# A Framework for Automated Competitive Analysis of On-line Scheduling of Firm-Deadline Tasks

Krishnendu Chatterjee <sup>1</sup>, **Andreas Pavlogiannis** <sup>1</sup>, Alexander Kößler <sup>2</sup>, Ulrich Schmid <sup>2</sup>

<sup>1</sup>IST Austria, <sup>2</sup>TU Wien

July 22, 2015



Setting

- Scheduling firm deadline tasks on a single processor
- Jobs arrive in an online fashion and ask for the processor for some time
- Jobs have relative deadlines, and contribute some utility upon completion

## Design task: Implement a scheduling policy to maximize utility

- Various online algorithms: FIFO, EDF, DSTAR ...
- Performance assessment of algorithm A through competitive factor
  - "In the worst case, how much less is the utility of  ${\cal A}$  than the utility of a clairvoyant"
  - $\bullet$  Algorithms  ${\cal A}$  and  ${\cal B}$  compared by comparing their competitive factors

Setting

- Scheduling firm deadline tasks on a single processor
- Jobs arrive in an online fashion and ask for the processor for some time
- Jobs have relative deadlines, and contribute some utility upon completion

Design task: Implement a scheduling policy to maximize utility

- Various online algorithms: FIFO, EDF, DSTAR ...
- Performance assessment of algorithm A through competitive factor
  - "In the worst case, how much less is the utility of  ${\cal A}$  than the utility of a clairvoyant"
  - Algorithms  ${\mathcal A}$  and  ${\mathcal B}$  compared by comparing their competitive factors

- Competitive factor might be too general ("worst case").
- This work: quantify competitiveness given some constraints on the environment that the algorithm operates

Given:

- A fixed taskset from which jobs are spawned
- 2 A set of constraints on how jobs arrive

quantify the competitiveness of an online scheduling algorithm

- Competitive factor might be too general ("worst case").
- This work: quantify competitiveness given some constraints on the environment that the algorithm operates

Given:

- A fixed taskset from which jobs are spawned
- A set of constraints on how jobs arrive

quantify the competitiveness of an online scheduling algorithm

# Scheduling Setting

- A single processor
- Discrete notion of time in *slots*
- A set of tasks  $\mathcal{T} = \{\tau_1, \ldots, \tau_N\}$ , each task is  $\tau_i = (C_i, D_i, V_i)$ 
  - $\bullet~C_i$  is the execution time
  - $\bullet~D_i$  is the relative deadline
  - $\bullet~V_i$  is the utility value
- $\bullet$  In every slot  $\ell,$  a set  $\Sigma$  of task instances is released
- Each instance of task τ<sub>i</sub> requires the processor for C<sub>i</sub> slots in the interval [ℓ, ℓ + D<sub>i</sub>]. On completion the system receives utility V<sub>i</sub>
  - Preemption is allowed
  - Non-completed jobs contribute no utility



4

Having fixed a taskset, we model scheduling algorithms as labeled transition systems

 $L = (S, s_1, \Sigma, \Pi, \Delta)$  where

- *S* is a finite set of states
- **2**  $s_1 \in S$  is the initial state
- Σ is a finite set of input actions
- **(**) and  $\Delta \subseteq S \times \Sigma \times S \times \Pi$  is the transition relation.

 $\Sigma$  is a set of each possible subset of jobs to be released at each slot

 $\Pi$  is a set of single-slot scheduling decisions

A job sequence  $\sigma \in \Sigma^{\infty}$  generates a run  $\rho_L^{\sigma}$  and a schedule  $\pi_L^{\sigma} \in \Pi^{\infty}$ Utility of  $\pi_L^{\sigma}$  in the first k slots  $V(\pi_L^{\sigma}, k)$ Interested in  $k \to \infty$  Having fixed a taskset, we model scheduling algorithms as labeled transition systems

 $L = (S, s_1, \Sigma, \Pi, \Delta)$  where

- *S* is a finite set of states
- Σ is a finite set of input actions
- I is a finite set of output actions
- **(**) and  $\Delta \subseteq S \times \Sigma \times S \times \Pi$  is the transition relation.

 $\boldsymbol{\Sigma}$  is a set of each possible subset of jobs to be released at each slot

 $\Pi$  is a set of single-slot scheduling decisions

A job sequence  $\sigma \in \Sigma^{\infty}$  generates a run  $\rho_L^{\sigma}$  and a schedule  $\pi_L^{\sigma} \in \Pi^{\infty}$ Utility of  $\pi_L^{\sigma}$  in the first k slots  $V(\pi_L^{\sigma}, k)$ Interested in  $k \to \infty$ 

#### Job sequences $\sigma \in \Sigma^{\infty}$ subject to:

- Safety constraints
- 2 Liveness constraints
- Limit-average constraints

Safety automaton  $L_S = (S_S, s_S, \Sigma, \emptyset, \Delta_S)$  with a distinguished reject state  $s_r \in S_S$ 

Job sequence  $\sigma \in \Sigma^{\infty}$  admissible to  $L_{S}$  if  $s_{r}$  is never visited in  $\rho_{S}^{\sigma}$ Models

- "Nothing bad ever happens"
- Absolute workload restrictions (i.e., the released workload does not exceed a threshold in any fixed interval)
- Sporadicity (i.e., certain tasks are not released too often)
- Periodicity (i.e., certain tasks are released periodically)

Safety automaton  $L_S = (S_S, s_S, \Sigma, \emptyset, \Delta_S)$  with a distinguished reject state  $s_r \in S_S$ 

Job sequence  $\sigma \in \Sigma^{\infty}$  admissible to  $L_{S}$  if  $s_{r}$  is never visited in  $\rho_{S}^{\sigma}$ Models

- "Nothing bad ever happens"
- Absolute workload restrictions (i.e., the released workload does not exceed a threshold in any fixed interval)
- Sporadicity (i.e., certain tasks are not released too often)
- Periodicity (i.e., certain tasks are released periodically)

## Environment Constraints: Safety

 $\mathcal{T} = \{\tau_1, \tau_2\}$  with  $C_1 = C_2 = 1$ 

"At most 2 units of workload in the last 2 rounds"



Liveness automaton  $L_{\mathcal{L}} = (S_{\mathcal{L}}, s_{\mathcal{L}}, \Sigma, \emptyset, \Delta_{\mathcal{L}})$ , with a distinguished *accept* state  $s_a \in S_{\mathcal{L}}$ 

Job sequence  $\sigma \in \Sigma^{\infty}$  admissible to  $L_{\mathcal{L}}$  if  $s_a$  is visited infinitely often in  $\rho_{\mathcal{L}}^{\sigma}$ 

Models

- "Something good happens infinitely often"
- Finite intervals of (over)load (i.e., infinitely often there is no (over)load in the system)
- Some tasks are released infinitely often

Liveness automaton  $L_{\mathcal{L}} = (S_{\mathcal{L}}, s_{\mathcal{L}}, \Sigma, \emptyset, \Delta_{\mathcal{L}})$ , with a distinguished accept state  $s_a \in S_{\mathcal{L}}$ 

Job sequence  $\sigma \in \Sigma^{\infty}$  admissible to  $L_{\mathcal{L}}$  if  $s_{\mathsf{a}}$  is visited infinitely often in  $\rho_{\mathcal{L}}^{\sigma}$ 

Models

- "Something good happens infinitely often"
- Finite intervals of (over)load (i.e., infinitely often there is no (over)load in the system)
- Some tasks are released infinitely often

 $\mathcal{T} = \{\tau_1, \tau_2\}$  with  $C_1 = C_2 = 1$ " $\tau_2$  released infinitely often"



Limit-average automaton  $L_{\mathcal{W}} = (S_{\mathcal{W}}, s_{\mathcal{W}}, \Sigma, \emptyset, \Delta_{\mathcal{W}})$  with a weight function  $w : \Delta_{\mathcal{W}} \to \mathbb{Z}^d$ Given some  $\vec{\lambda} \in \mathbb{Q}^d$ , job sequence  $\sigma \in \Sigma^{\infty}$  admissible to  $L_{\mathcal{W}}$  if  $\liminf_{k \to \infty} \frac{1}{k} \cdot w(\rho_{\mathcal{W}}^{\sigma}, k) \leq \vec{\lambda}$ 

Models

- Something good happens on average
- Limit-average workload restrictions (i.e., the long run average released workload does not exceed a threshold)

Limit-average automaton  $L_{\mathcal{W}} = (S_{\mathcal{W}}, s_{\mathcal{W}}, \Sigma, \emptyset, \Delta_{\mathcal{W}})$  with a weight function  $w : \Delta_{\mathcal{W}} \to \mathbb{Z}^d$ Given some  $\vec{\lambda} \in \mathbb{Q}^d$ , job sequence  $\sigma \in \Sigma^{\infty}$  admissible to  $L_{\mathcal{W}}$  if  $\liminf_{k\to\infty} \frac{1}{k} \cdot w(\rho_{\mathcal{W}}^{\sigma}, k) \leq \vec{\lambda}$ Models

- Something good happens on average
- Limit-average workload restrictions (i.e., the long run average released workload does not exceed a threshold)

## Environment Constraints: Limit-average

 $\mathcal{T} =$ 

$$\{\tau_1, \tau_2\}$$
 with  $C_1 = C_2 = 1$   
 $\{\}, w = 0$   
 $\{\tau_2\}, w = 1$   $(\tau_1), w = 1$   
 $\{\tau_1, \tau_2\}, w = 2$ 

Given

- $\bullet \ \ \mathsf{A} \ \mathsf{fixed} \ \mathsf{taskset} \ \mathcal{T}$
- **②** Constraint automata  $L_S$ ,  $L_L$ ,  $L_W$  whose language intersection defines a set of admissible job sequences  $\mathcal{J}$
- $\bigcirc$  Online algorithm as a *deterministic* LTS  $L_A$
- Clairvoyant algorithm as a non-deterministic LTS L<sub>C</sub>

the competitive ratio of  $\mathcal{L}_{\mathcal{A}}$  w.r.t  $\mathcal{J}$  is

$$\mathcal{CR}_{\mathcal{J}}(\mathcal{A}) = \inf_{\sigma \in \mathcal{J}} \liminf_{k \to \infty} \frac{1 + V(\pi_{\mathcal{A}}^{\sigma}, k)}{1 + V(\pi_{\mathcal{C}}^{\sigma}, k)}$$

Implemented and analyzed 6 online scheduling algorithms in this framework:

- SRT (Shortest Remaining Time)
- SP (Static Priorities)
- FIFO (First-in First-out)
- EDF (Earliest Deadline First)
- OSTAR
- **ODVER** proved to have optimal competitive factor

Prototype implementation in http://pub.ist.ac.at/~pavlogiannis/rtss14/

14

## Results 1: No Constraints

For every examined scheduling algorithm, there is a taskset for which it is optimal among the others



Absolute workload constraints change the optimal scheduling algorithms in a fixed taskset



### Average workload constraints change the optimal scheduling algorithms in a fixed taskset

#### $\checkmark$ indicates optimal for the given threshold

|      | 1.5          | 1            | 0.8          | 0.6          | 0.4          | 0.3          | 0.1          | 0.078        | 0.05         |
|------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| fifo | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              | $\checkmark$ |
| sp   | $\checkmark$ |              |              |              |              |              | $\checkmark$ |              | $\checkmark$ |
| srt  | $\checkmark$ |              |              |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

### Optime competitiveness in constrained environments

• Competitive ratio w.r.t. constraint automata

#### It makes sense to do so

- Different constraints completely change the competitive algorithms
- 3 Automated way to determine the competitive ratio
  - Multi-graph objectives

### Optime competitiveness in constrained environments

#### • Competitive ratio w.r.t. constraint automata

- It makes sense to do so
  - Different constraints completely change the competitive algorithms

### O Automated way to determine the competitive ratio

Multi-graph objectives

#### Optime competitiveness in constrained environments

- Competitive ratio w.r.t. constraint automata
- It makes sense to do so
  - Different constraints completely change the competitive algorithms
- Automated way to determine the competitive ratio
  - Multi-graph objectives

- Optime competitiveness in constrained environments
  - Competitive ratio w.r.t. constraint automata
- It makes sense to do so
  - Different constraints completely change the competitive algorithms
- O Automated way to determine the competitive ratio
  - Multi-graph objectives

# Multi-Graphs

Consider multi-graph G = (V, E)

- Weight function  $w: E \to \mathbb{Z}^d$  in d dimensions.
  - d > 1 in the presence of limit-average constraints
- An infinite path  $ho = (e^i)_{i \ge 1}$  is an infinite sequence of edges  $e^i \in E$



- An objective Φ is a set of paths
- G satisfies  $\Phi$  if  $\Phi$  is non-empty

$$\mathsf{Competitive\ ratio} \quad \longrightarrow \quad \Phi = \mathsf{Safe}(X) \cap \mathsf{Live}(Y) \cap \mathsf{MP}(w, \vec{\nu})$$

#### Theorem

Let  $\Phi = \text{Safe}(X) \cap \text{Live}(Y) \cap MP(w, \vec{v})$ . The decision problem of whether G satisfies the objective  $\Phi$  requires

- $O(|V| \cdot |E|)$  time, if d = 1.
- **2** Polynomial time, if d > 1.

d = 1: Find the minimum-mean cycle of Gd > 1: Solve a linear program in G

If the objective is satisfied, a witness path is reported

#### Theorem

Let  $\Phi = \text{Safe}(X) \cap \text{Live}(Y) \cap MP(w, \vec{v})$ . The decision problem of whether G satisfies the objective  $\Phi$  requires

- $O(|V| \cdot |E|)$  time, if d = 1.
- **2** Polynomial time, if d > 1.
  - d = 1: Find the minimum-mean cycle of G
  - d > 1: Solve a linear program in G

If the objective is satisfied, a witness path is reported

Thank you! Questions?

## An *objective* $\Phi$ is a set of paths of *G*

**Safety** Given  $X \subseteq V$ , the objective Safe $(X) = \{\rho \in \Omega : \forall i \ge 1, \rho^i \notin X\}$  is the set of all paths that never visit X.

**Liveness** Given  $Y \subseteq V$ , the objective Live $(Y) = \{\rho \in \Omega : \forall j \exists i > j \text{ s.t. } \rho^i \in Y\}$  is the set of all paths that visit Y infinitely often. **Mean-payoff** Given a weight function  $w : E \to \mathbb{Z}^d$  and threshold vector  $\vec{\nu}$ , the objective

$$\mathsf{MP}(w,\vec{\nu}) = \left\{ \rho \in \Omega : \ \liminf_{k \to \infty} \frac{1}{k} \cdot w(\rho,k) \leqslant \vec{\nu} \right\}$$

is the set of all paths such that the long-run average of their weights is at most  $\vec{\nu}$ 

**Ratio** Given weight functions  $w_1$ ,  $w_2 : E \to \mathbb{N}^d$  and a threshold vector  $\vec{\nu}$ , the objective

$$\mathsf{Ratio}(w_1, w_2, \vec{\nu}) = \left\{ \rho \in \Omega : \ \liminf_{k \to \infty} \frac{\vec{1} + w_1(\rho, k)}{\vec{1} + w_2(\rho, k)} \leqslant \vec{\nu} \right\}$$

is the set of all paths such that the ratio of cumulative rewards w.r.t  $w_1$  and  $w_2$  is at most  $\vec{\nu}$ 

For a strongly connected component  $G_{SCC} = (V_{SCC}, E_{SCC})$ 

$$\begin{aligned} x_e &\ge 0 & e \in E_{\text{SCC}} \\ &\sum_{e \in \text{IN}(u)} x_e = \sum_{e \in \text{OUT}(u)} x_e & u \in V_{\text{SCC}} \\ &\sum_{e \in E_{\text{SCC}}} x_e \cdot w(e) \leqslant \vec{\nu} \\ &\sum_{e \in E_{\text{SCC}}} x_e \geqslant 1 \end{aligned}$$

## **Objectives** - witness

When d > 1, witness is a multi-cycle  $\mathcal{MC} = \{(C_1, m_1), \dots, (C_k, m_k)\}$ 

- C<sub>i</sub> is a simple cycle
- m<sub>i</sub> is its multiplicity

Out of the  $\mathcal{MC}$  we construct a (generally) non-periodic path



Here,  $\mathcal{MC} = \{(C_1, 1), (C_2, 2)\}$ , with  $C_1 = ((1, 2), (2, 1))$  and  $C_2 = ((3, 5), (5, 3))$ 

| Name    | N | $D_{\max}$ | Size (nodes) |         | Time (s) |      |
|---------|---|------------|--------------|---------|----------|------|
|         |   |            | Clairv.      | Product | Mean     | Max  |
| set B01 | 2 | 7          | 19           | 823     | 0.04     | 0.05 |
| set B02 | 2 | 8          | 26           | 1997    | 0.4      | 0.6  |
| set B03 | 2 | 9          | 34           | 4918    | 10       | 15   |
| set B04 | 3 | 7          | 19           | 1064    | 0.2      | 0.4  |
| set B05 | 3 | 8          | 26           | 1653    | 0.6      | 2    |
| set B06 | 3 | 9          | 34           | 7705    | 51       | 130  |
| set B07 | 4 | 7          | 19           | 1711    | 2.1      | 6.3  |
| set B08 | 4 | 8          | 26           | 3707    | 14       | 34   |
| set B09 | 4 | 9          | 44           | 10040   | 130      | 310  |
| set B10 | 5 | 7          | 19           | 2195    | 5.7      | 16   |
| set B11 | 5 | 8          | 32           | 9105    | 140      | 360  |
| set B12 | 5 | 9          | 44           | 16817   | 550      | 1300 |

(*i*) 
$$C_0 = 1$$
 (*ii*)  $C_{i+1} = \eta \cdot C_i - \sum_{j=0}^i C_j$ 

| Name   | $\eta$ | Taskset                   | Comp. Ratio |
|--------|--------|---------------------------|-------------|
| set C1 | 2      | $\{1, 1\}$                | 1           |
| set C2 | 3      | $\{1, 2, 3\}$             | 1/2         |
| set C3 | 3.1    | $\{1, 3, 7, 13, 19\}$     | 7/25        |
| set C4 | 3.2    | $\{1, 3, 7, 13, 20, 23\}$ | 1/4         |
| set C5 | 3.3    | $\{1, 3, 7, 14, 24, 33\}$ | 1/4         |
| set C6 | 3.4    | $\{1,3,7,14,24,34\}$      | 1/4         |

7

# EDF LTS



8