
Computing Envy-Freeable Allocations
with Limited Subsidies

Ioannis Caragiannis1(B) and Stavros D. Ioannidis2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
iannis@cs.au.dk

2 Department of Informatics, King’s College London, London, UK
stavros.ioannidis@kcl.ac.uk

Abstract. Fair division has emerged as a very hot topic in EconCS
research, and envy-freeness is among the most compelling fairness con-
cepts. An allocation of indivisible items to agents is envy-free if no agent
prefers the bundle of any other agent to his own in terms of value. As
envy-freeness is rarely a feasible goal, there is a recent focus on relax-
ations of its definition. An approach in this direction is to complement
allocations with payments (or subsidies) to the agents. A feasible goal
then is to achieve envy-freeness in terms of the total value an agent gets
from the allocation and the subsidies.

We consider the natural optimization problem of computing alloca-
tions that are envy-freeable using the minimum amount of subsidies. As
the problem is NP-hard, we focus on the design of approximation algo-
rithms. On the positive side, we present an algorithm which, for a con-
stant number of agents, approximates the minimum amount of subsidies
within any required accuracy, at the expense of a graceful increase in the
running time. On the negative side, we show that, for a superconstant
number of agents, the problem of minimizing subsidies for envy-freeness
is not only hard to compute exactly (as a folklore argument shows) but
also, more importantly, hard to approximate.

Keywords: Fair division · Indivisible goods · Subsidy minimization ·
Approximation algorithms

1 Introduction

Fairly dividing goods among people is an extremely important quest since antiq-
uity. Today, fair division is a flourishing area of research in computer science,
economics, and political science and envy-freeness is considered as the ultimate
fairness concept [26]. Following a research trend that is very popular recently,
we consider allocation problems with indivisible items. An allocation of items
to agents is envy-free if no agent prefers the bundle of items allocated to some
other agent to her own. Traditionally, agents’ preferences are based on cardinal
valuations they have for the items.

c© Springer Nature Switzerland AG 2022
M. Feldman et al. (Eds.): WINE 2021, LNCS 13112, pp. 522–539, 2022.
https://doi.org/10.1007/978-3-030-94676-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94676-0_29&domain=pdf
http://orcid.org/0000-0002-4918-7131
https://doi.org/10.1007/978-3-030-94676-0_29


Computing Envy-Freeable Allocations with Limited Subsidies 523

Unfortunately, with indivisible items, envy-freeness is rarely a feasible goal.
For example, no such allocation exists in the embarrassingly simple case with
a single item and two agents with some value for it. Recently proposed relax-
ations of envy-freeness aim to serve as useful alternative fairness notions. In a
line of research that emerged very recently, allocations are complemented with
payments (or subsidies) to the agents [7,18]. Now, envy-freeness dictates that no
agent prefers the allocation and payment of another agent to hers, and becomes
a feasible goal. However, important questions arise related to the sparing use of
money.

In this paper, we follow an optimization approach. We define and study
the optimization problem SMEF (standing for Subsidy Minimization for Envy-
Freeness). Given an allocation problem consisting of items and agents with val-
uations for the items, SMEF asks for an allocation that is envy-freeable using
the minimum total amount of subsidies.

SMEF is NP-hard; this follows by the NP-hardness of deciding whether a
given allocation problem has an envy-free allocation or not. Thus, we resort to
approximation algorithms for SMEF. As multiplicative approximation guaran-
tees are hopeless, our aim is to design algorithms that run in polynomial-time
and compute an allocation that is envy-freeable with an amount of subsidies
that does not exceed the minimum possible amount of subsidies (denoted χ) by
much. In particular, we use the total valuation of all agents for all goods (denoted
by sum v) as a benchmark and seek allocations that are envy-freeable with an
amount of at most χ + ρ · sum v as subsidies. The goal for the approximation
guarantee ρ of an algorithm is to be as small as possible.

We initiate the study of SMEF and present two results. On the positive side,
we design an algorithm that achieves an arbitrary low approximation guaran-
tee of ε > 0. When applied to allocation instances with a constant number of
agents, the algorithm uses dynamic programming and runs in time that is poly-
nomial in the number of items and 1/ε. On the negative side, we show that, in
general, SMEF is not only hard to solve exactly, but also hard to approximate
within a small constant. Unlike the folklore reduction1 for proving hardness of
envy-freeness, our proof uses a novel approximation-preserving reduction. Besides
separating the general case from that with constantly many agents, our nega-
tive result indicates that achieving good approximation guarantees will be a
challenging goal.

1.1 Related Work

The concept of envy-freeness was formally introduced by Foley [15] and Var-
ian [29]. As envy-freeness may not be achievable when goods are indivisible,
recent research has focused on defining approximations of envy-freeness. These
include envy-freeness up to one good [8], envy-freeness up to any good [10], epis-
temic envy-freeness [4], and more. Still, achieving even them in polynomial time

1 Notice that deciding whether an envy-free allocation exists for two agents with identi-
cal item valuations requires solving Partition, a well-known NP-hard problem [16].
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can be challenging, and recent work has focused on approximation algorithms;
see, e.g., [2,6,9,11,12,21,25].

The approach of mixing allocations with payments either from or to the
agents has been extensively considered in the economics literature. A typical
example is the rent division problem, where n items (rooms) and a fixed rent have
to be divided among n agents in an envy-free manner [27,28]. Compensations
to the agents were first considered by Maskin [22]. Subsequent papers consider
unit-demand allocation problems, where each agent can get at most one item;
see, e.g., [1]. Aragones [3] and Klijn [20] give polynomial-time algorithms that
compute allocations and payments. More general models are studied by Haake
et al. [17] and Meertens et al. [23].

In the AI literature, Chevaleyre et al. [13] consider allocation problems and
monetary transfers between the agents. In a model that is the closest to ours,
Halpern and Shah [18] aim to bound the amount of external subsidies assuming
that all agent valuations for goods are in [0, 1]. Among several results, they con-
jectured that subsidies of n−1 suffice; an even stronger version of the conjecture
was proved very recently by Brustle et al. [7].

1.2 Roadmap

The rest of the paper is structured as follows. We begin with preliminary defi-
nitions in Sect. 2. Our approximation algorithm is presented in Sect. 3 and our
result on the hardness of approximation for SMEF is presented in Sect. 4. We
conclude in Sect. 5.

2 Preliminaries

We consider allocation instances with a set M of m items and a set N of n agents.
Each agent i ∈ N has a valuation function vi : M → R≥0 over the items.2 With
some abuse of notation, we use vi(B) to denote the valuation of agent i for the
set (or bundle) of items B. Valuations are additive, i.e., vi(B) =

∑
g∈B vi(g). An

allocation is simply a partition X = (X1,X2, ...,Xn) of the items of M into n
disjoint bundles, where agent i ∈ N is supposed to get the bundle Xi. We use
the abbreviations sum v =

∑
i∈N vi(M) and max v = maxi∈N vi(M).

As usual, we define the social welfare of an allocation X = (X1, ...,Xn) to
be SW(X, v) =

∑
i∈N vi(Xi). An allocation X = (X1,X2, ...,Xn) is envy-free

if vi(Xi) ≥ vi(Xj) for every pair of agents i and j. Informally, envy-freeness
requires that no agent envies the bundle allocated to any other agent compared
to her own.

For an allocation X = (X1, ...,Xn) in an instance with agent valuations v,
the envy graph EG(X, v), introduced by Lipton et al. [21], is an edge-weighted
complete directed graph that has a node for each agent and the weight of the
2 In our exposition, we assume that valuations are non-negative, even though our

positive result can be extended to work without this assumption, in the model of [5]
where items can be goods or chores.
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directed edge (i, j) represents the “envy” of agent i for agent j. Using G =
EG(X, v) and wgtG(i, j) for the weight of the directed edge from node i to node
j in the envy graph EG(X, v), we define wgtG(i, j) = vi(Xj) − vi(Xi).

Following the modelling assumptions of [18], we also consider payments (or
subsidies) to the agents, represented by a payment vector π = 〈π1, ..., πn〉 with
non-negative entries, i.e., πi ≥ 0 for every agent i ∈ N . Below, we use the terms
“payment” and “subsidy” interchangeably. Now, we say that the pair (X,π) of
the allocation X and payment vector π is envy-free if vi(Xi)+πi ≥ vi(Xj)+πj for
every pair of agents i, j ∈ N . Informally, this extended version of envy-freeness
requires that no agent envies the bundle and the payment of any other agent
compared to the bundle and payment she gets.

We say that allocation X is envy-freeable if there is a payment vector π so that
the pair (X,π) is envy-free. Although the use of payments makes envy-freeness
a feasible goal, not all allocations are envy-freeable. The following theorem, due
to Halpern and Shah [18], gives sufficient and necessary conditions so that an
allocation is envy-freeable.

Theorem 1 (Halpern and Shah [18]). The following statements are equiva-
lent:

– The allocation X = (X1,X2, ...,Xn) is envy-freeable.
– The allocation X maximizes social welfare among all redistributions of its

bundles to the agents.
– The envy graph EG(X, v) contains no directed cycles of positive total weight.

Detecting whether a given allocation X is envy-freeable can be done using
the following linear program LP(X, v):

minimize
∑

i∈N

πi (1)

subject to: πi − πj ≥ vi(Xj) − vi(Xi),∀i, j ∈ N

π ≥ 0

LP(X, v) aims to find a payment vector π so that the envy-freeness constraints
between pairs of agents are satisfied. In addition, it minimizes the total amount
of payments. As it is observed by Halpern and Shah [18], the payment πi of
agent i obtained in this way is equal to the maximum total weight in any simple
path that originates from node i in the envy graph EG(X, v).

We study the optimization problem SMEF (standing for Subsidy Minimiza-
tion for Envy-Freeness). Given an allocation instance, SMEF aims to compute
an allocation that is envy-freeable with the minimum amount of subsidies. Since
the problem of computing an envy-free allocation is NP-hard, SMEF is NP-hard
as well.

We are interested in the design of approximation algorithms for SMEF. As
algorithms with finite multiplicative approximation ratio are hopeless (since it
is NP-hard to decide whether the minimum amount of subsidies is zero or not),
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we seek polynomial-time algorithms that compute an allocation that is envy-
freeable with subsidies χ + ρ · sum v, with the approximation guarantee ρ being
as low as possible.

As a warmup, consider the algorithm that allocates all items to the agent i∗

who has maximum value for M and paying a subsidy of vi∗(M) to every other
agent i. Clearly, this is a polynomial-time algorithm. The allocation obtained
is envy-freeable since no redistribution of the bundles (i.e., giving all items to
another agent) results in higher social welfare. And the particular payments are
right: agent i∗ is indifferent between the bundle M and the payment to any other
agent, while the other agents are indifferent between the (equal) payments, and
prefer their payment to getting the whole bundle M . It can be easily verified
that the algorithm guarantees an amount of at most χ+(n−1)max v ≤ χ+(n−
1)sum v as subsidies; this is the best guarantee of this form for this algorithm
in the worst-case.

3 An Approximation Algorithm

We now present an algorithm that does much better. The algorithm exploits
ideas that have led to polynomial-time approximation schemes for combinato-
rial optimization problems like Knapsack; e.g., see [30]. It first discretizes all
valuations to multiples of a discretization parameter. In this way, the different
discretized valuations an agent can have for bundles of items in the new instance
is small. This allows to classify all allocations into a relatively small number of
classes, each defined by specific discretized valuation levels of each agent for all
bundles. Dynamic programming is used to decide the classes that are non-empty
and to select a representative allocation from each class. The final allocation is
selected among all representative allocations, possibly after redistributing the
bundles so that social welfare (with respect to the original valuations) is maxi-
mized (in order to get envy-freeability). This requires a call to linear program (1)
to compute the minimum amount of subsidies for each representative allocation.

The classification of allocations guarantees that the algorithm will consider
a representative allocation from the class that also contains the optimal one
(i.e., the allocation that is envy-freeable with the minimum amount of subsi-
dies overall). Our analysis shows that the amount of subsidies for making the
representative allocation envy-free is close to optimal. Polynomial running time
for the case of a constant number of agents follows by setting the discretization
parameter appropriately.

We now present our algorithm in detail. It uses an accuracy parameter ε > 0
and initially decides the value of the discretization parameter δ as follows:

δ =
εmax v

4mn2
.

First, the algorithm implicitly discretizes all agent valuations by defining new
valuations ṽ as follows: for an agent i with valuation vi(g) for item g, the dis-
cretized valuation ṽi(g) is equal to 	vi(g)/δ
 δ.
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The algorithm uses an arbitrary ordering of the items in M ; let M =
{g1, g2, ..., gm}, where the item indices are those in this ordering. The algorithm
builds a table T which classifies all possible allocations of subsets of M . Consider
an (n2+1)-dimensional tuple τ = (t, Pij , 1 ≤ i, j ≤ n), where t is an integer from
1 to m and Pij is an integer from 0 to 	max v/δ
, for every pair of agents i and j.
The entry T(τ) of the table indicates whether an allocation At = (At

1, A
t
2, ..., A

t
n)

of the first t items g1, ..., gt of M to the n agents, satisfying ṽi(At
j) = Pijδ for

every pair of agents i and j, exists (T(τ) = 1) or not (T(τ) = 0).
The entries of T are computed using the following recursive relation:

– For a tuple τ = (t, Pij , 1 ≤ i, j ≤ n) with t = 1, the algorithm sets T(τ) = 1
if there exists k ∈ [n] such that, for every i ∈ [n], ṽi(g1) = Pikδ and Pij = 0
for every j �= k. Otherwise, the algorithm sets T(τ) = 0.

– For a tuple τ = (t, Pij , 1 ≤ i, j ≤ n) with t > 1, the algorithm sets T(τ) = 1
if there exists k ∈ [n] and tuple τ ′ = (t − 1, P ′

ij , 1 ≤ i, j ≤ n) such that, for
every i ∈ [n], Pik = P ′

ik + ṽi(gt)/δ and Pij = P ′
ij for every j �= k. Otherwise,

the algorithm sets T(τ) = 0.

Essentially, each non-zero entry of T (i.e., T(τ) = 1) indicates a non-
empty class Aτ of (possibly partial, when the first argument of τ is an integer
smaller than m) allocations. To compute a representative complete allocation
Aτ ∈ Aτ among those implied by the non-zero entry corresponding to the tuple
(m,Pm

ij , 1 ≤ i, j ≤ n), the algorithm does the following for t = m downto 2. Let
k ∈ [n] be such that T(τ ′) = 1 for a tuple τ ′ = (t − 1, P t−1

ij , 1 ≤ i, j ≤ n) with
P t−1

ik = P t
ik − ṽi(gt)/δ and P t−1

ij = P t
ij for every pair of agents i and j �= k.

The algorithm assigns item gt to agent k and proceeds to considering the next
item. The first item g1 is assigned to agent k such that T(τ ′) = 1 for a tuple
τ ′ = (1, P 1

ij , 1 ≤ i, j ≤ n) with P 1
ik = ṽi(g1)/δ and P 1

ij = 0 for every pair of
agents i and j �= k.

Next, the algorithm redistributes the bundles of each allocation Aτ that
represents a non-empty class Aτ so that an allocation A′

τ of maximum social
welfare (among those that distribute the particular bundles to the agents) is
obtained (in terms of the original valuations). It solves LP(A′

τ , v) (for the original
valuations) to compute the minimum amount of subsidies that make A′

τ envy-
free. Among all allocations A′

τ , it outputs the one with the minimum amount
of subsidies. The approximation guarantee of the algorithm is given by the next
lemma.

Lemma 1. Given an instance of SMEF that has an allocation that is envy-
freeable with an amount of χ as total subsidies, the algorithm computes an allo-
cation that is envy-freeable with total subsidies of at most χ + 4mn2δ.

Proof. Let τ be a full tuple such that Aτ contains an allocation O = (O1, ..., On)
that is envy-freeable with subsidies of χ. Since Aτ is non-empty, it is T(τ) = 1.
Let A be the allocation computed by the algorithm as representative of Aτ

and A′ the allocation that is obtained after redistributing the bundles of A.
By Theorem 1, A′ is clearly envy-freeable; we will show that the corresponding
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subsidies are at most χ + 4mn2δ. Clearly, the output of the algorithm will be
envy-freeable with at most this amount of subsidies.

Let σ ∈ L(n) be the permutation over [n] such that A′
j = Aσ(j) for every

j ∈ [n]. Let G and H be the envy graphs EG(O, v) and EG(A′, v), respectively.
We now present the most crucial component of our analysis. It exploits the

fact that both O and A belong to class Aτ and uses the third statement of
Theorem 1.

Lemma 2. For every pair of agents i and j, there exists a (not necessarily
simple) path p(i, j) from node σ(i) to node σ(j) such that

wgtH(i, j) ≤
∑

e∈p(i,j)

wgtG(e) + 4mδ.

Proof. In the proof, we will use the following simple lemma.

Lemma 3. For every agent i and every two bundles B1 and B2 such that
ṽi(B1) = ṽi(B2), it holds that

−|B2|δ ≤ vi(B1) − vi(B2) ≤ |B1|δ. (2)

Proof. First observe that, by the definition of ṽ and its relation to v, for every
agent i and item g ∈ M , it holds that ṽi(g) ≤ vi(g) ≤ ṽi(g)+ δ. Hence, for every
bundle B,

ṽi(B) ≤ vi(B) ≤ ṽi(B) + |B|δ.
The lemma follows by applying this inequality for bundles B1 and B2 and using
the fact that ṽi(B1) = ṽi(B2). �

We use the notation σ−1 to refer to the inverse permutation of σ, i.e.,
σ−1(k) = j when k = σ(j). Consider the set C that contains edge (k, σ−1(k)) for
every agent k such that k �= σ−1(k). C is either empty (if k = σ−1(k) for every
agent k) or consists of disjoint directed cycles. For an agent i, if σ−1(i) �= i, we
denote by Ci the set of nodes that are spanned by the cycle of C that includes
node i. Otherwise, we define Ci to contain only node i.

Define the (not necessarily simple) path p(i, j) from node σ(i) to node σ(j)
to contain edge (k, σ(k)) for every node k in the set Ci besides node i and, if
i �= σ(j), the directed edge (i, σ(j)).

For every pair of agents i and j, we have that the weight of the directed edge
(i, j) in H is

wgtH(i, j) ≤ wgtH(i, j) −
∑

k∈Ci

wgtH(k, σ−1(k))

= vi(A′
j) − vi(A′

i) −
∑

k∈Ci

(
vk(A′

σ−1(k)) − vk(A′
k)

)

= vi(Aσ(j)) − vi(Aσ(i)) −
∑

k∈Ci

(
vk(Ak) − vk(Aσ(k))

)
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≤ vi(Oσ(j)) − vi(Oσ(i)) −
∑

k∈Ci

(
vk(Ok) − vk(Oσ(k))

)

+

(

|Aσ(j)| + |Oσ(i)| +
∑

k∈Ci

|Ok| +
∑

k∈Ci

|Aσ(k)|
)

δ

≤ vi(Oσ(j)) − vi(Oσ(i)) −
∑

k∈Ci

(
vk(Ok) − vk(Oσ(k))

)
+ 4mδ

= vi(Oσ(j)) − vi(Oi) +
∑

k∈Ci\{i}

(
vk(Oσ(k)) − vk(Ok)

)
+ 4mδ

= wgtG(i, σ(j)) +
∑

k∈Ci\{i}
wgtG(k, σ(k)) + 4mδ

=
∑

e∈p(i,j)

wgtG(e) + 4mδ.

The first inequality follows since Ci consists of node i only (when i = σ(i))
or the edges (k, σ−1(k)) for k ∈ Ci form a directed cycle of non-positive total
weight in H. The second inequality follows by applying Lemma 3 (recall that
both allocations A and O belong to the class Aτ and, hence, ṽ�(Aq) = ṽ�(Oq)
for every pair of agents 	 and q). The third inequality follows since the bundles
Aσ(k) (respectively, Ok) for k ∈ Ci are disjoint. The equalities are obvious or
follow by the definition of the weights. �

Now, let π′ and π be the solutions of LP(A′, v) and LP(O, v), respectively.
Hence, χ = Sub(O, v) =

∑n
i=1 πi. We will use Lemma 2 to argue that

π′
i ≤ πσ(i) + 4mnδ. (3)

This will yield total subsidies of

Sub(A′, v) =
n∑

i=1

π′
i ≤

n∑

i=1

(
πσ(i) + 4mnδ

)
= χ + 4mn2δ,

completing the proof.
Recall from Theorem 1 that the payment π′

� (respectively, π�) is equal to
the maximum path weight over all simple paths that originate from node 	 in
graph H (respectively, graph G). Let Q� be the corresponding simple path that is
destined for some node s (and originates from node 	), i.e., π′

� =
∑

e∈Q�
wgtH(e).

We construct the (not necessarily simple) path P� from node σ(	) to node σ(s)
of G that consists of path p(i, j) for every directed edge (i, j) in the path Q�.
Using Lemma 2, we get

π′
� =

∑

e∈Q�

wgtH(e) ≤
∑

e∈Q�

⎛

⎝
∑

e′∈p(e)

wgtG(e′) + 4mδ

⎞

⎠ (4)

≤
∑

e∈Q�

∑

e′∈p(e)

wgtG(e′) + 4mnδ =
∑

e∈P�

wgtG(e) + 4mnδ.
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The second inequality follows since path Q� is simple (and, hence, contains at
most n − 1 edges). Now, create the simple path P ′

� from node σ(	) to node σ(s)
by removing the cycles in P�. Since graph G does not have any directed cycles
of positive total weight (by Theorem 1), we have wgtG(P�) ≤ wgtG(P ′

�). Now,
(4) yields

π′
� ≤

∑

e∈P ′
�

wgtG(e) + 4mnδ,

which implies (3) since P ′
� is a simple path that originates from node σ(	). �

The running time of the algorithm depends on the number of table entries,
the number of steps required for computing each table entry using the recursive
relation, the number of steps required to compute a representative allocation for
a non-empty allocation class, the redistribution time, and the time required to
solve the linear programs.

The dimensions of the table T are m for the first one that enumerates over
all items, and at most 1+	max v/δ
 = 1+ 4mn2

ε for each of the other dimensions.

Overall, the size of the table is O
((

m
ε

)n2+1
)
. The computation of each table

entry using the recursive relation needs the values in n2 table entries that have
been previously computed. In a representative allocation, the agent to which each
of the m items is allocated requires time n2 as well, i.e., time O(m) in total. The
redistribution of the bundles can be implemented using a matching computation
in a complete edge-weighted bipartite graph that has a node for each agent and
for each bundle and the weight of an edge indicates the valuation of an agent for
a bundle. As n is constant, this takes constant time. Also, the linear programs
have constant size. In general, since n is a constant, it is ignored in the O notation
unless it appears in the exponent. The above discussion is summarized in the
next statement.

Theorem 2. Let ε > 0 be the accuracy parameter used by the algorithm. Given
an instance of SMEF consisting of a constant number n of agents with valua-
tions v over a set M of m items that has an envy-freeable allocation using an
amount χ of subsidies, the algorithm runs in time O

(
(m/ε)n2+2

)
and computes

an allocation that is envy-freeable using a total subsidy of at most χ + εmax v.

4 Hardness of Approximating SMEF

In this section, we show that approximation guarantees like the one in the state-
ment of Theorem 2 are not possible when the number of agents is part of the
input.

Theorem 3. Approximating SMEF within an additive term of 3 · 10−4sum v is
NP-hard.
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We prove Theorem 3 by presenting a reduction from Maximum 3-Dimensional
Matching (MAX-3DM). An instance of MAX-3DM consists of three disjoint sets
of elements A = {a1, a2, ..., an}, B = {b1, b2, ..., bn}, and C = {c1, c2, ..., cn}, each
of size n, and a set T of m triplets of the form (ai, bj , ck) with ai ∈ A, bj ∈ B,
and ck ∈ C. The objective is to compute a disjoint subset of T (or, simply, a 3D
matching) of maximum size. The problem is well-known to be NP-hard not only
to solve exactly [16] but also to approximate [19].

We will use the inapproximability result of Chleb́ık and Chleb́ıková [14],
which applies to bounded instances of MAX-3DM in which each element appears
in exactly two triplets (i.e., m = 2n); we will refer to this restriction of MAX-
3DM as MAX-3DM-2. In particular, Chleb́ık and Chleb́ıková [14] show that it is
NP-hard to distinguish between instances of MAX-3DM-2 with a 3D matching
of size at least K and instances of MAX-3DM-2 in which any 3D matching has
size at most K − 0.01n.3

4.1 The Reduction

We present our reduction and full proof for the case χ > 0. We omit the case
χ = 0, which requires a minor modification of the reduction. On input an instance
of MAX-3DM-2, our reduction constructs in polynomial time an instance of
SMEF, in which the minimum amount of subsidies that can make some allocation
envy-free is exactly χ(1 + max{K − L, 0}), where L is the size of the maximum
3D matching in the MAX-3DM-2 instance. Using the result of [14], we will
get that it is NP-hard to distinguish between SMEF instances in which the
minimum amount of subsidies is at most χ and instances in which it is at least
χ(1+0.01n). Hence, SMEF will be proved to be NP-hard to approximate within
0.01nχ. Our construction will be such that sum v < 30nχ. In this way, we will
obtain a hardness of approximating SMEF within an additive term of (at least)
3 · 10−4sum v, as desired.

Our reduction is as follows. Given an instance of MAX-3DM-2 consisting of
sets of elements A, B, and C, each of size n, and a set of 2n triplets T , the
instance of SMEF has

– three agents 1, 2, and 3,
– three agents J1(t), J2(t), and J3(t) for every triplet t ∈ T ,
– an item Ai for every element ai ∈ A,
– an item Bi for every element bi ∈ B,
– an item Γi for every element ci ∈ C,
– three items Δt, Zt, and Θt for every triplet t ∈ T , and
– an additional item Λ.

The agents J1(t), J2(t), and J3(t) that correspond to the triplet t = (ai, bj , ck)
have valuations 0 for all items besides the items Ai, Bj , Γk, Δt, Zt, and Θt.

3 This statement is actually weaker than the one proved in [14]. However, it suffices
for our purpose to prove hardness of approximation. Note that we have made no
particular attempt to optimize our inapproximability threshold.
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Agents 1, 2 have valuation 0 for all items besides item Λ and agent 3 has valuation
zero for all items besides item Λ and items Θt for t ∈ T . Their remaining
valuations are as follows:

Ai Bj Γk Δt Zt Θt Λ
1 0 0 0 0 0 0 χ
2 0 0 0 0 0 0 χK
3 0 0 0 0 0 χ χK

J1(t) χ χ χ 3χ 3χ 0 0
J2(t) 0 0 0 χ χ χ 0
J3(t) 0 0 0 0 χ 0 0

Recall that each element belongs to exactly two triplets. Hence, two agents have
positive value for item Ai (similarly for items Bj and Γk): agents J1(t1) and
J1(t2) such that the triplets t1 and t2 contain element ai (similarly for elements
bj and ck). It is easy to see that either two or three agents have positive value
for each item. For every triplet t, the agents J1(t), J2(t), and J3(t) have total
valuation 9χ, 3χ, and χ, respectively. Taking into account that K ≤ n, we obtain
that sum v < 30nχ.

4.2 Lower Bound on Subsidies

Consider an instance of SMEF constructed by our reduction and let X be an
envy-freeable allocation in it. We will first lower-bound the minimum amount
of subsidies that make X envy-free. First observe that X cannot give item Λ to
agent 1; in that case, exchanging the bundles of agents 1 and 2 would result to
an increase of the social welfare and, hence, X would not be envy-freeable. If X
gives item Λ to agent 3, agents 1 and 2 would need subsidies of at least χ and
χK, respectively, so that they do not envy agent 3. Hence, Sub(A, v) ≥ χ(1+K)
in this case.

In the following, we will lower-bound the minimum total subsidies that make
X envy-free assuming that item Λ is given to agent 2. Let θ be the number of
items Θt for t ∈ [2n] agent 3 gets. Then, agent 3 should be given a subsidy of
at least χ max{K − θ, 0} so that she does not envy agent 2. Agent 1 needs a
subsidy of χ max{K − θ, 1} so that she does not envy agents 1 and 2.

For a triplet t = (ai, bj , ck) in the original instance of MAX-3DM-2, we call
it full if all items Ai, Bj , and Γk (which correspond to the elements of the
triplet) have been allocated to the agents J1(t), J2(t), or J3(t). Otherwise, we
call it partial. We call t supported if item Θt has been allocated to agent J2(t);
otherwise, we call t unsupported.

In the next four lemmas, we lower-bound the total amount of subsidies the
agents J1(t), J2(t), and J3(t) of a triplet t need, depending on the type of t.

Lemma 4. The agents J1(t), J2(t), and J3(t) of a full and supported triplet t
need subsidies of at least χ max{K − θ − 2, 0}.
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Proof. Consider a full and supported triplet t. If agent J2(t) has value at most
2χ (i.e., getting Θt and at most one of the items Δt and Zt), then she needs a
subsidy of at least χ max{K − θ − 2, 0} so that she does not envy agent 3. If
agent J2(t) has value 3χ by getting both items Δt and Zt in addition to Θt, she
needs a subsidy of at least χ max{K −θ−3, 0}, while then agents J1(t) and J3(t)
need subsidies of at least 3χ+χ max{K − θ −3, 0} and χ+χ max{K − θ −3, 0},
respectively, so that they do not envy agent J2(t). In both cases, the total amount
of subsidies of the agents J1(t), J2(t), and J3(t) is at least χ max{K − θ − 2, 0}.

�
Lemma 5. The agents J1(t), J2(t), and J3(t) of a full and unsupported triplet
t need subsidies of at least χ max{K − θ − 1, 0}.
Proof. Consider a full and unsupported triplet t. If agent J2(t) has value at most
χ (i.e., getting at most one of the items Δt and Zt), then she needs a subsidy of
at least χ max{K − θ − 1, 0} so that she does not envy agent 3. If agent J2(t)
has value 2χ by getting both items Δt and Zt, she needs a subsidy of at least
χ max{K − θ − 2, 0}, while then agents J1(t) and J3(t) need subsidies of at least
3χ+χ max{K −θ −2, 0} and χ+χ max{K −θ −2, 0}, respectively, so that they
do not envy agent J2(t). In both cases, the total amount of subsidies of agents
J1(t), J2(t), and J3(t) is at least χ max{K − θ − 1, 0}. �
Lemma 6. The agents J1(t), J2(t), and J3(t) of a partial and supported triplet
t need subsidies of at least χ max{K − θ − 1, 0}.
Proof. Let t be a partial and supported triplet. If agent J2(t) does not get items
Δt and Zt, then she gets only a value of χ from item Θt and needs a subsidy of
at least χ max{K − θ − 1, 0} so that she does not envy agent 3.

If agent J2(t) gets item Δt but not item Zt, she needs a subsidy of χ max{K−
θ − 2, 0} so that she does not envy agent 3. Then, if agent J1(t) does not get
item Zt, her value is at most 2χ (from at most two of the items Ai, Bj , and
Γk) and needs a subsidy of χ + χ max{K − θ − 2, 0} so that she does not envy
agent J2(t). If agent J3(t) does not get item Zt, she needs a subsidy of at least
χ + χ max{K − θ − 2, 0} so that she does not envy agent J2(t).

If agent J2(t) gets item Zt but not Δt, she needs a subsidy of χ max{K −
θ − 2, 0} so that she does not envy agent 3 and agent J3(t) needs a subsidy of
at least χ + χ max{K − θ − 2, 0} so that she does not envy agent J2(t).

Finally, if agent J2(t) gets items Δt and Zt, her value is 3χ and needs a
subsidy of at least χ max{K − θ − 3, 0} so that she does not envy agent 3. Then,
each of agents J1(t) and J3(t) need a subsidy of at least χ+χ max{K − θ −3, 0}
so that they do not envy agent J2(t).

In all cases, the total amount of subsidies the agents J1(t), J2(t), and J3(t)
need is at least χ max{K − θ − 1, 0}. �
Lemma 7. The agents J1(t), J2(t), and J3(t) of a partial and unsupported
triplet t need subsidies of at least χ max{K − θ, 1}.
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Proof. Let t be a partial and unsupported triplet. If agent J2(t) gets both items
Δt and Zt, she needs a subsidy of χ max{K − θ − 2, 0} so that she does not
envy agent 3, while agents J1(t) and J3(t) would then need subsidies of at least
4χ+χ max{K −θ −2, 0} and χ+χ max{K −θ −2, 0}, respectively, so that they
do not envy agent J2(t).

If agent J2(t) gets only item Δt, she needs a subsidy of χ max{K − θ − 1, 0}
so that she does not envy agent 3. Then, the agent who does not get item Zt

among J1(t) and J3(t) would need a subsidy of at least χ + χ max{K − θ − 1, 0}
so that she does not envy agent J2(t).

If agent J2(t) gets only item Zt, she needs a subsidy of χ max{K − θ − 1, 0}
so that she does not envy agent 3, while agent J3(t) needs a subsidy of at least
χ + χ max{K − θ − 1, 0} so that she does not envy agent J2(t).

Finally, if agent J2(t) gets no item (among Δt and Zt), she needs a subsidy
of at least χ so that she does not envy the agents who get items Δt and Zt and
a subsidy of at least χ max{K − θ, 0} so that she does not envy agent 3.

In all cases, the total amount of subsidies the agents J1(t), J2(t), and J3(t)
need is at least χ max{K − θ, 1}. �

We now denote by L1, L2, P1, and P2, the number of full and supported, full
and unsupported, partial and supported, and partial and unsupported triplets
defined by X, respectively. Notice that the full triplets form a 3D matching.
Denoting by L the maximum size over all 3D matchings of the MAX-3DM-2
instance, we have L ≥ L1 + L2. Using Lemmas 4–7, and our observations for
agents 1 and 3, we have that the total amount of subsidies X needs to become
envy-free is

Sub(X, v) ≥ χ (L1 max{K − θ − 2, 0} + L2 max{K − θ − 1, 0} (5)
+P1 max{K − θ − 1, 0} + P2 max{K − θ, 1}
+ max{K − θ, 0} + max{K − θ, 1}) .

We will distinguish between two cases for K − θ. If K − θ ≥ 2, (5) yields

Sub(X, v) ≥ χ (L2 + P1 + 2P2 + 4) = χ (2n − L1 + P2 + 4)
≥ χ(1 + max{K − L, 0}).

Now, notice that θ, the number of items Θt agent 3 gets in X is upper-bounded
by the number of unsupported triplets, i.e., θ ≤ L2 +P2. Thus, if K − θ ≤ 1, (5)
yields

Sub(X, v) ≥ χ (P2 + K − θ + 1) ≥ χ (K − L2 + 1) ≥ χ(1 + max{K − L, 0}).

We conclude that the minimum amount of subsidies necessary to make X
envy-free is at least χ(1 + max{K − L, 0}).

4.3 Upper Bound on Minimum Subsidies

We now present our upper bound on the minimum amount of subsidies for
envy-freeness. Given a 3D matching M of maximum size L in the MAX-3DM-2
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instance, we will construct an allocation for the SMEF instance and will show
that it is envy-freeable with an amount of subsidies equal to χ(1 + max{K −
L, 0}).

For defining the allocation, we partition T \M in two disjoint sets of triplets
T1 and T2 of size 2n − max{K,L} and max{K − L, 0}, respectively.

– For every triplet t = (ai, bj , ck) ∈ M, agent J1(t) gets items Ai, Bj , and Γk,
agent J2(t) gets item Δt and agent J3(t) gets item Zt.

– For every triplet t = (ai, bj , ck) �∈ M, let F (t) be the set of items that
correspond to the elements of t that have not been included in triplets of M.
Note that, due to the maximality of M, F (t) has zero, one, or two elements
among Ai, Bj , and Γk. For every triplet t = (ai, bj , ck) ∈ T1, agent J1(t) gets
item Δt, agent J2(t) gets the items in F (t), if any, and item Θt, and agent
J3(t) gets item Zt.

– For every triplet t = (ai, bj , ck) ∈ T2, agent J1(t) gets item Δt, agent J2(t)
gets the items in F (t), if any, and agent J3(t) gets item Zt.

– Agent 3 gets item Θt for every triplet t ∈ M ∪ T2.
– Agent 2 gets item Λ.
– Agent 1 gets no items.

We claim that the allocation above is envy-freeable by assigning a subsidy of χ
to agent 1 and a subsidy of χ to agent J2(t) for every triplet t ∈ T2 (if any).

Indeed, agent 1 has positive value only for item Λ, which is given to agent 2,
who gets no subsidy. Also, no other agent gets a subsidy more than the subsidy
χ that is given to agent 1. Hence, agent 1 is not envious. Agent 2 gets item Λ,
which is the only item she values positively and much higher than the subsidy
given to any other agent. Hence, agent 2 is not envious either. Agent 3 gets
exactly max{K,L} items of total value χ max{K,L}. She does not envy agent
2 who gets item Λ (which agent 3 values for χK) since no subsidy is given to
agent 2. Clearly, the value of agent 3 is much higher than the subsidy given to
any other agent.

Consider a triplet t = (ai, bj , ck) ∈ M. Agent J1(t) has a value of 3χ for the
items Ai, Bj , and Γk she gets. The remaining items for which she has positive
valuation of 3χ have been given to agents J2(t) and J3(t), respectively. Since
these agents do not get subsidies, agent J1(t) is not envious of them. Clearly,
agent J1(t) is not envious of any other agent since she has zero value for all other
items and no agent gets a subsidy more than χ. Agent J3(t) gets item Zt, the
only item for which she has positive value and does not envy any other agent
since no one gets a subsidy higher than χ. Agent J2(t) gets a value of χ from
item Δt and does not envy agent J3(t), who gets item Zt, or agent 3, who gets
item Θt, as these agents receive no subsidy. Clearly, agent J2(t) envies no other
agent.

Now consider a triplet t = (ai, bj , ck) �∈ M. Agent J1(t) has a value of 3χ for
the item Δt she gets. The remaining items for which she has positive valuation
have been allocated as follows. Item Zt has been given to agent J3(t); clearly,
agent J1(t) is not envious of J3(t) since the latter gets no subsidies. The items
in F (t) have been given to agent J2(t). Again, agent J1(t) is not envious of J2(t)
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since F (t) contains at most two items (which agent J1(t) values for χ each) and
agent J2(t) gets a subsidy of zero (if t ∈ T1) or χ (if i ∈ T2). Clearly, J1(t) does
not envy any other agent. Agent J3(t) gets item Zt, the only item for which she
has positive value and does not envy any other agent since no one gets a subsidy
higher than χ. Agent J2(t) gets a value of χ, either from item Θt (if t ∈ T1) or
as subsidy (if t ∈ T2), and does not envy agent J1(t) who gets item Δt or agent
3 who gets item Θt only when t ∈ T2; recall that these two agents never get
subsidies. Again, agent J2(t) envies no other agent.

4.4 Adapting the Proof for the Case χ = 0

The modification required in our reduction so that it covers the case χ = 0 as
well is to remove agent 1 and replace χ with 1 in the definition of valuations.
In particular, the agents J1(t), J2(t), and J3(t) that correspond to the triplet
t = (ai, bj , ck) have valuations 0 for all items besides the items Ai, Bj , Γk, Δt,
Zt, and Θt. Agent 2 has valuation 0 for all items besides item Λ and agent 3 has
valuation zero for all items besides item Λ and items Θt for t ∈ T . The remaining
valuations are now as follows:

Ai Bj Γk Δt Zt Θt Λ
2 0 0 0 0 0 0 K
3 0 0 0 0 0 1 K

J1(t) 1 1 1 3 3 0 0
J2(t) 0 0 0 1 1 1 0
J3(t) 0 0 0 0 1 0 0

The same reasoning as in our proof for the case χ �= 0 gives a minimum
amount of subsidies for the SMEF instance of exactly max{K − L, 0}, where
L is the maximum 3D matching size in the MAX-3DM-2 instance. In this way,
we get that SMEF is NP-hard to approximate within 0.01n (i.e., it is NP-hard
to distinguish between envy-free instances and instances that need subsidies
of 0.01n) and the construction satisfies sum v < 30n. This yields the desired
inapproximability result in the statement of Theorem 3 for the case χ = 0 as
well.

5 Concluding Remarks

We have initiated the study of the optimization problem SMEF. The challenging
open problem that deserves investigation is to close the gap between the trivial
approximation guarantee of n − 1 in Sect. 2 and our negative result for super-
constant numbers of agents in Sect. 4. Unfortunately, more sophisticated existing
algorithms, such as the recent one by Brustle et al. [7], do not lead to better
approximations.

We remark that max v could be used alternatively to sum in the definition of
the approximation guarantees of SMEF. Actually, the guarantee for our dynamic
programming algorithm is stated in terms of max v. We can express the rest of
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our results using max v as well. First, the trivial algorithm presented at the
end of Sect. 2 uses an amount of χ + (n − 1)max v as subsidies. Second, an
adaptation of the current proof of the inapproximability result can easily give
that approximating SMEF within an additive term of c · max v for a constant
c is NP-hard. The important observation is that max v < nχ (or max v < n
when χ = 0) in our construction. Then, distinguishing between SMEF instances
in which the minimum amount is at most χ and at least χ(1 + 0.01n) (or at
least 0.01n when χ = 0) requires to distinguish between SMEF instances in
which the minimum amount is at most χ and at least χ + 0.01max v. So, the
inapproximability constant is a bit higher in this case. The main advantage of
adopting sum is that it makes the problem of computing the tight approximation
factor more challenging.

Interestingly, an advantage of the trivial algorithm is that the particular pay-
ments incentivize the agents to report their valuations truthfully. What is the
best possible approximation guarantee that can be obtained for SMEF by truth-
ful algorithms? Unfortunately, a simple application of Myerson’s characterization
in single-item settings [24] indicates that no approximation guarantee better than
n − 1 is possible. Indeed, consider instances with a single item. By the charac-
terization of envy-freeable allocations by Halpern and Shah [18] (i.e., the second
statement in Theorem 1), we know that the agent with the highest valuation
should get the item. Then, Myerson’s characterization for truthful mechanisms
in single parameters environments and our requirement for non-negative pay-
ments give us the specific form payments should have so that truthful reporting
is a dominant strategy for all agents when this algorithm is used: if the agent i
who gets the item receives payment of p ≥ 0, agent t should get a payment of
exactly p + vi − vt, where vi and vt are the payments of agents i and t. Now,
consider specifically the instance in which one agent has value 1 for the item,
and all other agents have value 0. Truthfulness requires (at least) a unit of sub-
sidy to each agent that does not get the item (i.e., total subsidies of n − 1 while
sum = 1), even though there is clearly an allocation that is envy-free without
any payments. This yields the claimed lower bound of n−1 in the approximation
guarantee.
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