms(A,C) < 0.

Hence, the number of different winning sets is upper-
bounded by the number of different sign patterns the entries
of matrix Ms can realize. By Theorem 6, we get that this
number, which upper-bounds Ψ(Fm,k), is

Ψ(Fm,k) ≤

(
8e
(
m
k

)2
|Xm,k|

)|Xm,k|

.

Taking logarithms in both sides, we obtain the following.

Lemma 12. lnΨ(Fm,k) ∈ O (|Xm,k| · k · lnm).

Putting all together. Now, the lower bound on sample
complexity in Theorem 5 follows by the first inequality in
Theorem 4 using our lower bound on the Natarajan dimen-
sion of Fm,k in Lemma 8. The upper bound in Theorem 5
follows by the second inequality in Theorem 4 using the up-
per bound on the Natarajan dimension from Lemma 7 and
the bound on quantity lnΨ(Fm,k) from Lemma 12.

5 The Complexity of TARGETABCS
Unfortunately, despite the low sample complexity of the
class of ABCS rules, learning from samples is notoriously
hard. We prove this for TARGETABCS, which captures the
elementary task of learning from a single sample. The next
statement uses a polynomial-time reduction from (the com-
plement of) the INDEPENDENTSET problem.

Definition 13 (INDEPENDENTSET). Given a graph G and
a positive integer K, decide whether G contains a set of at
least K nodes that form an independent set.

INDEPENDENTSET is known to be W[1]-hard, parameter-
ized by the independent set size (Cygan et al. 2015, Theorem
13.18).

Theorem 14. TARGETABCS parameterized by the commit-
tee size k is coW[1]-hard.

Proof. For a given instance of INDEPENDENTSET consist-
ing of a graph G and an integer K, we construct an instance
of TARGETABCS with k = K such that there is a non-
trivial rule f ∈ Fm,k that outputs A as a winning committee
in P if and only if G contains no independent set of size K.

Let ∆ denote the maximum degree among the vertices of
G. We can assume that ∆ ≥ 2, since INDEPENDENTSET
would be trivially solvable in polynomial time otherwise.
As a first step in our construction, we modify G to an-
other graph G′ as follows. For every vertex v ∈ V , we add
∆− deg(v) dummy vertices that are adjacent only to v. Let
G′ = (V ′, E′) be the resulting graph and let |V ′| = r.

Without loss of generality, we can assume that V ′ is the
set of positive integers in [r]. The set of alternatives Σ con-
sists of alternatives ai and bi for every vertex i ∈ V ′, and
the additional alternatives c and d. Let A = {a1, a2, ..., ak}.
The profile P consists of three parts:

• Part 1 consists of vote {bi, bj} for every edge (i, j) ∈ E′.
• Part 2 consists of k∆− 1 copies of each of the following

votes: vote {ai, bj} for every i, j ∈ [r], votes {ai, c} and
{bi, d} for every i ∈ [r], vote {a1, d}, and vote {c, d}.

• Part 3 consists of a vote containing alternatives d, a1,
a2, ..., ax−1, and y − x additional alternatives among
ak+1, ak+2, ..., ar, b1, ..., br, for every (x, y) ∈
Xm,k \ ({(max{0, y − m + k}, y) : y ∈ [m − 1]} ∪
{(1, 2), (2, 2)}).

We use P1, P2, and P3 to denote the three subprofiles of
votes in part 1, 2, and 3, respectively.3

Parts 2 and 3 of profile P have important properties that
are given in Lemmas 15 and 16.

Lemma 15. Let f ∈ Fm,k and C = {a1, ..., ak−1, d}.
Then, scf (A,P3) = scf (C,P3) if f(x, y) = 0 for ev-
ery (x, y) ∈ Xm,k \ {(1, 2), (2, 2)} and scf (A,P3) <
scf (C,P3), otherwise.

Lemma 16. Let f ∈ Fm,k and C = {a1, ..., ak−1, d}.
Then, scf (A,P2) = scf (C,P2) if f(1, 2) = f(2, 2) and
scf (A,P2) < scf (C,P2), otherwise.

As no vote in part 1 of profile P includes any alternatives
in committees A and C, Lemmas 15 and 16 imply that a non-
trivial rule f ∈ Fm,k can make committee A winning in P
only if it satisfies f(1, 2) = f(2, 2) > 0 and f(x, y) = 0 for
any pair (x, y) of Xm,k different than (1, 2) and (2, 2). We
complete the proof assuming —without loss of generality—
that f furthermore satisfies f(1, 2) = f(2, 2) = 1.

Claim 17. It holds that scf (A,P ) = (k∆−1)(kr+k+1).

Consider a committee B and let t be the number of its
alternatives from {b1, ..., br}.

Lemma 18. If t < k, scf (B,P ) ≤ (k∆− 1)(kr + k + 1).

By Claim 17 and Lemma 18, if committee B has score
higher than scf (A,P ), then it must be t = k. We conclude
the proof by reasoning about scf (B,P ) in this case.

Claim 19. Let B be a committee with t = k. Then,
scf (B,P2) = (k∆− 1)(kr + k).

Lemma 20. Consider any committee B with t = k. If G has
no independent set of size k, then scf (B,P1) ≤ k∆− 1.

3By restricting profiles to have only parts 1 and 2, our reduction
yields coW[1]-hardness of winner verification for the CC rule.



Proof. Let S be the set of vertices in G′ to which the alter-
natives in B correspond. Then, scf (B,P1) is equal to the
number of edges in G′ that are incident to the vertices of
S. These vertices have degree either 1 or ∆. If one of them
has degree 1, then scf (B,P1) ≤ (k − 1)∆ + 1 ≤ k∆ − 1.
Otherwise, if all of them have degree ∆ in G′, then they cor-
respond to vertices of G. Since G has no independent set of
size k, at least two vertices of S are connected by an edge
in G and, consequently, in G′. Hence, the number of edges
incident to the vertices of S and, consequently, scf (B,P1)
is at most k∆− 1.

By Claim 19 and Lemma 20, we obtain that if G has no
independent set of size k, scf (B,P ) ≤ (k∆−1)(kr+k+1).
Thus, by Claim 17, A is a winning committee in this case.

Now, assume that G has an independent set of size k.
This implies that G′ has an independent set S of k vertices
of degree ∆. Now, consider the committee B consisting of
the alternatives that correspond to the vertices of S. As the
number of edges that are incident to vertices of S is k∆,
scf (B,P1) = k∆ as well. Then, by Claims 17 and 19, we
have scf (B,P ) = 1 + (k∆− 1)(kr + k + 1) > scf (A,P )
indicating that A is not winning. The proof of correctness of
our reduction is now complete.

6 Sequential Thiele Rules
We now turn our attention to the PAC learnability of sequen-
tial Thiele rules and related complexity questions. In Sec-
tion 4, we saw how the sign of a single linear function can
be used to compare the score of two committees in a profile
according to an ABCS rule. Due to the different definition of
sequential Thiele rules, such a direct comparison is not pos-
sible. Still, deciding whether a committee is winning can be
done by examining the signs of a block of linear functions.
This will be our main tool to show that TARGETSEQTHIELE
is in FPT and that the class Fk

seq is PAC-learnable.
Assume a generic ordering of the alternatives in Σ. For a

committee A and integer i ∈ [k], we denote by A(i) the i-th
alternative of committee A (according to the generic order-
ing). For a committee A, permutation π : [k] → [k], and
integer i ∈ [k], the notation A[π, i] is used to denote the set
of alternatives ∪i

j=1{A(π(j))}.
Now, assume that the sequential Thiele rule s returns

committee A as winning when applied on profile P . Assume
that the order in which rule s decides the alternatives in A
as winning is given by permutation π: at step i, the rule in-
cludes alternative A(π(i)) in the winning committee. By the
definition of the sequential Thiele rule s, this decision can
be expressed by the set of inequalities

scs(A[π, i], P )− scs(A[π, i− 1] ∪ {a}, P ) ≥ 0, (2)

for every alternative a ∈ Σ \ A[π, i]. Non-negativity is nec-
essary and sufficient so that alternative A(π(i)) is (weakly)
preferred for inclusion in the winning committee at step i
over any alternative a ∈ Σ \A[π, i].

For a sequential Thiele rule s, committee A, and permu-
tation π, we define the block BP

A,π(s) consisting of the LHS
expression of equation (2) for every i ∈ [k] and every alter-
native a ∈ Σ \ A[π, i]. By the discussion above, committee

A is winning in profile P under rule s if and only if there
is a permutation π so that all expressions in block BP

A,π(s)

are non-negative. Otherwise, if the block BP
A,π(s) contains

a negative expression for every permutation π, committee A
is not winning.

We can use this observation to show that TARGETSE-
QTHIELE can be solved in time k! · poly(m,n) and, hence,
is fixed-parameter tractable. This can be done as follows.
For each of the k! permutations π, consider the linear pro-
gram that has parameters s(1), ..., s(k) as variables (assum-
ing s(0) = 0) and its constraints require that each expres-
sion of block BP

A,π(s) —each of which is a linear func-
tion of the variables— is non-negative and, furthermore,
0 ≤ s(1) ≤ ... ≤ s(k) and s(k) ≥ 1 to ensure non-
negativity, monotonicity, and non-triviality. If the linear pro-
gram is feasible for some permutation π, then the corre-
sponding scoring function s gives a sequential Thiele rule
that makes A a winning committee in profile P . Otherwise,
no such rule exists. Checking feasibility can be done in poly-
nomial time using well-known algorithms for linear pro-
gramming. The next statement summarizes this discussion.
Theorem 21. TARGETSEQTHIELE is in FPT.

By adapting our analysis in Section 4 and using blocks of
linear functions to witness winning committees as discussed
above, we can prove Theorem 22. The sample complexity
of sequential Thiele rules is polynomial too, but potentially
higher compared to ABCS rules. The notation Õ hides log-
arithmic terms in m, k, 1/δ, and 1/ϵ.
Theorem 22. The class Fk

seq of sequential Thiele rules
with m alternatives and committee size k is PAC-
learnable with sample complexity s(δ, ϵ) such that s(δ, ϵ) ∈
Ω
(
ϵ−1 (k + ln (1/δ))

)
and s(δ, ϵ) ∈ Õ

(
ϵ−1k4

)
.

Again, the proof of Theorem 22 relies on Theorem 4 and
exploits bounds on quantities DG(Fk

seq) and Ψ(Fk
seq).

The last statement of this section is negative and provides
evidence that learning in class Fk

seq is hard as well. The
proof employs a novel reduction from a structured version
of 3SAT, known to be NP-hard (Yoshinaka 2005).
Theorem 23. TARGETSEQTHIELE is NP-hard.

7 Concluding Remarks
We studied complexity aspects of learning ABCS and se-
quential Thiele rules. In a nutshell, our results suggest that
learning from these classes is feasible in the PAC learning
framework but —in a worst-case sense— only in computa-
tional inefficient ways. We believe that our techniques for
assessing PAC learnability can be extended to other rules.
Faliszewski et al. (2019) define a hierarchy of classes of
ranking-based multiwinner voting rules that are specified us-
ing scoring functions. These are natural candidates for ex-
tending our analysis. We also remark that, en route to prov-
ing hardness of TARGETABCS and TARGETSEQTHIELE,
parts of our reductions show hardness of winner verification
for the CC and the sequential CC rule. The next statement
summarizes these byproduct results.
Theorem 24. Winner verification is coW[1]-hard for the CC
rule and NP-hard for the sequential CC rule.
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