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Motivation Overview

Setting

Scheduling firm deadline tasks on a single processor

Jobs arrive in an online fashion and ask for the processor for some
time

Jobs have relative deadlines, and contribute some utility upon
completion

Design task: Implement a scheduling policy to maximize utility

Various online algorithms: FIFO, EDF, DSTAR ...

Performance assessment of algorithm A through competitive factor

“In the worst case, how much less is the utility of A than the utility
of a clairvoyant”
Algorithms A and B compared by comparing their competitive
factors
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Our Contribution

Competitive factor might be too general (“worst case”).

This work: quantify competitiveness given some constraints on the
environment that the algorithm operates

Given:

1 A fixed taskset from which jobs are spawned

2 A set of constraints on how jobs arrive

quantify the competitiveness of an online scheduling algorithm
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Scheduling Setting

A single processor

Discrete notion of time in slots

A set of tasks T = {τ1, . . . , τN}, each task is τi = (Ci ,Di ,Vi )

Ci is the execution time
Di is the relative deadline
Vi is the utility value

In every slot `, a set Σ of task instances is released

Each instance of task τi requires the processor for Ci slots in the
interval [`, `+ Di ]. On completion the system receives utility Vi

Preemption is allowed
Non-completed jobs contribute no utility

`

Di

Ci

τi
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Labeled Transition Systems

Having fixed a taskset, we model scheduling algorithms as labeled
transition systems
L = (S , s1,Σ,Π,∆) where

1 S is a finite set of states

2 s1 ∈ S is the initial state

3 Σ is a finite set of input actions

4 Π is a finite set of output actions

5 and ∆ ⊆ S × Σ× S × Π is the transition relation.

Σ is a set of each possible subset of jobs to be released at each slot

Π is a set of single-slot scheduling decisions

A job sequence σ ∈ Σ∞ generates a run ρσL and a schedule πσ
L ∈ Π∞

Utility of πσ
L in the first k slots V (πσ

L , k)
Interested in k →∞
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Three Types of Constraints on the Environment

Job sequences σ ∈ Σ∞ subject to:

1 Safety constraints

2 Liveness constraints

3 Limit-average constraints
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Environment Constraints: Safety

Safety automaton LS = (SS , sS ,Σ, ∅,∆S) with a distinguished reject
state sr ∈ SS

Job sequence σ ∈ Σ∞ admissible to LS if sr is never visited in ρσS
Models

“Nothing bad ever happens”

Absolute workload restrictions (i.e., the released workload does not
exceed a threshold in any fixed interval)

Sporadicity (i.e., certain tasks are not released too often)

Periodicity (i.e., certain tasks are released periodically)
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Environment Constraints: Safety

T = {τ1, τ2} with C1 = C2 = 1

”At most 2 units of workload in the last 2 rounds“

0

1

2

sr

{}

{τ1}, {τ2}

{}, {τ1}, {τ2}, {τ1, τ2}

{τ1}, {τ2}

{τ1, τ2}

{}

{τ1, τ2}

{}
{τ1}, {τ2}, {τ1, τ2}
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Environment Constraints: Liveness

Liveness automaton LL = (SL, sL,Σ, ∅,∆L), with a distinguished accept
state sa ∈ SL

Job sequence σ ∈ Σ∞ admissible to LL if sa is visited infinitely often in
ρσL
Models

“Something good happens infinitely often”

Finite intervals of (over)load (i.e., infinitely often there is no
(over)load in the system)

Some tasks are released infinitely often
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Environment Constraints: Liveness

T = {τ1, τ2} with C1 = C2 = 1

“τ2 released infinitely often”

sa

{}, {τ1} {τ2}, {τ1, τ2}
{τ2}, {τ1, τ2}

{}, {τ1}
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Environment Constraints: Limit-average

Limit-average automaton LW = (SW , sW ,Σ, ∅,∆W) with a weight
function w : ∆W → Zd

Given some ~λ ∈ Qd , job sequence σ ∈ Σ∞ admissible to LW if
lim infk→∞

1
k · w(ρσW , k) 6 ~λ

Models

Something good happens on average

Limit-average workload restrictions (i.e., the long run average
released workload does not exceed a threshold)
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Environment Constraints: Limit-average

T = {τ1, τ2} with C1 = C2 = 1

{}, w = 0

{τ1, τ2}, w = 2

{τ1}, w = 1{τ2}, w = 1

K. Chatterjee, A. Pavlogiannis, A. Kößler, U. Schmid Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks 12



Competitive Ratio

Given

1 A fixed taskset T
2 Constraint automata LS , LL, LW whose language intersection

defines a set of admissible job sequences J
3 Online algorithm as a deterministic LTS LA
4 Clairvoyant algorithm as a non-deterministic LTS LC

the competitive ratio of LA w.r.t J is

CRJ (A) = inf
σ∈J

lim inf
k→∞

1 + V (πσ
A, k)

1 + V (πσ
C , k)
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Experiments

Implemented and analyzed 6 online scheduling algorithms in this
framework:

1 SRT (Shortest Remaining Time)

2 SP (Static Priorities)

3 FIFO (First-in First-out)

4 EDF (Earliest Deadline First)

5 DSTAR

6 DOVER - proved to have optimal competitive factor

Prototype implementation in
http://pub.ist.ac.at/~pavlogiannis/rtss14/
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Results 1: No Constraints

For every examined scheduling algorithm, there is a taskset for which it is
optimal among the others
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Results 2: Safety constraints

Absolute workload constraints change the optimal scheduling algorithms
in a fixed taskset
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Results 3: Limit-average constraints

Average workload constraints change the optimal scheduling algorithms
in a fixed taskset

Xindicates optimal for the given threshold
1.5 1 0.8 0.6 0.4 0.3 0.1 0.078 0.05

fifo X X X X X X
sp X X X
srt X X X X X X
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Message

1 Define competitiveness in constrained environments

Competitive ratio w.r.t. constraint automata

2 It makes sense to do so

Different constraints completely change the competitive algorithms

3 Automated way to determine the competitive ratio

Multi-graph objectives
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Multi-Graphs

Consider multi-graph G = (V ,E )

Weight function w : E → Zd in d dimensions.

d > 1 in the presence of limit-average constraints

An infinite path ρ = (e i )i>1 is an infinite sequence of edges e i ∈ E

1 2 3

4

5

−1, 3

−1,−1

7, 7

6, 6

0,−1

−5, 0

1, 0

9, 9 8, 8
2, 1
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Objectives

An objective Φ is a set of paths

G satisfies Φ if Φ is non-empty

Competitive ratio −→ Φ = Safe(X ) ∩ Live(Y ) ∩MP(w , ~ν)
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Objectives - Complexity

Theorem

Let Φ = Safe(X ) ∩ Live(Y ) ∩MP(w , ~ν). The decision problem of
whether G satisfies the objective Φ requires

1 O(|V | · |E |) time, if d = 1.

2 Polynomial time, if d > 1.

d = 1 : Find the minimum-mean cycle of G

d > 1 : Solve a linear program in G

If the objective is satisfied, a witness path is reported
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Thank you!
Questions?

K. Chatterjee, A. Pavlogiannis, A. Kößler, U. Schmid Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks 22



Qualitative objectives: Safety, Liveness

An objective Φ is a set of paths of G

Safety Given X ⊆ V , the objective
Safe(X ) = {ρ ∈ Ω : ∀i > 1, ρi 6∈ X} is the set of all paths
that never visit X .

Liveness Given Y ⊆ V , the objective
Live(Y ) = {ρ ∈ Ω : ∀j∃i > j s.t. ρi ∈ Y } is the set of all
paths that visit Y infinitely often.
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Quantitative objectives: Mean-payoff

Mean-payoff Given a weight function w : E → Zd and threshold vector
~ν, the objective

MP(w , ~ν) =

{
ρ ∈ Ω : lim inf

k→∞

1

k
· w(ρ, k) 6 ~ν

}
is the set of all paths such that the long-run average of
their weights is at most ~ν
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Quantitative objectives: Ratio

Ratio Given weight functions w1, w2 : E → Nd and a threshold
vector ~ν, the objective

Ratio(w1,w2, ~ν) =

{
ρ ∈ Ω : lim inf

k→∞

~1 + w1(ρ, k)

~1 + w2(ρ, k)
6 ~ν

}

is the set of all paths such that the ratio of cumulative
rewards w.r.t w1 and w2 is at most ~ν
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Multi-dimensional mean-payoff

For a strongly connected component GSCC = (VSCC,ESCC)

xe > 0 e ∈ ESCC∑
e∈IN(u)

xe =
∑

e∈OUT(u)

xe u ∈ VSCC

∑
e∈ESCC

xe · w(e) 6 ~ν

∑
e∈ESCC

xe > 1
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Objectives - witness

When d > 1, witness is a multi-cycle MC = {(C1,m1), . . . , (Ck ,mk)}
Ci is a simple cycle

mi is its multiplicity

Out of the MC we construct a (generally) non-periodic path

1 2 3

4

5

−1, 3

−1,−1

7, 7

6, 6

0,−1

−5, 0

1, 0

9, 9 8, 8
2, 1

−1, 3

−1,−1

0,−1

1, 0

Here, MC = {(C1, 1), (C2, 2)}, with C1 = ((1, 2), (2, 1)) and
C2 = ((3, 5), (5, 3))
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Scalability

Name N Dmax Size (nodes) Time (s)
Clairv. Product Mean Max

set B01 2 7 19 823 0.04 0.05
set B02 2 8 26 1997 0.4 0.6
set B03 2 9 34 4918 10 15
set B04 3 7 19 1064 0.2 0.4
set B05 3 8 26 1653 0.6 2
set B06 3 9 34 7705 51 130
set B07 4 7 19 1711 2.1 6.3
set B08 4 8 26 3707 14 34
set B09 4 9 44 10040 130 310
set B10 5 7 19 2195 5.7 16
set B11 5 8 32 9105 140 360
set B12 5 9 44 16817 550 1300
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TD1

(i) C0 = 1 (ii) Ci+1 = η · Ci −
i∑

j=0

Cj

Name η Taskset Comp. Ratio

set C1 2 {1, 1} 1
set C2 3 {1, 2, 3} 1/2
set C3 3.1 {1, 3, 7, 13, 19} 7/25
set C4 3.2 {1, 3, 7, 13, 20, 23} 1/4
set C5 3.3 {1, 3, 7, 14, 24, 33} 1/4
set C6 3.4 {1, 3, 7, 14, 24, 34} 1/4
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EDF LTS

0 0
1 0

2 0
0 0

0 1
0 0

0 0
0 0

1 0
0 0
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-

{}
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(t1, 2)
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(t1, 2)

{}
(t1, 1)
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{t2}
(t1, 1)

{t1, t2}
(t1, 1)

{}
(t2, 1)
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(t2, 1)

{t1}
(t1, 0)
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{t1, t2}
(t2, 1)

{}
(t1, 1)

{t2}
(t1, 1)

{t2}
(t2, 0)

{t1, t2}
(t2, 0)
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