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39.1 Introduction

- Wireless networks have received significant attention during the recent years. Especially, ad hoc wireless
tworks emerged owing to their potential applications in environmental monitoring, sensing, specialized
ad hoc distributed computations, emergency disaster relief, battlefield situations, and so forth [37, 41].
Unlike traditional wired networks or cellular wireless networks, no wired backbone infrastructure is
installed for ad hoc networks.

- Anode {or station) in these networks is equipped with an omnidirectional antenna that is respensible
or sending and receiving signals. Communication is established by assigning to each station a transmit-
ting power. In the most common power attenuation model [37], the signal power falls proportionally
1/#*, where r is the distance from the transmitter and o is a constant that depends on the wireless
gnvironment (typical values of o are between 1 and 6). So, a transmitter can send a signal to a receiver
P;/(d(s,1)}*) > y, where P; is the power of the transmitting signal, d(s, £) is the Euclidean distance
tween the transmitter and the receiver, and y is the receiver’s power threshold for signal detection,
which is usually normalized to 1.

39-1




392 Handbook of Parallel Computing: Models, Algorithms and Application Minimu
Communication from 2 node s to another node ¢ may be established either directly if the two nod
are close enough and s uses adequate transmitting power or by using intermediate nodes. Observe th
owing to the nonlinear power attenuation, relaying the signal between intermediate nodes may result
energy conservation.
A crucial issue in ad hoc networks is to support communication patterns that are typical in traditiona]-
networks. These include broadcasting, multicasting, and gossiping (all-to-all communication). Since
establishing a comrmunication pattern strongly depends on the use of energy, the important engineerin
question to be solved is to guarantee a desired communication pattern, minimizing the total energy
consumption. In this chapter, we consider a series of minimum energy communication problems in ad he¢’
wireless networks, which we formulate below. '
We model an ad hoc wireless network by a complete directed graph G = (V, E), where | V| = », witha
nonnegative edge cost function ¢ : E — R™. Given a nonnegative node weight assignment w : V — R¥.
the transmission graph G,, is the directed graph defined as follows. It has the same set of nodes as G and
directed edge (u, v) belongs to G,, if the weight assigned to node u is at least the cost of the edge (u, v) (i
w(u) = c(e, v)). Intuitively, the weight assignment corresponds to the energy levels at which each node
operates (i.e., transmits messages), while the cost between two nodes indicates the minimum energy level-
necessary to send messages from one node to the other. Usually, the edge cost function is symmetric (ie.
¢(u, v) = c(v, u)). An important special case, which usually reflects the real-world situation, hencefortly The te
called geometric case, is when nodes of G are points in a Euclidean space and the cost of an edge (1, v)’ the abbre
is defined as the Euclidean distance between u and v raised to a fixed power & ranging from 1 to 6 (ie;, times in t
c(u, vy = d{u, v)®). Asymmetric edge cost functions can be used to model medium abnormalities o_r"_ In the:
batteries with different energy levels [32]. the relatic
The problems we study in this work can be stated as follows. Given a complete directed graph G - definitior
(V,E), where |V| = n, with nonnegative edge costs ¢ : E — R, find a nonnegative node weigh (V,E) wi
assignment w : V — R such that the transmission graph G,, maintains a connectivity property and the sets Dy, ..
sum of weights is minimized. Such a property is defined by a requirement matrix R = (ry) € {0, 1}, where belonging
7ij is the number of directed paths required in the transmission graph from node v; to node v;. Depending . special ca
on the connectivity property for the transmission graph, we may define a variety of problems. : graph G
Several communication requirements are of interest. In minimum energy steiner subgraph (MESS); Decv-
the requirement matrix is symmetric. Alternatively, we may define the problem by a set of nodes D € V - all nodes
partitioned into p disjoint subsets Dy, D;, ..., Dy. The entries of the requirement matrix are now defined - (MSA). T
as 1y = Lif v, % € Dy for some k and r;; = 0, otherwise. The minimum energy subset strongly connected - graph G
subgraph (MESSCS) is the special case of MESS with p = 1 while the minimum energy strongly connect@e_d_ p disjoint
subgraph (MESCS) is the special case of MESSCS with D = V (i.e., the transmission graph is required - - nodes v;,
to span all nodes of V and to be strongly connected). Althaus et al. [1} and Cilinescu et al. [11] study Steiner T}
MESCS under the extra requirement that the transmission graph contains a bidirected subgraph (i.€, 2. We stu
directed graph in which the existence of a directed edge implies that its opposite directed edge also existsin - Symmetri
the graph), which maintains the connectivity requirements of MESCS. By adding this extra requirement - ing and b
to MESS and MESSCS, we obtain the bidirected MESS and bidirected MESSCS, respectively, that is, the all comm
requirement for the transmission graph in bidirected MESS (resp., bidirected MESSCS) is to contain asa works. Fc
subgraph a bidirected graph satisfying the connectivity requirements of MESS (resp., MESSCS). Minimuim similar ¢
energy communication problems with symmetric requirement matrices are usually referred to as group - logarithir
communication problems. veyed in !
In minimum energy multicast tree (MEMT), the connectivity property is defined by a root node % networks,
and a set of nodes D € V' — () such that r;; = 1if i = 0 and % € D and r;j = 0, otherwise. The Better
minimum energy broadcast tree (MEBT) is the special case of MEMT with D = V — [1;}. By inverting the The linea
connectivity requirements, we obtain the following two problems: the minimum energy inverse multicast Problems
tree (MEIMT) where the connectivity property is defined by a root node v and aset of nodes D € V— {w} of them i
such that rj = 1if v; € D and j = 0 and rj == 0, otherwise, and the minimum energy inverse broadcast We cor
tree (MEIBT), which is the special case of MEIMT with D = V — {1} on relatec
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. TABLE39.1 Abbreviations for Problems Used in This Chapter
? tWO nogdeg

Ybserve that Abbreviation Problem
1ay T i
¥ resultin MESS Minimum Energy Steiner Subgraph
. MESSCS Minimum Energy Subset Strongly Connected Subgraph
l'tradmgna] MESCS Minimum Energy Strongly Connected Subgraph
tion). Since - MEMT Miniraum Energy Multicast Tree
R engineer'mg MEBT Minimum Energy Broadcast Tree
otal energy MEIMT Minimum Energy Inverse Multicast Tree
as in ad hoc . MEIBT Mu_umum Energy Inverse Broadcast Tree
: SF Steiner Forest
- ST Steiner Tree
= n, witha DST Directed Steiner Tree
V= R MSA Minimum Spanning Arborescence
sas Ganda . NWSF Node-Weighted Steiner Forest
2 (16, 7) {ie. ) NWST Node-Weighted Steiner Tree
H L.y

1 each node
energy leve]

metric {ie,’
henceforth - The terminology used in this chapter is the same as the one in Reference 14. Table 39.1 summarizes
“edge (u,v) ;the abbreviations used for the problems studied, as well as for other combinatorial problems used several
1to6 (e, mes in the rest of this chapter.

In the following sections, we usually refer to classical combinatorial optimization problems and show

rmalities ar
: the relations of minimum energy communication problems to them. For completeness, we present their

graph G = finitions here. The steiner forest (SF) problem is defined as follows. Given an undirected graph G =
10de weight | »E) with an edge cost function ¢ : E — RY and a set of nodes D C V partitioned into p disjoint
erty and the.. sets D1,. .. , Dp, compute a subgraph H of G of minimum total edge cost such that any two nodes v, v;
0, 1}, where belonging to the same set Dy for some k are connected through a path in H., Steiner Tree (ST) is the
Dependi_hé gpecial case of SF with p = 1. An instance of the Directed Steiner Tree (DST) is defined by a directed
“ graph G = (V, E) with an edge cost function ¢ : E ~» Rt, aroot node v € V, and a set of terminals
ph (MESS), DC V — {1} Its objective is to compute a tree of minimum edge cost that is directed out of vy and spans

nodes of D. The special case of DST, with D = V — {1p} is called Minimum Spanning Arborescence
SA). The Node-Weighted Steiner Forest (NWSF) problem is defined as follows. Given an undirected
gtaph G = (V, E) with a node cost function ¢ : V — Rt and a set of nodes D € V partitioned into
disjoint sets Dy, ..., Dp, compute a subgraph H of G of minimum total node cost such that any two
odes v, v; belonging to the same set Dy, for some k are connected through a path in H, Node-Weighted
iner Tree (NWST) is the special case of NWSF with p=1L1

We study symmetric wireless networks in Section 39.2. In this setting, communication problems with
umetric connectivity requirements admit algorithms with constant approximation ratio. Multicast-
and broadcasting are inherently more difficult, admitting only logarithmic approximations. Almost
communication problems become even harder in the more general case of asymmetric wireless net-
Works. For example, MEMT is equivalent to DST in terms of hardness of approximation; this implies
ilar complexity for other communication problems as well. Surprisingly, broadcasting still admits
foarithmic approximation in asymmetric wireless networks. Results on the asymmetric model are sur-
ed in Section 39.3. Table 39.2 summarizes the known results in symmetric and asymmetric wireless
tworks,

erwise. The Better results exist for minimum energy commurnication problems in geometric wireless networks.
ihe linear case where nodes correspond to points on a line has been proved to be tractable while most
Problems become hard in higher dimensions, We discuss the related results in Section 39.4. A summary
Ofthem is presented in Table 39.3.

We conclude this chapter by presenting extensions of the network model and briefly discussing results
related communication problems in Section 39.5.
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TABLE 39.2 The Best Known Results for the Problems Discussed in This Chapter in
Symmetric and Asymmetric Wireless Networks

Approximability in Approximability in

asymmetric networks symmetric networks
Problem Lower bound Upper bound  Lowerbound  Upper bound
MESS Qlog?~* n) [14] 313/312 [21] 4[14]
MESSCS Q(log® ™ n) (14] 313/312 [21] 3.1[14]
MESCS Qlog n) [9] O(log 1) [9,14]  313/312 [21] 2 [30]
Bidirected MESS QUog|D))[1]  OQog{D]) [14]  96/95 [14] 4014]
Bidirected MESSCS ~ Q(log DD (1] O(log|D[) [14]  96/95 [14] 3.1[14]
Bidirected MESCS Q{log n} [1] Oflog n) [9,14]  313/312 [21] 5/3 1]
MEMT Qog> ) [9,14]  O(DIF) [32] Qlog#) [18] Otlog #) [14]
MEBT Q(log ) [18] Oflogn) [9,14] Qogm) [18] Oflogn) [6,13]
MEIMT log?~€m [14]  OQDIF)[14]  96/95[14] 1.55 (14]
MEIBT 1 1 1 1

TABLE 39.3 The Best Known Results under the Geometric Model

Linear networks Multidimensional networks
Complexity Complexity Approximability
MESCS P [30] NP-hard [21,30] 2 [30]
APX-hard (d = 3) [21]
MEMT P [13,19] NP-hard [18] 93(@=d=2)[1]
MEBT P[13,19] NP-hard [18] 6la=d=2)[2]
34 ... 1[23]

39.2 Symmetric Wireless Networks

In this section, we consider ad hoc wireless networks with symmetric edge cost functions in the underlying
subgraph. Almost all the minimum energy communication problems discussed in the previous section

are NP-hard in these networks. Observe that the geometric model is a special case of symmetric networks,
hence, the hardness results for the geometric case hold in this case as well. We postpone the discussion on
the particular hardness results until Section 39.4 where we discuss the results on geometric networks in
more detail. Here, we only state the stronger inapproximability bounds that hold owing to the generality
of symmetric wireless networks. On the positive side, we present approximation algorithms for each
problem. :

39.2.1 Symmetric Connectivity Requirements

We start by presenting a constant approximation algorithm for MESS; this is the most general problem
falling in this category. The algorithm constructs a solution to MESS by exploiting the solution of 2
corresponding instance for problem SE. The reduction presented in the following appeared in Reference 14
It can be thought of as a generalization of an algorithm in Reference 30, which uses minimum spanning
trees {(MST) to approximate instances of MESCS. .
Consider an instance Iygss of MESS that consists of a complete directed graph G = (V, E), a symmetric
edge cost function ¢ : E — R, and a set of terminals D € V partitioned into p disjoint subsits.
Dy, ..., Dp. Construct the instance Isr of SF that consists of the complete undirected graph H = (V»‘E )
the edge cost function ¢’ : ' — R, defined as ¢/ (1, v} = c(u, %) = ¢(¥, #) on the undirected edges of
E', and the set of terminals D together with its partition into the sets Dy, . . ., Dp. Consider solution for

Ise that consists of a subgraph F = (V, A) of H. Construct the weight assignment w to the nodes of V E

Minimun
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JGURE 39.1 Transforming a solution for I (a) to a selution for Aypss (b). In (a), numbers on the edges of the
olution denote their cost. In (b), numbers are associated with the nodes and denote their weight. In both cases, the
ashed closed lines indicate the subsets in which the set of terminals is partitioned.

y setting w(u) = 0, if there is no edge touching u in A and w() = MaXy(y yealc (4, )}, otherwise.
Anh example of this construction is presented in Figure 39.1. The following statement has been proved in
eference 14 (see also Reference 30).

emma 39.1 IfF is a p-approximate solution for Isy, then w is a 2p-approximaie solution for Iygss.

We can solve I using the 2-approximation algorithm of Goemans and Williamson [25] for SE. When
= 1 (i.e., when Ivgsg is actually an instance of MESSCS), the instance Igp is actually an instance of ST

e underlying hat can be approximated within 1+ 4 103 & 1.55, using an algorithm of Robins and Zelikovsky [38]. We
1ous section btﬂ.il'l t.he fO].].OWing resu]_t,

ic networks, " - ‘

iscussion on heorem 39.1 There exist a 4-, a 3.1-, and a 2-approximation algorithm for MESS, MESSCS, and MESCS
networks in - n symmetric wireless networks, respectively.

1¢ generality

ms for each - +Clearly, the transmission graph constructed by the above technique contains a bidirected subgraph

at maintains the connectivity requirements of MESS, and thus, the algorithms for MESS, MESSCS,
piand MESCS actually provide solutions to bidirected MESS, bidirected MESSCS, and bidirected MESCS,
espectively. The analysis presented in Reference 14 still holds; thus, the approximation guarantees of
heorem 39.1 hold for bidirected MESS and bidirected MESSCS in symmetric wireless networks as well.
Next, we present a simple approximation-preserving reduction from ST to bidirected MESSCS in
symmetric wireless networks.

‘Given an instance sy of ST that consists of an undirected graph G = (V, E) with edge cost function
E —~ RT, and a set of terminals D C V, construct the instance Invesses as follows. IpvEsscs
onsists of a complete directed graph H = (U, A) with symmetric edge cost function ¢ : A — R,

rral problem
olution of a
eference14:
{m $panning

a symumetric d a set of terminals D' € U. The set of nodes U contains a node A, for each node v of V and two
oint subsets. odes k) and h,y for each edge (u, v) of E. The edge cost function ¢’ is defined as ' Chys By =
= (V»E’ ’ ‘(h(u,v): hy) = Cf(h(v,u): hy) = c(hy, h(v,u)) = 0 and C'(h(u,v): h(V.u)) = C’(h(v,u): h(u,v)) = c(u, v), for
‘ted edgés of ch edge (1, v) of E, while all other directed edges of A have infinite cost. The construction is presented
| solution fol‘-_ Figure 39.2. The set of terminals is defined as D’ = {h, € U]u € D). It is not difficult to see that a
.nodes of V. -approximate solution for instance Iyppsscs reduces in polynomial time to a p-approximate solution
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i
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o

c(uv) Infinite cost

b

{a) 0 (b}

Infinite cost

FIGURE 39.2 An edge in fst (a) and the corresponding structure in Iyyesscs (b). In (b), all edges that are incident’
t0 ki) but are not incident to either kg, or hy, as well as all edges that are incident to v,y but are not incident to-
either gy, ) or h, have infinite cost.

FIGURE 3¢
graph H of
the node of
cost at mos

for instance Is7. Thus, using an inapproximability result for ST presented in Reference 17, we obtain the
following;

Theorem 39.2 Foranye > 0, bidirected MESSCS in symmetric wireless networks is not approximable within

96/95 — €, unless P = NP. Considi
: . T = (S,.
Clearly, this result also applies to bidirected MESS. For MESCS, a weaker inapproximability result of- nodes of
313/312 follows by adapting a reduction of Reference 20 to Vertex Cover in bounded-degree graphs and that, for e
using a known inapproximability result for the latter problem [5]. S that m(Z,
assignmer
39.2.2 Multicasting and Broadcasting : otherwise.
In this section, we present logarithmic approximation algorithms for MEMT and MEBT in symm'EtI.i'C'_ , Lemma 3
wireless networks. Such results have been obtained independently in References 6,7, 13, and 14. The '
algorithms in References 6 and 7 use set covering techniques, while the algorithm in References 13 reduces Guh
the problem to Node Weighted Connected Dominating Set. We present the algorithm from Reference 4 - ° of uhaa
L | N - termuin:
here, which is probably the simplest one; it reduces the problem to NWST. _ correspon
Consider an instance Iyemr of MEMT, which consists of a complete directed graph G = (V,E), 2 1% 1 .ES’SI
symmetric edge cost function ¢ : E — R, aroot node % € V, and a set of terminals D € V — {w}- of MléMT]
Construct an instance Iywst of NWST, which consists of an undirected graph H = (U, A), 2 node .
weight function ¢’ : U — R, and a set of terminals D' C U. For 2 node v € V, we denote by 1, the Th
number of different edge costs in the edges directed out of , and, for i = 1,. .., 1y, we denote by Xi(¥) in eorem-
the ith smatlest edge cost among the edges directed out of v. The set of nodes U consists of 1 disjoint sets Sy
of nodes called supernodes. Each supernode corresponds to a node of V. The supernode Z, corresponding
to node v € V has the following 1, + 1 nodes: an inpur node Z, g and n, output nodes Zy 1, - -» Zvamy For 39.3
each pair of nodes u, v € V, the set of edges A contains an edge between the output node Zyi and the E——
input node Z, 4 such that X;(u) > c(u,v). Also, for each node v € V, A contains an edge between the, In genera
inputnode Z, g and each outputnode Z,;, fori = 1,. . ., 7. The cost function ¢’ is defined as C’(Zv,o)_:" 0._ example,
for the input nodes and as ¢'(Z,;} = X;(v) for i = 1,..., n,, for the output nodes. The set of terminals Inapproxi
D' is defined as D' = {Z,9 € Ulv € DU {w}}. An example of this reduction is depicted in Figure 39.3.: simple re
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39.3 The reduction to Node-Weighted Steiner Tree. {a) The graph G of an instance of MEMT. (b) The
H of the corresponding instance of NWST. Each large cycle indicates a supernode. Qnly the edges incident to
Bnade of weight 2 of the upper left supernade are shown. These edges are those that correspond to edges in (a) of
ost 2, directed out of the left upper node. (c) The graph I of the corresponding instance of NWST.

onsider a subgraph F = (S, A") of H, which is a solution for Iywst. We compute a spanning tree
(S, A" of F and, starting from Z,, 5, we compute a breadth-first search (BES) numbering of the
f T'. For each v & §, we denote by m(v) the BES number of v. We construct a tree T = (V,E")
each edge of F between a node Z,, ; of supernode Z, and a node Zy,; of another supernode Z, such
(Zi) < m(Z, j)» contains a directed edge from u to v. The output of our algorithm is the weight
lent w defined as w(u) = max(,, yer c(u, v) if u hasat least one outgoingedgein T, and w(u) = 0,
The following lemma is proved in Reference 14 and relates the quality of the two solutions.

;3'39.2 IfF is a p-approximate solution to hywst, then w is a 2p-approximate solution to Ivepmr.

and Khuller [26] present a 1.35In k-approximation algorithm for NWST, where k is the number
als in the instance of NWST. Given an instance hyeymr of MEMT with a set of terminals D, the
onding instance Inwst has |D| + 1 terminals. Thus, the cost of the solution of Iygp is within
In(|D| 4+ 1) = 2.7In(|D| + 1) of the optimal solution. We remind that MEBT is the special case
Twith D = V — {w).

™ 39.3 Thereexista2.7In(|D|+1)- and a 2.7 In n-approximation algorithm for MEMT and MEBT
etric wireless networks, respectively.

-Asymmetric Wireless Networks

2l, minimum energy communication problems are more difficult in the asymmmetric model. For
> MEIMT is equivalent to DST. This is a rather disappointing result since DST has polylogarithmic
¥imability while the best known algorithm has polynomial approximation ratio. The following
¢duction from References 9 and 14 demonstrates the equivalence of MEIMT and DST.
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Assume that we have an instance Iyemvt of MEIMT defined by a complete directed graph G = (V, )
an edge cost function ¢ : E — R*, aroot nede % € V, and a set of terminals D € V — {vo}. Consider th
instance Ipst of DST that consists of G, the edge cost [unction ¢’ : E — R¥ defined as ¢/ (u, v} = c{v, u)fo
any edge (4, v) € E, the set of terminals D, and the root node vy. Also, we may start by an instance Ipgr 0
DST and construct Iyepyr in the same way. Then, it is not difficult to see that any p-approximate solutio;
for Insr reduces (in polynomial time) to a p-approximate solution for Iyt while any p-approximat
solution for Lygpur also reducesto a p-approximate solution for Ingr.

As corollaries, using the approximability and inapproximability results presented in References 16 an
29, we obtain that MEIMT is approximable within O(|D|¢) and inapproximable within O(ln>~¢ ), fo
any constant ¢ > 0. Note that DST in symmetric wireless networks is equivalent to ST. Going back f
symmetric networks, using the approximability and inapproximability results presented in References 3
and 17, we obtain that MEIMT in symmetric wireless networks is approximable within 1.55 and inap
proximable within 96/95 — €, for any € > 0, Also, instances of DST having all nonroot nodes as terminal
are actually instances of MSA that is known to be computable in polynomial time [22]. Thus, MEIBT ca
be solved in polynomial time (even in asymmetric wireless networks). ‘

39.3.1 Multicasting, Broadcasting, and Group Communication FIGURE

MEMT and MESSCS are as hard to approximate as DST. Consider an instance Ingy of DST that consists . setsofte
of a directed graph G = (V, E} with an edge cost function ¢ : E — R, a root node g, and a set 0

terminals D C V — {v}. Without loss of generality, we may assume that G is a complete directed graph

is prese;
with some of its edges having infinite cost.

a p-app

e e i i A i i oo, o 4 s AR G B i ST S

We construct the instance Iyemt of MEMT that consists of a complete directed graph H = (U, A) with Usiny
i edge cost function ¢ : A — RT, a root node vy € U, and a set of terminals D’ € U ~ {vj}. The set o
% nodes U has a node h, for each node v € V and a node h(u,yy for each directed edge (u, v) of E. For edchi Tl:xec:fre
directed edge (u, v) of E, the directed edge (h,, h(y,)) of A has zero cost and the directed edge (hy,v)» B)- within {
! of A has cost ¢/(hu), by} = c(u, v), while all other edges of A have infinite cost, This construction 1 Ont
P presented in Figure 39.4. The set of terminals is defined as I = {k, € U|u € D}, while Vg = hy,. Itis nc?t : fMI]IE) N
i difficult to see that a p-approximate solution to hupy reduces in polynomial time to a p-approximate °
5 solution to Ipgr [14]. . : p-ifipl;;
i A similar reduction can be used to show inapproximability of MESSCS. We construct the instance - e
i Imesscs of MESSCS, which consists of the graph G, the set of terminals D U g, and an edge cost “tlth an
% function ¢” : E — RY defined as foilows. For each directed edge (u,v) of E such that u # v, itis dlrec.te(
L ¢ (u, v) = c(v, u), while all edges of E directed out of v have zero cost, An example of this construction - Zir;:sl,l;
edgesd
t- For eac
f y fy O cost frg
! contain
%I is prese
i ety Now
| c{uy) Aluy node v
1 = solutia:
Infinite cost Using t
u 0 .
Infinite cost Theore
hy Wireles:
{a) {b)
. Noty
FIGURE 39.4 An edge in Inst (a) and the corresponding structure in fygvr (b). In (b), edges directed out of i of DST

that are not incident to hy, as well as edges that are not incident to h, and are destined for v have infinite cost. . immed
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Root

sented in Figure 39.5. Again, any p-approximate solution to Iygsses reduces in polynomial time to
pproximate solution to Ipst [14].
ing the inapproximability result for DST [29], we obtain the following:

rem 39.4 For anye > 0, MEMT and MESSCS in asymmetric wireless networks are not approximable
Yiin O(In?~¢ 1), unless NP € ZTIME(nPolog(n))

[On the positive side, Liang [32) presents an intuitive reduction for transforming an instance hygmr
EMT into an instance Ipgr of DST in such a way that a p-approximate solution for Ipgr implies a
proximate solution for Ivemr.

N describe this reduction here. Assume that ;ygmt consists of a complete directed graph G = (V, E)
an edge cost function ¢ : E — R* and a root node r € V. Then, the instance Ingy consists of a
retted graph H = (U, A) with an edge cost function ¢’ : A — R*, aroot node 7 € U, and a set of
inals D € U — {+'}. For anode v € V, we denote by n, the number of different edge costs in the
directed out of v, and, for i = 1,..., m, we denote by X;(v) the ith smallest edge cost among the
irected out of v. For each node v € V, the set of nodes U contains n, + 1 nodes Z, 9, Zp 1, - . - » Zyp, -

Stfrom Z, ; to Zyg if Xi(v) = (v, u). Also, for eachnode v € V,and i = 1,..., n,, the set of edges A
itains a directed edge from Z, to Z,,; of cost £'(Z, 9, Z,;) = X;(v). An example of this construction
sented in Figure 39.6. The set of terminals is defined by D = {Z,p|v € V — {r}} and ¢ = Z,.

w, a solution for the original instance IMppr of MEMT is obtained by assigning energy to each
v equal to the cost of the most costly outgoing edge of Z, o that is used in the solution of Ipgt. If the
on of IpsT is p-approximate, the solution obtained for hyppr in this way is p-approximate as well.
the approximation algorithm for DST presented in Reference 16, we obtain the following:

te that the algorithm of Liang for approximating MEMT actually computes a solution to an instance
with O(n?) nodes. This means that a polylogarithmic approximation algorithm for DST would
diately yield polylogarithmic approximation algorithms for MEMT.
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FIGURE 39.6 .Liang’s reduction of MEMT to DST. A node v and its outgoing edges in Iypmr (a) and the
corresponding structure in Ipgt (b). All edges in (b) directed out of Z,,), Z,5, and Z,3 have zero cost. * Theoren
networks
Surprisingly, MEBT admits logarithmic approximations. This was independently proved in References! Root

and 14. The algorithm presented in Reference & uses sophisticated set covering arguments, We briefl;
discuss the algorithm in Reference 14 that uses Liang’s reduction and an algorithm of Zosin and Khuller
[43] that efficiently approximates special instances of DST,
The algorithm in Reference 43 approximates Ipsr by repeatedly solving instances of the minimum
density directed tree (MDDT) problem. An instance of MDDT is defined in the same way as instances 0
DST, and the objective is to compute a tree directed out of the root node such that the ratio of the cos
of the tree over the number of terminals it spans is minimized. The algorithm in Reference 43 repeatedly
solves instances I;{[DDT of MDDT derived by the instance Ipst. The instance I&DDT is defined by__thé
graph H with edge cost function c, the set of terminals D; = D, and the root node = 7/, Initially, the -
algorithm sets i = 1, While D; # #, it repeats the following. It finds a solutien T to II{;IDDT that consists of
atree T; = (V(T}), E(T})), defines the instance [ ﬁleT by contracting the nodes of T; into the root node .
rit1 and by setting D) = D\ V(T}), and increments iby 1. o
Using standard arguments in the analysis of set covering problems, Reference 43 shows that if the
solution T; is a p-approximate solution for II{'dDDT in each iteration #, then the union of the trees i
computed in all iterations is an O{p In n)-approximate solution for Ingr. They also show how to find a -
{d 4 1)-approximate solution for I&DDT if the graph obtained when removing the terminals from G %ias
depth d. Observe that, given an instance fyggr of MEBT, the graph H obtained by applying the reduction -
of Liang is bipartite, since there is no edge between nodes of DU{#'} and between nodes of V — (DU{r'D-
Thus, the graph obtained by removing the terminals of D from H has depth 1. Following the reasoning

presented in Reference 43 and the reduction of Liang, we obtain a logarithmic approximation algorithm
for MEBT.

Theorem 39.6 There exists an O(In 1) -approximation algorithm for MEBT in asymmetric wireless networks. -

We now present a method for approximating MESSCS. Let lygsscs be an instance of Ivesscs that
consists of a complete directed graph G = (V, E) with edge cost function ¢ : E — R* and a set of
terminals D © V. Pick an arbitrary node vy € D and let hygyr and Iygmvr be the instances of MEMT

and MEIMT, respectively, consisting of the graph G with edge cost function ¢, the root node v, and the
set of terminals D — {1y},

FIGURI
Mvesses
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Assume that we have weight assignments wy and wy to the nodes of V' which are solutions for Ivemt
IvemaT, respectively. Construct the weight assignment ws defined as ws{u) = max{w (), w2(2)},

. svery u € V. An example of this construction is presented in Figure 39.7. The following statement is

ved in References 9 and 14.

ama 39.3 If the weight assigmments wy and wy are py and py approximate solutions for Iygmr and
T, respectively, then the weight assignment ws is a (o1 + p2) -approximate solution to hagsscs-

¥ Hence, we can solve hygmr and Tygmar using the reduction of Liang and the O(|D|®)-approximation
srithm in Reference 16 for DST, in order to obtain the following result.
gless networks.

similarly, we can solve any instance of MESCS by solving an instance of MEBT (using the O(In n)-
roximation algorithm described above) and an instance of MEIBT (this can be done optimally in

sscs (c). Dashed closed lines indicate the sets of terminals.
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Intuitive reductions of problems MEBT and MESCS to Ser Cover show that the results in Theore Con
39.6 and 39.8 are tight [18]. : ‘o w on 1
maXye
s 15 .. . two sol
39.3.2 Bidirected Connectivity Requirements
In this section, we present a logarithmic approximation algorithm for bidirected MESS in asymmet Lemm.
wireless networks from Reference 14. We point out that a logarithmic approximation algorithm i
the special case of bidirected MESCS based on set covering techniques was obtained independently Gub
Reference 9. of termr
The algorithm in Reference 14 is substantially simpler and uses a reduction of instances of bidirects 1.61In
MESS to instances of NWSE. The main idea behind this reduction is similar to the one used to approximate MESS(
MEMT in symmetric wireless networks in Section 39.2.2, However, both the construction and the analys where
have subtle differences. ) section
Consider an instance Ipygss of bidirected MESS that consists ofa complete directed graph G = (V, B,
an edge cost function ¢ : E — R, and a set of terminals D € V partitioned into p disjoint subsets Theort
Dy, Dy, ..., Dp. We construct an instance Iywsg of NWSF consisting of an undirected graph H = (U, A)',f bidirec
a node weight function ¢’ : U — R, and a set of terminals D’ & U partitioned into p disjoint se
1»D5, ..., D). Foranode v € V, we denote by 1, the number of different edge costs in the edges directed. 39.4
outofv,and, fori = 1,..., n,, we denote by X;(¥) the ith smallest edge cost among the edges directed o i
of v. The set of nodes U consists of n disjoint sets of nodes called supernodes. Each supernode corresponds Tn this
to a node of V. The supernode Z, corresponding to node v € V has the following #, + 1 nodes: a b node G corr
Zyp and ny bridge nodes Z, 1, . . ., Z, .. For each pair of nodes u,v € V, the set of edges A contains an: distanc
edge between the bridge nodes Z, ; and Zy,j such that X;(a) > ¢(u, v) and Xi(v) = c(v, u). Also, for eachi’ will she
node v € V, A contains an edge between the hub node Z, g and each bridgenode Z, ;, fori = 1,..., 1 onali
The cost function ¢’ is defined as ¢’ (Z,9) = 0 for the hub nodes and as ¢’ (v} =X fori=1,..., M, most i1
for the bridge nodes, The set of terminals D' is defined as ' = U; D}, where D! = {Z,9 € Ulv € Dj}. An
example of this reduction is depicted in Figure 39.8. 39.4.
A lines
MEBT,
indepe
Theor
The
solutio
into tw
transr
from !
that if 1
Nodes
We can
possib.
time,
For
Telies ¢
Theor.
FIGURE 39.8 The reduction to Node-Weighted Steiner Forest. (a) The graph G of an instance of bMESS. (b) The The
graph H of the corresponding instance of NWSE. Each large cycle indicates a superncde. Only the edges incident 10 Unfor

the node of weight 5 of the lower left supernode are shown. (c) The graph H of the corresponding instance of NWSE
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Consider a subgraph F = (S, A) of H, which is a solution for Inwsg. We construct a weight assignment
w on the nodes of G by setting w(v) = 0, if § contains no node from supernode Z,, and w(¥) =
‘maxue(z,ns) ¢ (), otherwise. The next staternent is proved in Reference 14 and relates the quality of the
two solutions.

8 in Theorery

T asymmetric Lemma 39.4 IfF is a p-approximate solution to kuwse, then w is a p-approximate solution to Iygss.
algorithm for
ependently i Guha and Khuller [26] present a 1.61 In k-approximation algorithm for NWSE, where k is the number

of terminals in the graph. Using this algorithm to solve lyrwsg, we obtain a solution of Iygss that is within

+ of bidirecteg 1.611n | Dt of optimal. Moreover, when p = 1 (i.e., when Iyvgss is actually an instance of bidirected

) approximate MESSCS), the instance Iywsr is actually an instance of NWST that can be approximated within 1.35In k,

1d the analysis where k is the number of terminals in the graph [26). The next theorem summarizes the discussion of this
section.

1G=(V,E), ;

sjoint subsets heorem 39.9 There exist an 1.611n|D|-, an 1.35In |D|-, and an 1.35In n-approximation algorithm for

H=(U,4), directed MESS, bidirected MESSCS, and bidirected MESCS in asymmetric wireless networks, respectively.

> disjoint setg _

'Sdfiiixzci‘i 39.4 The Geometric Model

: corresponds

In this section, we survey results in geometric wireless networks. Recall that, in these networks, nodes of
G correspond to points in a Euclidean space, and the cost of an edge (1, v) is defined as the Euclidean
stance between « and v raised to a fixed power & ranging from 1 to 6, (i.e., c(u, ¥) = d(u, v)¥). As we
will show in the following, finding an optimal solution becones easier if nodes are restricted to be placed

st a hueb node
1 containg an
Also, for each

= i’ oot B on a line, while for higher dimensions almost all connectivity requirements lead to hard problems. The
_l_ E)J.D. i’ :‘; _most important cases and the best-examined ones are those of MEBT and MESCS.
v i :

39.4.1 The Linear Case

A linear wireless network consists of # points on a line having coordinates xy < x < ... < x,. For
MEBT, when we are also given a special node x; that is the root, the following theorem has been proved
independently in References 13 and 19.

Theorem 39.10 MEBT can be solved in polynomial time in linear wireless networks for any ot > 1.

The main idea of the corresponding algorithms is the exploitation of structural properties of the optimal
solution in order to drastically reduce the search space. More specifically, if we partition the set of nodes
into two sets (called left and right) depending on their position on the line with respect to the root, the
transmission graph corresponding to the optimal selution has at most one node that reaches nodes bath
from the left and the right set. Such a node is called root-crossing. The main idea in the proof of this fact is
that if there exist k > 2 root-crossing nodes, then a solution having no greater cost with k— 1 root-crossing
nodes also exists. Examples of situations with two root-crossing nodes are depicted in Figure 39.9. Thus,
we can always reduce the number of root-crossing nodes to one without increasing the total cost. So, all
Possible transmission graphs that are candidates to be the optimal solution can be examined in polynomial
= time,

For MESCS, an optimal algorithm runaning in time O(n*) is presented in Reference 30. This algorithm
relies on the use of dynamic programming.

Theorem 39.11 MESCS can be solved in polynomial time in linear wireless networks for any o > 1.

ESS. (b) The
s incident to
ce of NWSE

The main idea of the algorithm is that the optimal solution can be computed in a recursive way.
Unfortunately, the assurnption that starting from an optimal solution for k points xi,...,x. we can
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FIGURE 39.9 The four possible cases we have to consider when there are two root- -crossing nodes. Only edges - proved an
directed out of root-crossing nodes are shown. The root is the squared node. In all cases, we can reduce the number . - presented
of root-crossing nodes to 1. ratio of Bl
e Theorem
extend it to include point x5, does not work, since the energy assigned to point xj, may leadtoa . -
situation where the energy previously assigned to some points in {1, . . ., %} should be reduced. On the = - This re
positive side, the following stronger recursive statements are proved in Reference 30. For any [ > kand -4 approxim
any i < k, there is an assignment that has minirmum cost among the assignments with the fo]lowmg' X a>dth
properties: - independ
1. There is a path between any pair in {xy, ..., %} in the transmission graph. ¥ i]izrﬁ::
2. x; is within the reach of anode in {x;, ..., x}. O)n the
3. In the transmission graph, any backward edge from x; to x; is free of cost. These edges enable random i
connectivity without adding to the cost, enhanced
Using the above statement, starting from an empty solution we gradually extend the assignment until could alsc
covering all nodes, thus obtaining an optimal solution. conmecte:
could be
39.4.2 Multidimensional Wireless Networks
Almost all connectivity requirements besides MEIBT lead to NP-hard problems when graph G consists
of points on a d-dimensional space for > 2 and & > d. Most of the theoretical and experimental work
in this framework is for MEMT and MEBT, and especially for the case where the points are located on a
Euclidean plane (i.e., d = 2). Note that in the case ¢ = 1 an optimal solution that consists of assigning
sufficient energy to the root so that it reaches the node that is the furthest away can be computed for any 4.
The following theorem was presented in Reference 18.
Theorem 39.12 Forany d > 2 and anya > d, MEBT is NP-hard.
Naturally, this result led to the design and analysis of approximation algorithms. The majority of
research has focused on the case @ = d = 2 and, unless stated otherwise, the bounds discussed in the
following correspond to this setting. The first algorithms were proposed in the seminal work of Wieselthier
et al. [41]. These algorithms are based on the construction of MST and shortest path trees (SPT) on the FIGURE
graph representing the network. The energy assigned to each node is then the minimum required i an optim
order to be able to reach its neighbors in the tree. The approach followed in Reference 41 for computing a solutior
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solutions of MEMT was to prune the trees obtained in solutions of MEBT. Another algorithmn presented
in Reference 41, called Broadcast Incremental Algorithm (BIP}, constructs a tree starting from the root and
gradually augmenting it by adding the node that can be reached with the minimum additional energy from
some node already in the tree. BIP can be seen as a node version of Dijkstra’s algorithm for computing
SPT, with one fundamental difference on the operation whenever a new node is added. Whereas Dijkstra’s
algorithm updates the node weights (representing distances), BIP updates the edge costs {representing
the additional energy required in order to reach a node out of the tree). This update is performed by
subtracting the cost of the added edge from the cost of every edge from the source node of the added edge
to any node that is not yet included in the tree.

Experimental results presented in Reference 41 showed that BIP outperforms algorithms MST and
SPT. In subsequent work, Wan et al. [39] study the algorithms presented in Reference 41 in terms of
efficiency in approximating the optimal solution. Their main result is an upper bound of 12 on the
approximation ratio of algorithm MST. Slightly weaker approximation bounds for MST have been

.~ presented in Reference 18. In Reference 39, it is also proved that the approximation ratio of BIP is not

worse than that of MST, and that other intuitive algorithms have very poor approximation ratio. The
upper bound in Reference 39 for MST was improved in References 23 and 35. Recently, Ambiihl (2]
proved an upper bound of 6. This result is tight since there exists a corresponding lower bound {39]
presented in Figure 39.10. We should also note that there exists a 13/3 lower bound on the approximation

' - ratio of BIP.

Theorem 39.13 Fora = d = 2, MST and BIP are 6-approximation algorithms for MEBT.

This result implies a constant approximation algorithm of 6o for MEMT as well [40], where p is the
approximation ratio for ST (currently, p < 14 1n3/2 [38]). For the more general case of arbitrary 4 and
@ > d, the authors of Reference 23 prove a 3¢ — 1 upper bound on the performance of MST that holds
independently of &. Very recently, for the case d = 3, Navarra [36] presented an 18.8-approximation
algorithm that is an improvement over the 26 bound that stems from the aforementioned formula. In this
case, there is still a significant gap since the best lower bound is 12.

On the other side, several intuitive algorithms have been experimentally proved to work very well on
random instances of MEBT and MEMT. In References 33 and 42, algorithms based on shortest paths are
enhanced with the potential power saving idea. These algorithms examine whether establishing a new path
could also include nodes that had been included in the multicast tree in previous phases, and could now be
connected to the multicast tree as children of some node in the path. In this way, the energy of some nodes
could be decreased. Cagalj et al, [8] introduced a heuristic called embedded wireless multicast advantage

FIGURE 39.10 The lower bound on the performance of MST when « = d = 2. The node in the center is the root;
an optimal solution would assign energy (1 -+ €)? to it. Solid lines represent the minimum spanning tree that leads to
asolution of total energy 6.
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(EWMA) for computing efficient solutions to MEBT instances. Starting with a broadcast tree, EWjy
“walks” on broadcast trees by performing the following two types of changes in each step: (i) outgg
edges are added to a single node v; this node is said to be extended and (ii) all outgoing edges are rémo
from some descendants of v; in this case we say that the particular descendants of v are excluded. Def
the gain of a node v as the decrease in the energy of the broadcast tree obtained by excluding somg
the nodes of the tree in exchange for the increase in node +’s energy in order to establish edges
excluded nodes and their children. Intuitively, EWMA repeatedly examines the nodes of the tree and tr
to make use of nodes with maximum gain, so as to make local modifications on the structure of the 7
As it was observed in Reference 4, EWMA can be easily converted to work for MEMT as well. Anotk
heuristic called Sweep was proposed in Reference 41; this also takes as input a tree and transforms it
an energy-cfficient tree by performing local improvements. Sweep works as follows. Starting front
broadcast tree, it proceeds in steps; in the ith step it examines node v;. If for some nodes Viis Vips . . . that.
not ancestors of v; the energy of v in the broadcast trec is not smaller than the cost of all the edges from
Vi 80 ¥4, Vi, . . ., SWeep removes the incoming edges of Vijs ¥iy» - . . and adds edges from v; to Vips Vigs « '
the broadcast tree. The algorithm terminates when all nodes have been examined. Clearly, it can be use
on any multicast tree as well.

Another issue of apparent importance is to design algorithms for MEMT that are amenable to imple:
ment in a distributed environment {e.g,, References 8, 15, and 42). In Reference 4, a characterization ¢
experimental algorithms is presented, while the authors introduced sorne algorithms that establish dense
shortest paths, that is, they add to the solution the shortest path that has the lowest ratio of additional
energy over the number of newly added nodes. Experimental comparison between these algorithms ari
already existing ones suggests that density is a useful property.

MESCS has received less attention. A first proof that MESCS is NP-hard for d-dimensional Euclidea
spaces appeared in Reference 30 for the case d > 3. This negative result was strengthened to APX-hardn
while the problem was proved to be NP-hard also for d = 2 in Reference 21, The above proofs assumié
that @ > 2, while in Reference 24 MESCS is also proved to be NP-hard for o = 1. o

R T S

Do

Theorem 39.14 MESCS is NP-hard for any d > 2 and any o > 1, and APX-hard ford > 3 anda > 2. .

A simple 2-approximation algorithm based on MST was presented in Reference 30. Essentially, this is
the algorithm we discussed in Section 39.2.1 in a more general setting. Again, it is not hard to show that
the total energy is at most twice the cost of the MST, the latter being a lower bound on cost of the optimal
solution.

When the transmission graph is required to contain a bidirected subgraph satisfying the connectivity 1.
requirements, Althaus et al. [1] present a 5/3-approximation algorithm, by establishing a connection B
between bidirected MESCS and k-restricted Steiner trees, and using a 5/3-approximation algorithm for
the latter problem. This bound cannot be obtained by the algorithm in Reference 30, As the authors in
Reference 1 note, the cost of an optimal solution for MESCS can be half the cost of an optimal solution
for bidirected MESCS. Consider a set of n? - n nodes, consisting of # groups of 7 + 1 nodes each, that
are Jocated on the sides of a regular 2n-gon. Each group has 2 “thick” nodes in distance 1 of each other
and n — 1 equally spaced nodes the line segment between them. It is casy to see that an optimal solution
for MESCS assigns energy 1 to the one thick node in each group and an amount of energy equal to
€% = (1/n)? to all other nodes in the group. The total energy then equals 7 -- 1. For bidirected MESCS it
is necessary to assign energy equal to 1 to all but two of the thick nodes, and of €2 to the remaining nodes,
which results in a total energy of 2n — 1 — 1/n + 2/, An example when @ = 2 and 1 = 3 is depicted in
Figure 39.11.

39.5 Extensions

The connectivity requirements we have considered in this work can be defined by 0 - 1 requirement
matrices. A natural extension is to consider matrices with nonnegative integer entries rjj denoting that
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ation of
sh dense
ditionat 1y node/edge-disjoint paths are required from node ¥; to node ;. This extension leads to combinat-
ums and arial problems that capture important engineering questions related to the design of fault-tolerant ad
-hoc wireless networks. In this direction, some results on symmetric wireless networks are presented in
1clidean References 12,28, and 31. More specifically, Lloyd et al. [31] examined the problem of establishing a
1ardness ‘transmission graph containing a bidirected subgraph that is biconnected with respect to both the nodes
assume “and the edges. For both cases, they presented 8-approximation algorithms by using algorithms for network
design. These results were improved by Cilinescu and Wan [12] and were extended to hold also for the
case when the transmission graph is not required to contain a bidirected subgraph. In addition, Cilinescu
22 nd Wan [12] extended the problem to the case of k-connectivity. For the latter case, they presented
.. rcorresponding 2k-approximation algorithms, both with respect to nodeconnectivity and edgeconnectiv-
ps this s ty. Hajiaghayi et al. [28] focus on bidirected MESCS and prove APX-hardness for k-node connectivity
ow that . 4 . .
. d k-edge connectivity and present an O(log" n}-approximation algorithim for the first case and an
optimal (/n)-approximation algorithm for the second case, improving on the previous results for large values
- -of k.
1ectn_'1ty Another direction of research is when the transmission graph is required to have a bounded diameter.
lgf;:ig: Thus, bounded-hop versions of the problems studied in this chapter arise. Cilinescu et al. [10] examine
' ) bounded-hops MEBT and MESCS both for the general and the geometric model. For MEBT, they present
thors in ; Lo A . . .
solution “an (O(log n), O(log n))-bicriteria approximation a]gor‘lthm, that is, the tran_smlssmn graRh has depth
. that ~at most O(hlog n) and total energy at most Qlog n) times the optimal solution, where & is the bound
h ’ ther ~on the number of hops. For the geometric model, their algorithm can be modified and achieve an
:olstion :approximation ratio of O(log®™ n). Ambiihl et al. [3] focus on bounded-hop MEBT in the Euclidean plane
: A to +and present a polynomial time algorithm when # = 2, using dynamic programming and a polynomial time
oy .approximation scheme (PTAS) for any fixed bound % on the number of hops. Similarly, for MESCS in the
[ESCS it .- e . .
g nodes :—gen.eral model, Calinescu et al. [10] presents an EO(lo g 1), (?(105 n))—blcn.terla approximation algorithm,
icted in hich can be modified to achieve an Olog®t! n) approximation algorithm for the geometric model.

-For the geometric model and specifically for linear networks, Clementi et al. [20] present a polynomial
~algorithm that returns the optimal solution in time O(#®) when h = 2 and a 2-approximation algorithm
“for arbitrary values of h.

Several other extensions of the model described in this chapter are also interesting. In the network
* lifetime problem [9], the objective is to establish a communication pattern so that the time until the first
_Node exhausts its available energy is maximized. When we drop the assumption that each node is equipped
ith an omnidirectional antenna, we obtain directional equivalents of the discussed problems. Finally, all

rirement
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the cases considered in this work make the assumption that interference [34] is not a concern an

transmission is lost owing to collisions. Excluding this assumption is also worth investigating, In Pi
pp-E 1
A E.
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