
CHAPTER 5

Dodgson’s Rule and Young’s
Rule

Ioannis Caragiannis, Edith Hemaspaandra, and
Lane A. Hemaspaandra

5.1 Overview

Dodgson’s and Young’s election systems, dating from 1876 and 1977, are beautiful,
historically resonant election systems. Surprisingly, both of these systems turn out to
have highly intractable winner-determination problems: The winner problems of these
systems are complete for parallel access to NP. This chapter discusses both the com-
plexity of these winner-determination problems and approaches—through heuristic
algorithms, fixed-parameter algorithms, and approximation algorithms—to circum-
venting that complexity.

5.2 Introduction, Election-System Definitions, and
Results Overview

Charles Lutwidge Dodgson, better known under his pen name of Lewis Carroll, was
a mathematics tutor at Oxford. In his 1876 pamphlet, “A Method of Taking Votes on
More than Two Issues” (Dodgson, 1876), printed by the Clarendon Press, Oxford and
headed “not yet published,” he defined an election system that is compellingly beautiful
in many ways, and yet that also turned out to be so subtle and complex, also in many
ways, that it has in recent decades been much studied by computational social choice
researchers.

Dodgson’s election system is very simply defined. An election will consist of a finite
number of voters, each voting by casting a linear order over (the same) finite set of
candidates. (Recall that linear orders are inherently antisymmetric, i.e., are “tie-free.”)
A Condorcet winner (respectively, weak Condorcet winner) is a candidate a who, for
each other candidate b, is preferred to b by strictly more than half (respectively, by at
least half) of the voters. It is natural to want election systems to be Condorcet-consistent,
that is, to have the property that if there is a Condorcet winner, he or she is the one and
only winner under the election system. Dodgson’s system is Condorcet-consistent. In
fact, the system is defined based on each candidate’s closeness to being a Condorcet

103

104 5 dodgson’s rule and young’s rule

winner. Dodgson’s view was that whichever candidate (or candidates if there is a tie
for closest) was “closest” to being Condorcet winners should be the winner(s), and his
system is a realization of that view.

In particular, the Dodgson score of a candidate, a, is the smallest number of
sequential exchanges of adjacent candidates in preference orders such that after those
exchanges a is a Condorcet winner. All candidates having the smallest Dodgson score
among the candidates are the winner(s) in Dodgson’s system.

For example, suppose our election is over the candidates a, b, and c, and there are
two voters, one voting a � b � c and the other also voting a � b � c. (Throughout
this paper, when writing out a particular vote we use the strict linear order � associated
with the voter’s linear order �; as noted in Chapter 2, these are related by: x � y ⇐⇒
(x � y ∧ ¬(y � x).) The Dodgson score of c is four, since to make c a Condorcet
winner we have to adjacently exchange c with b in the first voter, forming the vote
a � c � b and then, after that, we have to adjacently exchange c with a in the first
vote, and then we need to do the same two exchanges in the second vote. The Dodgson
scores of a and b are zero and two. In this example, there is one Dodgson winner,
namely, a. However, if the votes had instead been a � b � c and b � a � c, then the
Dodgson scores of a, b, and c would be one, one, and four, and a and b would be the
Dodgson winners.

The system just described is what Dodgson himself defined. (This chapter is designed
to be self-contained. However, we mention that Chapter 2 provides to all interested
readers an excellent treatment of the basics of voting theory, including such notions as
Dodgson’s election system, Condorcet winners, and so on.) However, some researchers
have studied the following variant, sometimes still calling it Dodgson elections and not
mentioning that it differs from Dodgson’s notion. The election system WeakDodgson
is defined exactly as above, except in terms of WeakDodgson scores, which are the
number of sequential exchanges of adjacent candidates needed to make the given
candidate become a weak Condorcet winner. The WeakDodgson scores of a, b, and c

in the first example above are zero, one, and two, and in the second example above are
zero, zero, and two. The WeakDodgson winners are the same as the Dodgson winners
in the above examples. However, it is easy to construct examples where Dodgson and
WeakDodgson produce different winner sets.

Dodgson’s system is measuring each candidate’s adjacent-exchange distance from
being a Condorcet winner, and is electing the candidate(s) with the shortest such
distance. Among the many beauties of Dodgson’s system is that it is based on finding
the minimum edit distance between the initial votes and a certain region in the space
of all votes, under a certain basis of operations, in particular sequential adjacent-
exchanges. The notion of edit distance is essential in a large number of fields, and is
central in many area of algorithmics. Dodgson’s use of this notion is a natural, lovely,
and quite early example. The coverage of distance rationalizability in Chapter 8 will
make clear that a distance-based framework can be used to capture and study a wide
range of important voting systems.

H. Peyton Young (1977) defined his election system, now known as Young elections,
in terms of a different type of distance. The Young score of a candidate, a, is defined to be
the smallest number n such that there is a set of n voters such that a is a weak Condorcet
winner when those n voters are removed from the election. All candidates having the

5 .2 introduction, election-system definitions 105

lowest Young score in a given election are its Young winner(s). The analogous system
based on the number of deletions needed to make a given candidate a Condorcet winner
will be called StrongYoung, and has also been studied, sometimes in papers still calling
it Young elections and not mentioning that it differs from Young’s notion. If a given
candidate cannot be made a Condorcet winner by any number of deletions, we will
say that its StrongYoung score is infinite. So, for example, in a zero-voter election, all
candidates tie under the Young system, each with Young score zero, and all candidates
tie under the StrongYoung system, each with StrongYoung score infinity. StrongYoung
is clearly a Condorcet-consistent system.

Let us look at an election example and find its Young scores and its Young winner(s).
Consider the election in which the candidates are a, b, c, and d, and the following six
votes are cast:

1. a � b � c � d,
2. a � b � c � d,
3. a � b � d � c,
4. c � a � d � b,
5. d � b � a � c, and
6. d � b � c � a.

Candidate a—who actually is already a Condorcet winner—is certainly a weak Con-
dorcet winner, and so has Young score zero. Candidate b is losing to a four to two
among the six voters, and ties or beats each of c and d. Due to b’s four to two loss
against a, clearly the Young score of b is at least two, since deleting one vote closes
the amount by which b trails a by at most one. If one deletes the votes numbered 1 and
2 above, b will tie with a two to two, but—horrors!—now loses to d one to three. So
the fact that deleting 1 and 2 removes b’s weakness with regard to a does not suffice
to establish that the Young score of b is at most two. However, happily, it is easy to
see that deleting the votes numbered 1 and 4 above indeed makes b become a weak
Condorcet winner, and so b’s Young score is at most two. Thus b’s Young score is
exactly two. It is also easy to see that d’s Young score is exactly two, and the reader
may wish to verify that as practice. c is a more interesting case than d is. Initially, c

ties d three to three, loses to b five to one, and loses to a four to two. Due to the five
to one loss to b, clearly c’s Young score is at least four. However, c also trails a, and it
is possible that removing some four votes that catch c up to b might not catch c up to
a, or might even leave c losing to d. This observation, and the twist we ran into above
related to computing b’s Young score, are related to why computing Young scores
turns out to be, as further mentioned later in this chapter, computationally difficult:
The number of vote collections to be considered for potential deletion can be com-
binatorially explosive, and deleting a given vote can affect a given candidate in some
helpful and some harmful ways at the same time. However, in this particular example,
deleting votes 1, 2, 3, and 5 leaves c a weak Condorcet winner, and thus c’s Young
score is at most four. So c’s Young score in fact is exactly four. Overall, candidate a is
the one and only Young winner in this example—which of course follows immediately
from the fact, mentioned near the start of this paragraph, that a is a Condorcet winner
here.

106 5 dodgson’s rule and young’s rule

As noted earlier, Dodgson in effect means StrongDodgson, but Young in effect means
WeakYoung. This is simply due to the history of how these notions were defined by their
creators. Throughout this chapter, we will use the terms Dodgson and StrongYoung
for the versions based on Condorcet winners and will use the terms WeakDodgson and
Young for the versions based on weak Condorcet winners.

Dodgson’s and Young’s election systems have followed paths of whipsaw twists
and turns in terms of their computational properties, and this chapter is mostly
focused on providing an overview of those paths, with a particular stress on Dodgson’s
system.

Briefly summarized, in the late 1800s Dodgson defined his system, and it was
natural, compelling, and lovely—so much so that it was included in McLean and
Urken’s (1995) collection of the key papers in the multi-thousand-year history of
social choice. However, as we will discuss in Section 5.3, in the late 1900s Bartholdi
et al. (1989b) proved that the winner problem of this lovely system was NP-hard,
and so under current standard assumptions in computer science is computationally
intractable. Hemaspaandra et al. (1997a) then obtained a tight classification of the
problem’s computational complexity, and it became the first truly real-world-natural
problem to be “complete” for the class of problems solvable through parallel access to
NP—a very high level of complexity. That result was good news for complexity theory,
as it populated that complexity class with a problem that clearly was highly nonartificial,
since the election system had been defined in the 1800s, long before complexity theory
even existed. However, the late 1900s results were grim news indeed regarding the
computational difficulty of Dodgson elections.

Yet hardness results often are not the last word on a problem. Rather, they can
serve as an invitation to researchers to find ways to sidestep the problem’s hardness.
That is exactly what happened in the case of Dodgson elections, in work done in the
2000s. It is known that, unless the polynomial hierarchy collapses, no heuristic algo-
rithm for any NP-hard problem can have a subexponential error rate (see Hemaspaan-
dra and Williams, 2012). So heuristic algorithms for the Dodgson election problem
are limited in what they can hope to achieve. Nonetheless, it has been shown that
there are quite good heuristic algorithms for the class of instances where the num-
ber of candidates is superquadratic in the number of voters. Section 5.4 presents
such heuristic results. Section 5.5 discusses another approach to bypassing hardness
results—parameterized algorithms. The results covered there show, for example, that
the Dodgson winner problem is fixed-parameter tractable with respect to the number
of candidates. That is, there is a uniform algorithm whose running time is the prod-
uct of a polynomial in the instance’s size and some (admittedly very large) function
of the number of candidates. Finally, Section 5.6 studies a third approach to deal-
ing with hardness, namely, approximation algorithms. That section presents results
about approximating the Dodgson score and using approximation algorithms them-
selves as voting rules that achieve some social-choice properties that Dodgson’s system
lacks.

Young elections have been less extensively studied than Dodgson elections. But as
this chapter will discuss, Young’s system walked a twisty results road quite similar to
the one Dodgson’s system walked. Like Dodgson, Young is a natural election system;
like Dodgson, long after Young’s system was defined it was proven that even telling

5 .3 winner-problem complexity 107

who won is computationally intractable; and like Dodgson, for Young elections one
can obtain fixed-parameter tractability results.

5.3 Winner-Problem Complexity

This section discusses the complexity of the winner problems of Dodgson,
WeakDodgson, StrongYoung, and Young elections.

5.3.1 Basics and Background

To understand the complexity of the winner problems of Dodgson, WeakDodgson,
StrongYoung, and Young elections, we will need to define and discuss an important
level of the polynomial hierarchy that is far less well-known than the polynomial
hierarchy’s famous lowest levels, P and NP. This less well-known complexity class is
the �

p
2 level of the polynomial hierarchy, which captures the power of (polynomial-

time) parallel access to NP.
Let us now define this class. We will assume that the reader is familiar with the

definition of NP and has at least a general idea of what a Turing machine is. A set
is in coNP exactly if its complement is in NP. We will not define the polynomial
hierarchy in this chapter. However, we mention that it is widely believed that the
polynomial hierarchy does not collapse. Thus any assumption that would imply that
the polynomial hierarchy collapses is, in the eyes of modern computer science, viewed
as highly unlikely to be true.

A Turing machine operating with parallel access to a set A is a standard Turing
machine enhanced with an extra tape, called the query tape. On an arbitrary input x,
the machine is allowed, after some computation, to write on the tape a sequence of
binary strings (say y1, . . . , yk), each separated by the special character #. The machine
then can, at most once on each input, enter a special state, known as the query state,
qask query . After it does, the machine is by the definition of this model immediately (i.e.,
in one time step) placed into the state qquery answered , and the query tape’s content is
replaced with a k-bit vector containing the answers to the k questions “y1 ∈ A?”, . . . ,
“yk ∈ A?” After some additional computation the machine may halt and accept or halt
and reject. Here, k need not be a constant; on different inputs, k might differ, and there
might be no global bound on k.

For any string x, let |x| denote the length of x, for example, |01111| = 5. A set B

is said to belong to �
p
2 exactly if there exists a Turing machine, M , and an NP set

A, such that (i) there exists a polynomial p such that, for each input x, M operating
with parallel access to A, on input x, halts and accepts or halts and rejects within time
p(|x|), and (ii) the set of all strings accepted by M operating with parallel access to A

is B.
Informally put, �

p
2 is capturing the power of what one can do with a machine that

on input x can, in time polynomial in |x|, generate some list of queries to an NP set,
and then, in light of the input and a magically delivered answer for each of those
queries as to whether the queried string is in the NP set, can with at most polynomially
long additional computation determine whether x is in the given set. Simply put, this

108 5 dodgson’s rule and young’s rule

class is capturing the power of (polynomial-time) parallel access to NP. Although, as
mentioned above, there is no a priori limit on the number of queries that can be asked
in the (one) question string, the fact that the machine has only polynomial time to write
the string ensures that there are at most polynomially many queries in the question
string.

�
p
2 is sometimes alternatively denoted PNP

‖ or PNP
t t ; the ‖ denotes parallel access and

the t t stands for truth-table, which is the type of reduction on which the above definition
of �

p
2 is based. For those familiar with the polynomial hierarchy and its classes, the

location of �
p
2 within the polynomial hierarchy is �

p
1 ∪ �

p
1 ⊆ �

p
2 ⊆ �

p
2 ⊆ �

p
2 ∩ �

p
2 ,

or to state that without the jargon, NP ∪ coNP ⊆ PNP
‖ ⊆ PNP ⊆ NPNP ∩ coNPNP. It is

well-known that unless NP is a strict subset of �
p
2 , the polynomial hierarchy collapses

to NP.
Let us give a brief example showing membership in �

p
2 . Consider the set of all

(undirected, nonempty) graphs in which the largest clique in the graph has an odd
number of nodes, that is, the problem odd-max-clique. This problem is clearly in �

p
2 .

Why? The standard clique problem is the set of all (G,), with G a graph and a
natural number, such that there is a clique in G of size at least . So our machine to
show that odd-max-clique is in �

p
2 will, given a graph G having n nodes, write on the

query tape the string (G, 1)#(G, 2)# · · · #(G, n) and enter the state qask query , and then
from the state qquery answered will look at the answer vector, which will be, for some j ,
j ones followed by n − j zeros, and from the number of ones will easily be able to tell
whether the largest clique is odd or even. For example, if the answer vector is 111000,
we know the graph has cliques of size 1, 2, and 3, but not 4, 5, or 6, so the largest clique
is of size 3, which is odd, so the machine in this case will enter an accepting state and
halt.

Our oracle model allowed only a single question string, although that question
string itself could be encoding polynomially many different simultaneous queries to
the oracle. That is why this class is said to capture parallel access to NP. However, �p

2 is
also known to exactly capture the set of languages accepted if, in our above polynomial-
time model, one can query the oracle O(log n) times, except now with each question
string containing a single query rather than asking many queries combined. That is,
informally, polynomial-time unbounded parallel access to NP has the same power as
polynomial-time logarithmic-query sequential access to NP. Indeed, the class was first
studied in the sequential version (Papadimitriou and Zachos, 1983), and only later was
the connection to the parallel notion established (Hemachandra, 1989).

In complexity theory, reductions provide a tool to help classify complexity. We say
a set B polynomial-time many-one reduces to a set D if there is a polynomial-time
computable function f such that, for each x, x ∈ B if and only if f (x) ∈ D. Informally,
there is a simple to compute, membership-preserving mapping from B to D. It certainly
follows that if D is easy to compute, then so is B.

For any complexity class C, we say a set D is C-hard if for every set B ∈ C it
holds that B polynomial-time many-one reduces to D. Since NP ⊆ �

p
2 , every �

p
2 -hard

problem is NP-hard. For any complexity class C, we say a set D is C-complete exactly
if (a) D ∈ C and (b) D is C-hard. The complete sets for a class are in some sense the
quintessence of the class’s power. They are members of the class, yet are so powerful
that each other set in the class can be polynomial-time many-one reduced to them.

5 .3 winner-problem complexity 109

�
p
2 itself has an interesting, unusual history. It is natural to worry, when one throws

a party, whether anyone will come. In complexity theory, the analogous worry is that
one will define a complexity class that seems intuitively natural, and yet the class will
somehow not turn out to capture the complexity of important real-world problems.

The complexity of Dodgson elections helped �
p
2 avoid being a dull party. In partic-

ular, by the mid-1990s, it was clear that �
p
2 was important in complexity theory. For

example, Kadin (1989) had proven that if NP has a “sparse Turing-complete set” then
the polynomial hierarchy collapses to �

p
2 ; �

p
2 was known to have a large number of

different yet equivalent definitions (Wagner, 1990); and �
p
2 was known to be closely

connected to time-bounded Kolmogorov complexity theory (Hemachandra and Wech-
sung, 1991). Yet those were all results that would warm only the heart of a complexity
theorist. �p

2 was known to have complete problems (see Wagner, 1987). But they were
artificial or mathematical problems of a sort that might be interesting to theoretical
computer scientists or logicians, yet that did not have the natural appeal of problems
coming from compellingly important “real world” settings and challenges.

To this uneasily quiet party came the Dodgson winner problem, with party favors
and noisemakers. The Dodgson winner problem turned out to be complete for �

p
2 ,

and was unarguably natural, coming as it did from a question raised a hundred years
earlier. And the party was soon humming, as many other problems, including such
additional election-winner problems as StrongYoung elections and Kemeny elections,
were shown to also be �

p
2 -complete (Rothe et al., 2003; Hemaspaandra et al., 2005).

5.3.2 The Complexity of the Dodgson and Young Winner Problems

In 1989, Bartholdi et al. (1989b) proved that the Dodgson winner problem was NP-
hard and left as an open issue whether it was NP-complete. In 1997, Hemaspaandra
et al. (1997a) proved that the Dodgson winner problem was in fact �

p
2 -complete.

This implies that, unless NP = coNP, the problem is not NP-complete. Intuitively, the
problem is too hard to be NP-complete.

It is natural to wonder why one should even bother to exactly classify a problem
that is known to be NP-hard. After all, NP-hardness is already a powerful indicator of
hardness. There are a number of answers to this question. The nerdy, technical answer
that a complexity theorist might give is that improving a problem’s complexity from
NP-hardness to �

p
2 -completeness tells us more about how unlikely the problem is to

be solvable with certain other approaches to computation (see Hemaspaandra et al.,
1997b, for a discussion of this). However, the truly compelling answer harks back to
our earlier comment about complete sets capturing the core nature of their classes. By
proving a set complete for a class, we learn much about the fundamental nature of
the set—whether it is capturing, as NP-complete sets do, the power of polynomially
bounded existential quantification connected to polynomial-time predicates, or whether
it is capturing, as �

p
2 -complete sets do, the power of parallel access to NP.

Formally, the Dodgson winner problem is a set, namely, the set of all triples
(A, R, p)—where A is the set of candidates, R is the list of cast votes (each being
a linear order over A), and p ∈ A—such that p is a winner of the given election,
when conducted under Dodgson’s election system. The following theorem pinpoints
the complexity of the Dodgson winner problem.

110 5 dodgson’s rule and young’s rule

Theorem 5.1 (Hemaspaandra et al., 1997a). The Dodgson winner problem is �
p
2 -

complete.

We do not have the space to give a proof of the above theorem. However, it will be
important and interesting to sketch the philosophy behind and structure of the proof,
as they are at first quite counterintuitive.

What is counterintuitive is that one proves the Dodgson winner problem to be
�

p
2 -hard through doing extensive work to prove that many properties of the Dodgson

winner problem are computationally easy to handle. Those (three) easy properties
regard trapping the potential scores of the winner to two adjacent values within the
image of an NP-hardness reduction (we will refer back to this later as L1), creating in
polynomial time a “double exposure” that merges two elections in a way that preserves
key information from each (we will refer back to this later as L2), and providing (with
some twists) a polynomial-time function that given a list of elections and a candidate
of interest in each creates a single election such that the sum of the scores of each
election’s interesting candidate in its election is the score of a particular designated
candidate in the single election. For concreteness, the last of those can be formally
stated as the following “sum of the scores equals the score of the ‘sum’” claim.

Lemma 5.2 (Hemaspaandra et al., 1997a). There is a polynomial-time func-
tion, dodgsonsum, such that, for all k and for all (A1, R1, p1), . . . (Ak, Rk, pk)
that are election triples (i.e., pi ∈ Ai , and the Ri are each a collection of lin-
ear orders over the candidates in Ai), each having an odd number of voters,
dodgsonsum((A1, R1, p1), . . . , (Ak, Rk, pk)) is an election triple (A, R, p) having an
odd number of voters and it holds that the Dodgson score of p in the election (A, R)
is exactly the sum over all j of the Dodgson score of pj in election (Aj, Rj).

The natural question to ask is: Why on earth would one prove lots of things easy about
Dodgson elections in order to prove that the Dodgson winner problem is extremely
hard? The answer to this question is that, despite the “hardness” in its name, �

p
2 -

hardness is not just about hardness (and neither are other hardnesses, such as NP-
hardness). Let us explain why, using NP-hardness for our example. Suppose for each
string in {0, 1}∗ we independently flip an unbiased coin, and put the string in or out of
a set A based on the outcome. With probability one, the obtained set A is so extraordi-
narily hard as to not even be computable. Yet under standard beliefs about NP (namely,
that NP is not a subset of bounded probabilistic polynomial time), with probability
one the set A we obtained is not NP-hard (see Ambos-Spies, 1986). Intuitively, the
issue here is that NP-hardness is not just about hardness. To be NP-hard, a set indeed
must have enough power to be usable to handle all NP sets. But that power must be so
well-organized and accessible that polynomial-time many-one reductions can harness
that power. Our random set A is simply chaos, and so provides no such organized
power. Every time we prove something NP-hard, by a reduction, we are exploiting the
organization of the set being mapped to. With NP, we usually do not think much about
that. In contrast, �

p
2 -hardness proofs are so demanding, and the amount of structure

exploitation needed to establish �
p
2 -hardness is so great, that this issue comes out from

the shadows.

5 .3 winner-problem complexity 111

We need a lens to focus the structure provided by Lemma 5.2 and the two other
“in polynomial time we can do many things regarding Dodgson elections” claims that
we alluded to just before that result (though neither of those is stated formally in this
chapter), and to use that structure to establish a �

p
2 -hardness result for the Dodgson

winner problem. For �
p
2 -hardness proofs, the lens of choice is the following powerful

technical lemma proven in the 1980s by the great German complexity theorist Klaus
W. Wagner. χA denotes the characteristic function of A, that is, χA(y) = 1 if y ∈ A

and χA(y) = 0 if y �∈ A.

Lemma 5.3 (Wagner, 1987). Let A be any NP-complete set and let B be any set. Then
B is �

p
2 -hard if there is a polynomial-time function f such that, for all k � 1 and all

x1, . . . , x2k satisfying χA(x1) � · · · � χA(x2k), it holds that

‖{i | xi ∈ A}‖ ≡ 1 (mod 2) ⇐⇒ f (x1, . . . , x2k) ∈ B.

This can be used, for example, to show that odd-max-clique is �
p
2 -hard (Wagner,

1987). Thus in light of our earlier example odd-max-clique in fact is �
p
2 -complete.

Briefly put, the broad structure of the �
p
2 -hardness proof for the Dodgson winner

problem is as follows. The result we alluded to earlier as L1 basically seeks to show
that the Dodgson winner problem is NP-hard through a reduction that achieves a num-
ber of additional properties. The original Bartholdi et al. (1989b) reduction showing
NP-hardness for the Dodgson winner problem reduced from the exact cover by three-
sets problem. However, that reduction does not have the properties needed to work
in concert with Lemma 5.3. Nonetheless, L1 holds, because one can, by a reduction
from a different NP-complete problem, three-dimensional matching, obtain the desired
properties. Then using L1 and Lemma 5.2 together with Lemma 5.3, one can argue that
the problem of telling whether candidate p1’s Dodgson score in an election (A1, R1) is
less than or equal to candidate p2’s score in an election (A2, R2), with both ‖R1‖ and
‖R2‖ odd, is �

p
2 -hard. Finally, using that result and the result we referred to earlier

as L2 (a “merging” lemma), one can prove that Dodgson winner itself is �
p
2 -hard.

Thus rather extensive groundwork about the simplicity of many issues about Dodg-
son elections, used together with Wagner’s Lemma, is what establishes �

p
2 -hardness

here.
Completeness for a class requires not just hardness for the class but also membership

in the class. Yet we still have not argued that the Dodgson winner problem is in �
p
2 .

Happily, that is a very easy result to show. Given an election, a distinguished candidate
p, and a natural number k, it clearly is an NP problem—called DodgsonScore in the
literature—to determine whether the Dodgson score of p in that election is at most
k. The way we see that this is in NP is that one can simply seek to guess a sequence
of k sequential exchanges of adjacent candidates, making p a Condorcet winner. (In
fact, this DodgsonScore is even NP-complete, as was established in the seminal paper
of Bartholdi et al. (1989b).) Now, given an election instance, (A, R), and a candidate
p ∈ A, we wish to determine within �

p
2 whether p is a Dodgson winner. What we do

is that we ask, in parallel, to the NP problem DodgsonScore every reasonable score
question for every candidate. Note that even if a candidate p′ is at the bottom of every
vote, with (‖A‖ − 1)‖R‖ sequential exchanges of adjacent candidates it can be moved
to the top of every vote, at which point it easily is a Condorcet winner. So for each

112 5 dodgson’s rule and young’s rule

candidate p′ ∈ A, and each natural number i, 1 � i � (‖A‖ − 1)‖R‖, we ask whether
the Dodgson score of p′ is at most i. That is a single parallel round of ‖A‖(‖A‖ − 1)‖R‖
queries. From the answers, we immediately know the Dodgson score of each candidate,
and so we can easily tell whether p is a Dodgson winner. Since this scheme meets the
definition of �

p
2 , we have established that the Dodgson winner problem is in �

p
2 . In

light of the already discussed �
p
2 -hardness, we may conclude that the Dodgson winner

problem is �
p
2 -complete.

Is this �
p
2 -completeness result just a trick of the particular model of Dodgson

elections, or does it hold even for natural variants? Research has shown that �
p
2 -

completeness holds even for many natural variants of the Dodgson winner problem.
The WeakDodgson winner problem is �

p
2 -complete (Brandt et al., 2010a, 2010b),

asking whether p is the one and only Dodgson winner (i.e., is a so-called unique
winner) is �

p
2 -complete (Hemaspaandra et al., 2009), and asking whether p is the

one and only WeakDodgson winner is �
p
2 -complete (Brandt et al., 2010b). Even

comparing two Dodgson scores in the same election is �
p
2 -complete (Hemaspaandra

et al., 1997a).
Still, there are limits to how much one can vary the problem and remain hard. For

example, if one considers elections in which the electorate has so-called single-peaked
preferences (Black, 1948)—an extremely important notion in political science—the
complexity of the winner problem for Dodgson and WeakDodgson elections falls to
polynomial time (Brandt et al., 2010a).

Although we have so far been discussing the Dodgson winner problem, the key
results mentioned above also hold for the Young winner problem. In 2003, the com-
plexity of the StrongYoung winner problem was pinpointed by Rothe et al. (2003) as
being �

p
2 -complete. �p

2 -completeness also holds for the Young winner problem (Brandt
et al., 2010a, 2010b):

Theorem 5.4. The Young winner problem is �
p
2 -complete.

�
p
2 -completeness also holds for case of asking whether p is the one and only

StrongYoung winner (Hemaspaandra et al., 2009), and for the case of asking whether
p is the one and only Young winner (Brandt et al., 2010b).

Similarly to the Dodgson case, if one considers elections in which the electorate
has single-peaked preferences, the complexity of the winner problem for Young and
StrongYoung elections falls to polynomial time (Brandt et al., 2010a).

Dodgson and Young are not the only election systems whose winner problem turns
out to be hard. For example, the lovely election system known as Kemeny elec-
tions (Kemeny, 1959; Kemeny and Snell, 1960) (see Chapters 2 and 4 for more
on Kemeny elections) also has a �

p
2 -complete winner (and unique winner) prob-

lem (Hemaspaandra et al., 2005, 2009).
Although an understandable first reaction to a �

p
2 -hardness result might be despair

and resignation, it surely is better to be positive and make the best of the situation. For
example, we mentioned above that for a restricted-domain setting, called single-peaked
electorates, the complexity of the Dodgson winner problem vanishes. In the coming
sections, we will look at three other approaches to living with intractability results:
heuristic algorithms, parameterized algorithms, and approximation algorithms.

5 .4 heuristic algorithms 113

5.4 Heuristic Algorithms

Suppose we are faced with a problem for which getting an efficient deterministic
algorithm that is correct on all inputs seems unlikely, for example due to the problem
being NP-hard or �

p
2 -hard. A natural next step is to seek an algorithm that is correct a

very high portion of the time.
There are severe complexity-theoretic barriers to even that goal. As mentioned ear-

lier, it is known that, unless the polynomial hierarchy collapses, no NP-hard problem
(and thus no �

p
2 -hard problem) has (deterministic) heuristic algorithms whose asymp-

totic error rate is subexponential (see Hemaspaandra and Williams, 2012). Still, even a
heuristic algorithm whose asymptotic error rate is not subexponential can be valuable.
In fact, despite the above result, heuristic algorithms are a valuable tool when faced
with complex problems.

Even better than heuristic algorithms that often are correct would be heuristic
algorithms that often are self-knowingly correct. A heuristic algorithm for a total
function f is said to be self-knowingly correct if, on each input x, the function (i) outputs
a claim as to the value of f (x), and also outputs either “definitely” or “maybe,” and
(ii) whenever the function outputs (y, “definitely”) it holds that f (x) = y. When the
second output component is “maybe,” the first output component might, or might not,
equal f (x). Of course, the goal is to build self-knowingly correct algorithms that very
often have “definitely” as their second output component.

Since we will now often be speaking of drawing random elections, for the rest of
this section we assume that in m-candidate elections the candidate names are always
1, . . . , m, and so in drawing a random election all that is at issue will be the votes. So
in Theorem 5.5 below, the “election” will refer just to R, and both the function and the
GreedyWinner algorithm we will discuss in the next paragraph will take R and p as
their input.

Consider the function that on input (R, p)—where R is a list of votes (each a linear
order) that for some j are all over the candidates 1, 2, . . . , j and p ∈ {1, . . . , j}—
equals Yes if p is a Dodgson winner of that election and equals No otherwise, that
is, the function in effect computes the characteristic function of the Dodgson winner
problem (j is not fixed; it may differ on different inputs). It turns out that there is a fre-
quently self-knowingly correct polynomial-time heuristic algorithm, called Greedy-
Winner, for the function just described, and so, in effect, for the Dodgson winner
problem.

Theorem 5.5 (Homan and Hemaspaandra, 2009).

1. For each (election, candidate) pair it holds that if GreedyWinner outputs “definitely”
as its second output component, then its first output component correctly answers the
question, “Is the input candidate a Dodgson winner of the input election?”

2. For each m ∈ {1, 2, 3, . . .} and n ∈ {1, 2, 3, . . .}, the probability that an election E

selected uniformly at random from all elections having m candidates and n votes
(i.e., all (m!)n elections having m candidates and n votes have the same likelihood of
being selected) has the property that there exists at least one candidate p′ such that
GreedyWinner on input (E,p′) outputs “maybe” as its second output component is
less than 2(m2 − m)e

−n

8m2 .

114 5 dodgson’s rule and young’s rule

What this says is that the portion of m-candidate, n-voter elections that Greedy-
Winner is self-knowingly correct on is at least 1 − 2(m2 − m)e

−n

8m2 . For example, if
one looks at the asymptotics as m goes to infinity, and with n being some superquadratic
polynomial of m, for example, n = m2.00001, the error rate will go to zero exponentially
fast.

How does the GreedyWinner algorithm work? It is almost alarmingly simple. In
fact, the reason one can get such an explicit bound, rather than just being able to draw
plots from experiments as so many papers do, is in large part due to the algorithm’s
simplicity. The simplicity of the algorithm makes it possible, in this case, to well-
analyze its performance. That is why, in the GreedyScore algorithm below, we tie
our hands by making at most one exchange per vote; it suffices to get the desired result
and it simplifies the analysis.

GreedyWinner is built on top of a heuristic algorithm called GreedyScore,
which given an election and a candidate p′, seeks to, in a frequently self-knowingly
correct way, compute the Dodgson score of p′ in the election. What GreedyScore
does is simply this: It goes through the votes one at a time, and in each it looks at what
one candidate (if any), c, is immediately preferred (i.e., adjacently preferred) to p′ in
that vote, and if at that moment p′ is not yet strictly beating c in terms of how many
voters prefer one to the other, then GreedyScore exchanges p′ and c in that vote. If
at the end of this process, p′ is a Condorcet winner, then the algorithm outputs as its
first component the number of exchanges it made, and outputs as its second component
“definitely.” It does so because an obvious lower bound for the number of adjacent
exchanges needed to make p′ a Condorcet winner is the sum, over all candidates, of
how many voters must change from preferring c to p′ to instead preferring p′ to c. But
if we made p′ become a Condorcet winner only by exchanging it with things that were
initially upside-adjacent to it in the given vote, and we only did such exchanges if p′

was at the moment of exchange still behind the candidate it was being exchanged with
in their head-on-head contest, then our algorithm clearly uses no more exchanges than
that lower bound. And so our algorithm has truly found the Dodgson score of p′.

Intuitively, if the number of voters is sufficiently large relative to the number of
candidates, then it is highly likely that the above GreedyScore procedure will self-
knowingly succeed, that is, that we can make up all the deficits that p′ has simply by
exchanging it with rivals that are immediately adjacent to it. (After all, for any two
candidates c and d, it is easy to see that for 1/m of the possible vote choices c will
adjacently beat d within that vote. So the expected value of the number of votes in which
c will adjacently beat d is n/m.) The claim about frequent success can be made more
precise. In particular, if one fixes a candidate, say candidate 1, and draws uniformly at
random an m-candidate, n-voter election, the probability that GreedyScore’s second
component is “maybe” is less than 2(m − 1)e

−n

8m2 .
The GreedyWinner algorithm, on input (R, p), is simply to first run

GreedyScore on (R, p). If “maybe” is the second component, we ourselves out-
put “maybe” as our second component (and the first component does not matter).
Otherwise, we run the GreedyScore algorithm on (R, p′) for each candidate p′ �= p.
If each of those runs results in a score that is not less than what we computed for
p and each has a second component “definitely,” then we output (as to whether p is
a Dodgson winner) Yes (in fact, in this case, our algorithm self-knowingly correctly

5 .5 the parameterized lens 115

knows all the Dodgson scores and thus the complete set of Dodgson winners, and p is
one of them), with second component “definitely,” and otherwise if all second compo-
nents were “definitely” we output No (in this case, our algorithm now self-knowingly
correctly knows all the Dodgson scores and thus the complete set of Dodgson winners,
and p is not one of them), with second component “definitely,” and otherwise we output
second component “maybe” (and the first component does not matter). By probability
arguments (using the union theorem and a variant of Chernoff’s Theorem), we can for-
mally establish the claim made in the previous paragraph about GreedyScore, and
Theorem 5.5’s claim about the (in)frequency with which the self-knowingly correct
algorithm GreedyWinner outputs “maybe.”

This section has been speaking about Dodgson elections, and is based on the results
of Homan and Hemaspaandra (2009). Independent work of McCabe-Dansted et al.
(2008) studies essentially these issues for the case of WeakDodgson elections, and
using the same general approach obtains related results for that case; see the discussion
in Section 5.7.

5.5 The Parameterized Lens

Another approach that aims to cope with the inherent computational difficulty of
Dodgson’s and Young’s election systems is the design of fixed-parameter tractable
algorithms. The algorithmic challenge is the following: Is there an algorithm that
computes the Dodgson (or StrongYoung) score, whose running time is polynomial for
each fixed value of some important parameter of the problem, such as the number
of candidates? The question falls within the research agenda of the area known as
parameterized computational complexity (Downey and Fellows, 1999; Niedermeier,
2006). In general, that area’s goal is to identify whether the computational explosion
occurring in algorithms for NP-hard problems can be attributed solely to a certain
parameter of the problem. In applications where that parameter typically takes on only
small values, an algorithm with a running time that depends superpolynomially on only
that parameter might be hoped to be of practical use.

In our case, attractive parameters include the number, m, of candidates; the number,
n, of votes; and the number, k, of editing operations. For the Dodgson score, k denotes
the number of sequential exchanges of adjacent candidates in the votes, while for the
StrongYoung score, k denotes the number of votes deleted from the electorate. As a
simple, initial example, fixed-parameter tractability with respect to the parameter n is
clear in StrongYoung elections. Namely, one can conduct an exhaustive search over
the 2n different subsets of votes of the original profile and find (if one exists) a subset
of maximum size in which the desired candidate is the Condorcet winner. The number
of votes in this subset is the StrongYoung score of the preferred candidate p; if no
such subset exists, we will output ∞ as p’s StrongYoung score. So it is clear that the
StrongYoung score is fixed-parameter tractable with respect to the number of voters.

The Dodgson score and the StrongYoung score are fixed-parameter tractable for
the parameter m. This follows by a seminal result of Lenstra, Jr. (1983) that implies
that a problem is fixed-parameter tractable when it can be solved by an integer linear
program (ILP) in which the number of variables is upper-bounded by a function solely

116 5 dodgson’s rule and young’s rule

depending on the parameter. In particular, the seminal work of Bartholdi et al. (1989b)
handles Dodgson score by integer linear programming in a way that, as has often
been noted, tacitly establishes that the Dodgson score is fixed-parameter tractable with
respect to the number of candidates. ILPs can also be used to compute the Young and
the StrongYoung scores (see Young, 1977).

Furthermore, the Dodgson score has been proved to be fixed-parameter tractable
for the parameter k using dynamic programming, a standard tool for designing fixed-
parameter tractable algorithms. The key idea is to solve the problem by solving sub-
problems and combining overlapping solutions in order to compute the overall solution.
Dynamic programming avoids multiple computation of the same (sub)solution by stor-
ing it in a so-called dynamic-programming table and by accessing its value from the
table when needed.

We will now present the main ideas behind the way Betzler et al. (2010) have,
using dynamic programming, upper-bounded the parameterized complexity of check-
ing whether a candidate’s Dodgson score is at most a given value. Let us be given a
profile R with n votes (each specified as a linear order). We will now explore how
to efficiently compute the Dodgson score of a particular candidate in that profile, say
candidate a. We will denote by deficit(a, y, R) the deficit of candidate a with respect to
candidate y in profile R, that is, the (minimum) number of voters who have to change
their preference so that a beats y in their pairwise election. For example, if there are ten
voters and eight initially prefer y to a, so a loses to y eight to two, deficit(a, y, R) = 4
since with the right four changed votes a will squeak past y to win by six to four. P

will denote the set of candidates with respect to whom a has a positive deficit under
our profile R.

The idea is to build a table whose entries store information about how candidate a

can be pushed upward in the votes so that the deficit with respect to each candidate of P

is eventually decreased to 0. This requires storing intermediate information concerning
subsets of votes and partial decreases of the deficit in the table entries. The table for
this has n + 1 rows. Row i will contain information about the first i votes of the profile.
Each column of the table will be labeled by a vector d, and that vector will have an entry
for each candidate of P , with d(y) being an integer between 0 and deficit(a, y, R).
Entry T (i, d) of the table stores the minimum number of total upward pushes of a in
the first i votes of R that will suffice to decrease a’s initial deficit with respect to each
y ∈ P by at least d(y). (By a “push,” we mean a single exchange of adjacent candidates
in a preference order.) We place ∞ in the table’s T (i, d) entry if even pushing a to the
top of the first i votes is not enough to achieve the improvements demanded by the
vector d. Using d̃ to denote the vector with d̃(y) = deficit(a, y, R) for each candidate
y of P , it is clear that the entry T (n, d̃) will contain the Dodgson score.

The entries of the table are initialized to be T (0, d) = 0 if d = (0, 0, . . . , 0) and
T (0, d) = ∞ otherwise. The entries of the ith row (doing this first for the i = 1 row,
then the i = 2 row, and so on) can then be computed from the information stored in the
entries of the (i − 1)st row. Before presenting the formal definition of this computation,
let us give a small example. Let us focus on the first i votes of a profile R, for which we
want to compute the Dodgson score of candidate a. Furthermore, let us suppose that
the ith vote is d � b � c � a. Let us as our example seek to complete the least costly
way to promote a (i.e., the minimum number of exchanges) in the first i votes in such
a way (if any exists using pushes among just those votes) as to decrease the deficit of a

5 .5 the parameterized lens 117

Table 5.1. Profile and table example for computing the Dodgson score

(a) A profile.

1 2 3

d d c
b a d
c b a
a c b

(b) The dynamic-programming table, T , for computing the Dodgson score of
candidate a.

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

0 0 ∞ ∞ ∞ ∞ ∞
1 0 3 ∞ 1 3 ∞
2 0 1 4 1 2 4

3 0 1 2 1 2 3

Note: The table at the right is used to compute the Dodgson score of candidate a in the profile at the left. In both
the profile here and in Table 5.2, our tabular vote displays are arranged “top down,” for example, the leftmost
column of this profile indicates that the vote of the first voter is d � b � c � a. The “1 2 3” on the top row
of profiles, both here and in Table 5.2, indicates the voters, for example, the column headed by a “3” is about
voter 3. In the profile given in part (a), the deficits of a with respect to the candidates b, c, and d are 0, 1, and
2. So P = {c, d} and each column label refers to a’s deficits against c and d. The Dodgson score is the value,
3, that is computed for the entry T (3, (1, 2)), and it is achieved by pushing a one position upward in the second
vote and two positions upward in the third vote.

with respect to candidates c and d by one and two, respectively. This can be computed
by considering several different alternatives. One possibility is to use the least costly
way to decrease the deficit of a with respect to d in the first i − 1 votes by one and then
push a three positions upward in the ith vote to cut by an additional one the deficits
with respect to each of c and d. Another possibility is to use the least costly way to
decrease the deficit of a with respect to d by two in the first i − 1 votes and push a one
position upward in the ith vote, to shrink by one its deficit with respect to c. A third
possibility is to just use the least costly way to decrease the deficits by 1 and 2 in the
first i − 1 votes and leave the ith vote unaltered. The entry of the table corresponding to
the ith row and the column corresponding to the deficit decrease vector (1, 2) will store
the best among all the possibilities, including those mentioned above. This example
shows how an entry in row i can be relatively easily computed if we already have in
hand all the entries of row i − 1.

We are now ready to formally present the computation of entry T (i, d) based on the
entries in row i − 1. We use L

j
i (d) for the set of all vectors of decreases of deficits such

that if those decreases are satisfied over the first i − 1 votes of R then that will ensure
that the decreases specified in d are satisfied over the first i voters of R when candidate
a is pushed j positions upward in the ith vote. We use hi to denote the number of
candidates that voter i prefers to a. Then T (i, d) will be assigned the value stated by
the right-hand side below:

T (i, d) = min
0�j�hi

min
d ′∈L

j
i (d)

{T (i − 1, d ′) + j}.

A completed table for an example with three votes and four candidates is provided as
Table 5.1.

Using the approach sketched above and additional technical arguments, Betzler et al.
(2010) prove that testing whether the Dodgson score of a given candidate is at most k

is fixed-parameter tractable with respect to the parameter k.
It is important to mention that negative statements are also known. For example,

the Dodgson score problem is not fixed-parameter tractable with respect to param-
eter n (the number of votes) unless a complexity-theoretic statement known as the

118 5 dodgson’s rule and young’s rule

exponential-time hypothesis is false. This follows from the fact that the problem is
W[1]-hard (Fellows et al., 2010); W[1]-hardness is a central hardness notion in param-
eterized complexity. Young elections are also intractable with respect to the score
parameter, k. In particular, Betzler et al. (2010) prove that the StrongYoung score
problem is complete for the parameterized complexity class W[2].

5.6 Approximation Algorithms

We now focus specifically on Dodgson elections. Since Dodgson scores are hard
to compute exactly in general, an alternative approach is to view the Dodgson score
computation as a combinatorial optimization problem and exploit the rich and beautiful
theory of approximation algorithms (e.g., see Vazirani, 2001) in order to approximate
the Dodgson score. Briefly, the challenge is to obtain efficient (i.e., polynomial-time)
algorithms that return scores that are provably close to the Dodgson score. Furthermore,
such an approximation algorithm can be used as an alternative voting rule to Dodgson’s
rule under some circumstances. We discuss these issues below.

We consider algorithms that receive as input a candidate p from an m-candidate set
A and an n-voter election profile R over A, and return a score for p. We denote the
score returned by an algorithm Y when applied on such an input by scY (p, R). Also,
scD(p, R) will denote the Dodgson score. An algorithm Y is said to be a Dodgson
approximation if scY (x, R) � scD(x, R) for every candidate x ∈ A and every profile
R. Also, Y is said to have an approximation ratio of ρ � 1 if scY (x, R) � ρ · scD(x, R),
for every candidate x and every profile R over A.

Let us give a trivial example. Again, denote by deficit(x, y, R) the deficit of candidate
x with respect to candidate y in profile R, that is, the minimum number of voters
who have to change their preference so that x beats y in their pairwise election.
Consider the algorithm Y that, given a candidate x and a preference profile R, returns
a score of scY (x, R) = (m − 1) ·∑y∈A−{x} deficit(x, y, R). It is easy to show that this
algorithm is a Dodgson approximation and, furthermore, has approximation ratio at
most m − 1. In particular, it is possible to make x beat y in a pairwise election by
pushing x to the top of the preferences of deficit(x, y, R) voters, and clearly this
requires at most (m − 1) · deficit(x, y, R) sequential exchanges of adjacent candidates.
By summing over all y ∈ A − {x}, we obtain an upper bound of scY (x, R) on the
Dodgson score of x. On the other hand, given x ∈ A, for every y ∈ A − {x} we require
deficit(x, y, R) sequential adjacent-exchanges that push x above y in the preferences
of some voter in order for x to beat y in a pairwise election. Moreover, these sequential
adjacent-exchanges do not decrease the deficit with respect to any other candidate.
Therefore,

∑
y∈A−{x} deficit(x, y, R) � scD(x, R), and by multiplying by m − 1 we

get that scY (x, R) � (m − 1) · scD(x, R).

5.6.1 Achieving Logarithmic Approximation Ratios

In this section we present two Dodgson approximations with approximation ratios
logarithmic in the number of candidates. One is a combinatorial, greedy algorithm and
the other is an algorithm based on linear programming.

5 .6 approximation algorithms 119

Table 5.2. An example of the execution of Section 5.6.1’s greedy algorithm
(to compute the score of candidate p) on an election with 3 votes and 11
candidates

(a) Initial profile.

1 2 3

b b c
d1 d4 b
d2 d5 d6

c p d7

d3 c d8

p d1 p
d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5

(b) After step 1.

1 2 3

b b c
d1 d4 b
d2 d5 d6

p p d7

c c d8

d3 d1 p
d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5

(c) After step 2.

1 2 3

b p c
d1 b b
d2 d4 d6

p d5 d7

c c d8

d3 d1 p
d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5

(d) After step 3.

1 2 3

b p c
d1 b p
d2 d4 b
p d5 d6

c c d7

d3 d1 d8

d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5

We present the greedy algorithm first. This is a far more numerically driven greedy
algorithm than the ones mentioned in Section 5.4. Given a profile R and a special
candidate p ∈ A, those candidates a ∈ A − {p} with deficit(p, a, R) > 0 are said to
be alive. Candidates that are not alive, that is, those with deficit(p, a, R) = 0, are said
to be dead. In each step, the algorithm selects an optimally cost-effective push (i.e., a
least cost-ineffective push) of candidate p in the preference of some voter. The cost-
ineffectiveness of pushing p in the preference of a voter i is defined as the ratio between
the total number of positions p is moved upward in the preference of i compared with
the original profile R, and the number of currently live candidates relative to which
p gains as a result of this push. Note that the optimally cost-effective push (i.e., the
push with the lowest cost-ineffectiveness) at each step may not be unique; in this case,
tie-breaking has to be used in order to select one of the optimally cost-effective pushes.

After selecting an optimally cost-effective push, the algorithm decreases the deficit
of p by one for each live candidate a relative to which p gains by that push. Candidates
with respect to whom p has zero deficit become dead. The algorithm terminates when
no live candidates remain; its output is the total number of positions that candidate p

is pushed upward in the preferences of all voters.
An example of the execution of the algorithm is depicted in Table 5.2. In

the initial profile R of this example, candidate p has deficits deficit(p, b, R) = 2,
deficit(p, c, R) = 1, and deficit(p, di, R) = 0 for 1 � i � 8. So candidates b and c

are alive and candidates d1, . . . , d8 are dead. At the first step of the algorithm, there
are several different ways of pushing candidate p upward in order to gain relative to
one or both of the live candidates b and c. Among them, the one with the smallest
cost-ineffectiveness is to push p upward in the first vote. In this way, p moves two
positions upward and gains relative to the live candidate c for a cost-ineffectiveness of
2. Any other push of p in the initial profile has cost-ineffectiveness at least 2.5 since
p has to be pushed at least three positions upward in order to gain relative to one live
candidate and at least five positions upward in order to gain relative to both b and c.
After step 1, candidate c is dead. Then, in step 2, there are three ways to push candidate
p upward so that it gains relative to the live candidate b: either pushing it to the top of

120 5 dodgson’s rule and young’s rule

the first vote (this has cost-ineffectiveness 5 because p would have moved five posi-
tions in total compared to the initial first vote), or pushing it to the top of the second
vote (with cost-ineffectiveness 3), or pushing it four positions upward in the third vote
(with cost-ineffectiveness 4). The algorithm picks the second option. Then, in step 3,
the algorithm can either push candidate p to the top of the first vote or push it four
positions upward in the third vote. The former has a cost-ineffectiveness of 5 (recall
that cost-ineffectiveness is defined using the total number of positions p would move
compared to its position at the initial profile), while the latter has a cost-ineffectiveness
of 4 and is the push the algorithm picks. After step 3, all candidates are dead and the
algorithm terminates by returning the total number of positions p is pushed upward,
that is, 9.

Since the algorithm terminates when all candidates in A − {p} are dead, it is clear
that p becomes a Condorcet winner. The analysis of this greedy algorithm uses a linear
programming relaxation of the Dodgson score. Given the profile R with a set of voters
N and a set of m candidates A, denote by ri the rank of candidate p in the preference of
voter i. For every voter i ∈ N , denote by S i the subcollection that consists of the sets Si

k

for k = 1, . . . , ri − 1, where the set Si
k contains the live candidates that appear in posi-

tions ri − k to ri − 1 in the preference of voter i. We denote by S the (multiset) union
of the subcollections S i for i ∈ N . The problem of computing the Dodgson score of
candidate p on profile R is equivalent to selecting sets from S of minimum total size so
that at most one set is selected among the ones in S i for each voter i and each candidate
a ∈ A − {p} appears in at least deficit(p, a, R) selected sets. This can be expressed by
an integer linear program using a binary variable x(S) to denote whether the set S ∈ S
has been selected. We present the relaxation of this LP below, where the integrality
constraint for the variables has been relaxed to fractional values between 0 and 1:

Minimize
∑
i∈N

ri−1∑
k=1

k · x(Si
k)

subject to ∀a ∈ A − {p},
∑
i∈N

∑
S∈S i :a∈S

x(S) � deficit(p, a, R)

∀i ∈ N,
∑
S∈S i

x(S) � 1

∀S ∈ S, 0 � x(S) � 1.

Clearly, the Dodgson score of candidate p is an upper bound on the optimal objective
value of this LP.

The analysis uses a technique that is known as dual fitting and is similar to the
analysis of a greedy algorithm for the related constrained set multicover problem; see
Rajagopalan and Vazirani (1999) and Vazirani (2001, pp. 112–116). The idea is to
use the decisions taken by the algorithm and construct a feasible solution for the dual
(maximization) LP that has value at most the score returned by the algorithm divided
by Hm−1, where Hk = 1 + 1

2 + · · · + 1
k

denotes the kth harmonic number. By a simple
duality argument, this implies that the score returned by the algorithm is at most Hm−1

times the optimal objective value of the above LP and, consequently, at most Hm−1

times the Dodgson score of p.

5 .6 approximation algorithms 121

This suggests a different algorithm, in particular, an LP-based algorithm for approx-
imating the Dodgson score of a candidate p without explicitly providing a way of
pushing p upward in the preferences of some voters in a way making p become the
Condorcet winner. This algorithm just uses the LP relaxation above, computes its opti-
mal objective value, and returns this value multiplied by Hm−1 as a score for candidate
p. Then the approximation ratio of Hm−1 is obvious. The algorithm is also a Dodgson
approximation, since the score returned by this section’s greedy algorithm (which is
an upper bound for the Dodgson score of p) is not higher than the score returned by
the LP-based algorithm. The following statement summarizes our discussion.

Theorem 5.6 (Caragiannis et al., 2012b). This section’s greedy algorithm and LP-
based algorithm are Dodgson approximations, each with approximation ratio Hm−1.

5.6.2 Approximation Algorithms as Alternative Voting Rules?

A Dodgson approximation naturally induces a voting rule by electing the candidate(s)
with minimum score. Arguably, such a voting rule maintains some echo of the basic
philosophy behind Dodgson’s election system—more strongly so if it is a very good
approximation. But can it really be used as a voting rule? Trying to support a yes answer
to this question requires us to discuss an issue that we have not yet touched on. One
can argue that for a voting rule to be attractive, it should not only be easy to compute,
but also, ideally, should have certain properties that are considered desirable from a
social-choice point of view. Several such properties are not satisfied by Dodgson’s
rule, and this is the main reason why the rule has been criticized in the social-choice
literature, see, for example, Brandt (2009a) and the references therein.

We will see that Dodgson approximations, in return for their core disadvantage of
merely being an approximation to Dodgson’s rule, can satisfy desirable social-choice
properties, even while also providing polynomial-time algorithms. Before going on
to the three social-choice properties we will discuss, it is important to make clear
just how greatly Dodgson approximations can distort Dodgson’s rule, especially since
we commented above that Dodgson approximations in some way echo the flavor and
philosophy of Dodgson. The best Dodgson approximation we consider in this section
has an approximation ratio of 2. Consider a three-candidate election for which the
actual Dodgson scores of the candidates are 10, 11, and 12. A Dodgson approximation
having ratio 2 could give for these candidates, respectively, scores of 18, 16, and 14.
That is, the ordering of even an excellent Dodgson approximation can be a complete
inversion of the actual Dodgson ordering, and the worst Dodgson loser can be named
the unique winner. Clearly, the fact that even a 1.000001 approximation-ratio algorithm
can completely invert the entire ranking of the candidates is a troubling (but not far
from unavoidable—see the discussion at the end of Section 5.6.3) feature of using
approximations as voting rules.

In the following, when we say that a Dodgson approximation satisfies a social-choice
property we are referring to the voting rule induced by the algorithm. As a warm up,
observe that the voting rule induced by any Dodgson approximation (regardless of its
approximation ratio) is Condorcet-consistent, basically because anything times zero
is zero. So every Dodgson approximation, regardless of how bad its ratio is, must

122 5 dodgson’s rule and young’s rule

assign score of 0 to any Condorcet winner. But since Dodgson approximations never
underestimate scores, any candidate who is not a Condorcet winner will be assigned a
score of at least 1. So any Condorcet winner will be the one and only winner under any
Dodgson approximation. (Thank goodness Dodgson did not add a one in the definition
of his scores. That would destroy the above claim, which is deeply dependent on the
special nature of zero.) Of course, Dodgson’s system itself also is Condorcet-consistent.

We will now move on to discuss two other socially desirable properties: monotonicity
and homogeneity. We will see that these properties can be achieved by good Dodgson
approximations that run in polynomial time.

A voting rule is said to be monotonic if a winning candidate always remains winning
after it is pushed upward in the preferences of some of the voters. Dodgson’s rule is
known to be monotonic when there are at most three candidates and to be nonmonotonic
for each number of candidates greater than or equal to four (Fishburn, 1982, p. 132).
The intuition for the latter is that if a voter ranks x directly above y and y above z,
exchanging x and y may not help y if it already beats x, but may help z defeat x. The
two approximation algorithms presented in Section 5.6.1 are also nonmonotonic.

In contrast, the Dodgson approximation that returns (m − 1) ·∑y∈A−{x}
deficit(x, y, R) as the score of candidate x is monotonic as a voting rule. Indeed,
consider a preference profile R and a winning candidate x. Pushing x upward in
the preferences of some of the voters can neither increase its score (since its deficit
with respect to each other candidate does not increase) nor decrease the score of any
other candidate y ∈ A − {x} (since the deficit of y with respect to each candidate in
A − {x, y} remains unchanged and its deficit with respect to x does not decrease). So
we already have a monotonic Dodgson approximation with approximation ratio m − 1.
In the following we present much stronger results.

A natural “monotonization” of Dodgson’s voting rule yields a monotonic Dodg-
son approximation with approximation ratio of 2. The main idea is to define the
winning set of candidates for a given profile first and then assign the same score to
the candidates in the winning set and a higher score to the nonwinning candidates.
Roughly speaking, the winning set is defined so that it contains the Dodgson win-
ners for the given profile as well as the Dodgson winners of other profiles that are
necessary so that monotonicity is satisfied. More formally put, we say that an n-vote
election profile R′ is a y-improvement of profile R for some candidate y ∈ A if R′ is
obtained by starting from R and pushing y upward in the preferences of zero or more
voters.

Monotonization proceeds as follows. Let M denote the new voting rule we are
constructing. Denote by W (R) the set of winners of M (or the winning set) for profile R;
we will soon specify which candidates belong to W (R). Let � = maxy∈W (R) scD(y, R).
The voting rule M assigns a score of scM (y, R) = � to each candidate y ∈ W (R) and
a score of

scM (y, R) = max{� + 1, scD(y, R)}
to each candidate y /∈ W (R). All that remains is to define the winning set W (R). This
is done as follows: For each profile R∗ and each Dodgson winner y∗ of R∗, include y∗

in the winning set W (R′) of each profile R′ that is a y∗-improvement of R∗.

5 .6 approximation algorithms 123

Theorem 5.7 (Caragiannis et al., 2014b). M is a monotonic Dodgson approximation
with an approximation ratio of 2.

That M is monotonic and is a Dodgson approximation follow immediately from
the definitions of the winning set W (R) and the scores returned by M . The proof of
the approximation ratio bound is based on the following technical property: Pushing a
candidate y upward does not increase his or her Dodgson score and does not decrease
the Dodgson score of any other candidate by a factor larger than 2. The upper bound
provided by Theorem 5.7 is the best possible: No monotonic Dodgson approximation
can have an approximation ratio smaller than 2. This negative statement does not use any
complexity-theoretic assumptions and actually holds for exponential-time algorithms
as well. Actually, monotonization (in the rather naive approach described above) yields
an exponential-time algorithm.

So from the computational point of view, the above algorithm is not at all satisfactory.
Fortunately, a polynomial-time implementation of monotonization is possible, although
it involves an unavoidable (see Section 5.6.3) logarithmic loss in the approximation
ratio. There are two main obstacles that one has to overcome in order to implement
monotonization in polynomial time. First, as discussed in Section 5.3, computing
the Dodgson score and deciding whether a given candidate is a Dodgson winner
are computationally hard problems. This obstacle can be overcome using the score
returned by the polynomial-time LP-based Dodgson approximation that we presented
in Section 5.6.1 instead of using the Dodgson score itself. Even in this case, given
a profile R, we still need to be able to detect when a candidate y is the winner
according to the LP-based voting rule in some profile R′ of which the current one is
a y-improvement; if this is the case, y has to be included in the winning set W (R)
of profile R. This means that exponentially many profiles may have to be checked in
order to determine the winning set of the current profile. This obstacle is overcome
by Caragiannis et al. (2014b) using the notion of pessimistic estimators. These are
quantities defined in terms of the current profile only and are used to identify the
winning set in polynomial time. The next statement follows using these two high-level
ideas and additional technical arguments.

Theorem 5.8 (Caragiannis et al., 2014b). There exists a monotonic polynomial-time
Dodgson approximation with an approximation ratio of 2Hm−1.

Let us now turn to homogeneity. A voting rule is said to be homogeneous if, for
every integer k � 2, its outcome does not change when replacing each vote in the
preference profile with k identical copies of the vote. Fishburn (1977) observed that
Dodgson’s rule is not homogeneous. The intuition behind this is that if candidates x

and y are tied in a pairwise election the deficit of x with respect to y does not increase
by duplicating the profile, but if x strictly loses to y in a pairwise election then the
deficit scales with the number of copies.

Tideman (2006, pp. 199–201) presents the following simplified version of Dodgson’s
rule and proves that it is both homogeneous and monotonic. A Condorcet winner—if
one exists—in an election profile R is the sole winner according to Tideman’s rule.

124 5 dodgson’s rule and young’s rule

Otherwise, the rule assigns a score of

scTd(x, R) =
∑

y∈A−{x}
max {0, n − (2 · ‖{i ∈ N : x �i y}‖)}

to each candidate x, and the candidate(s) with the minimum score win. In the above
equation, the notation x �i y indicates that voter i prefers candidate x to candidate y.
Unfortunately, this score definition does not provide a Dodgson approximation. For
example, a candidate who is tied with some candidates and beats the rest has a score
of 0, yet 0 is lower than its Dodgson score. However, we in fact can give a different
scoring framework, Td′, that is a Dodgson approximation and that will elect exactly
the same winners as does Tideman’s simplified variant of Dodgson’s rule (and thus
will be monotonic and homogeneous). Td′ is defined as follows. If a candidate x is a
Condorcet winner, then it has score scTd′(x, R) = 0. Otherwise, Td′ “scales” the score
of x as follows:

scTd′(x, R) = m · scTd(x, R) + m(1 + log m).

Clearly, scTd′(x, R) can be computed in time polynomial in n and m.

Theorem 5.9 (Caragiannis et al., 2014b). Td ′ is a monotonic, homogeneous,
polynomial-time Dodgson approximation with an approximation ratio of O(m log m).

This approximation ratio is the best possible; a matching �(m log m) lower bound
holds for any algorithm that is homogeneous (Caragiannis et al., 2014b).

5.6.3 Hardness of Approximation

The best polynomial-time Dodgson approximations presented in Section 5.6.1
achieve—keeping in mind that Hm = ln n + �(1)—asymptotic approximation ratios
of O(log m). Under standard assumptions about NP, all polynomial-time Dodgson
approximations have approximation ratios that are �(log m), so the above-mentioned
approximations from the previous section have ratios that are optimal within a constant,
and in fact that constant can be kept down to 2. This claim is implicit in McCabe-Dansted
(2006). Later, Caragiannis et al. (2012b) explicitly obtained and stated the following
result, using a reduction from minimum set cover and well-known inapproximability
thresholds of Feige (1998) and Raz and Safra (1997).

Theorem 5.10 (Caragiannis et al., 2012b). There exists a constant β > 0 such that
it is NP-hard to approximate the Dodgson score of a given candidate in an election
with m candidates to within a factor of β ln m. Furthermore, for any ε > 0, there
is no polynomial-time

(
1
2 − ε

)
ln m-approximation for the Dodgson score of a given

candidate unless all problems in NP have algorithms running in time kO(log log k), where
k is the input size.

One might wonder why our particular notion of approximation has been used.
For example, a natural alternative approach would be to approximate some notion
of Dodgson ranking. Unfortunately, the following statement shows that this is an
impossible goal: Efficient approximation algorithms for Dodgson ranking are unlikely
to exist. For the purpose of the theorem below, a Dodgson ranking of an election

5 .7 bibliography and further reading 125

instance is an ordering of the candidates such that if i < j then the ith candidate in the
ordering has Dodgson score no greater than the j th candidate in the ordering.

Theorem 5.11 (Caragiannis et al., 2012b). Given a profile with m candidates and a
special candidate p, it is NP-hard to decide whether p is a Dodgson winner or has
rank at least m − 6

√
m in any Dodgson ranking.

5.7 Bibliography and Further Reading

Dodgson’s election system first appeared in Dodgson’s 1876 pamphlet (Dodgson,
1876). The computational complexity of the winner problem for Dodgson’s system
was shown NP-hard in the seminal paper of Bartholdi et al. (1989b), and was shown
�

p
2 -complete by Hemaspaandra et al. (1997a), see also Brandt et al. (2010b, p. 54).

Young’s election system was defined by him in 1977 (Young, 1977), and the complexity
of StrongYoung was pinpointed as being �

p
2 -complete by Rothe et al. (2003). See

Brandt (2009a) and the references therein for perspectives on why Dodgson proposed
his system and discussions of Dodgson’s system in terms of not satisfying certain
properties.

A number of other papers discuss the complexity of Dodgson and Young elections
or variants of those elections (Hemaspaandra et al., 2009; Brandt et al., 2010a, 2010b,
2015b). Readers interested in the complexity of these election systems may be interested
in the work showing that Kemeny’s election system (Kemeny, 1959; Kemeny and Snell,
1960)—see also Chapter 4—has a �

p
2 -complete winner problem (Hemaspaandra

et al., 2005) and a �
p
2 -complete unique winner problem (Hemaspaandra et al., 2009).

Complexity has also been broadly used as a tool with which to block attacks on
elections, such as manipulation (Bartholdi et al., 1989a), bribery (Faliszewski et al.,
2009b), and control (Bartholdi et al., 1992); see Chapters 6 and 7, and see also the
surveys by Faliszewski et al. (2009d, 2010).

�
p
2 , in its “logarithmic number of sequential queries to NP” definition, was first

studied in the early 1980s, by Papadimitriou and Zachos (1983). Hemachandra (1989)
showed that that definition yields the same class of sets as the unbounded-parallel
definition. �

p
2 -completeness can also apply to a range of problems quite different

from the election problems discussed in this chapter. For example, determining when
greedy algorithms well-approximate maximum independent sets is known to be �

p
2 -

complete (Hemaspaandra and Rothe, 1998). The most important tool for proving �
p
2 -

completeness is Lemma 5.3, due to Wagner (1987). Readers more generally interested
in complexity will find an excellent, accessible introduction in the textbook of Bovet
and Crescenzi (1993), and a more advanced and technique-based tour is provided by
Hemaspaandra and Ogihara (2002).

The material presented in our heuristics section (Section 5.4) is based on the work
of Homan and Hemaspaandra (2009) about using greedy heuristics for Dodgson elec-
tions. The independent work of McCabe-Dansted et al. (2008) studies the use of
greedy heuristics for WeakDodgson elections. The two papers are based on the same
central insight and obtain related results. However, there are some nontrivial differ-
ences between the two papers and their claims; these differences are discussed in detail
in Section 1 of Homan and Hemaspaandra (2009).

126 5 dodgson’s rule and young’s rule

Readers interested in the theory of parameterized computational complexity can
find a systematic treatment in textbooks such as the ones by Downey and Fellows
(1999) and Niedermeier (2006). Betzler et al. (2012) survey the progress in that field in
relation to voting and cover both winner determination and other problems, for several
voting rules.

The first approximation algorithms for voting rules (e.g., Kemeny) are implicit in
the papers of Ailon et al. (2005), Coppersmith et al. (2006), and Kenyon-Mathieu and
Schudy (2007). The material presented in Section 5.6 is from Caragiannis et al. (2012b,
2014b). Several interesting results have not been covered. For example, as an alterna-
tive to Tideman’s simplified Dodgson rule, the maximin voting rule yields a Dodgson
approximation with approximation ratio m2 (Faliszewski et al., 2011b). Caragiannis
et al. (2014b) discuss additional social-choice properties that are more difficult than
monotonicity to achieve by good Dodgson approximations. Finally, observe that Sec-
tion 5.6 does not contain any results related to Young’s rule. Unfortunately, such good
(polynomial-time) approximations are unlikely to exist. For example, unless P = NP,
the StrongYoung score is not approximable within any factor by polynomial-time
algorithms (Caragiannis et al., 2012b).

Acknowledgments

We are grateful to Markus Brill, Jörg Rothe, and the editors for helpful suggestions
on an earlier version. Any remaining errors are the sole responsibility of the authors.
We appreciatively acknowledge the support of grants NSF-CCF-0915792, NSF-CCF-
1101452, and NSF-CCF-1101479.

