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• Concurrency - ubiquitous programming paradigm 

• Challenging to develop concurrent software

• Large interleaving space

• Concurrency bugs arise in production-level software

• Despite rigorous testing

• Data races : most common source of concurrency issues
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• Analyze source code

• Undecidable problem 

• Excessive false alarms

• Analyze executions at runtime

• Typically sound

• Widely adopted - TSan, Helgrind, etc.,
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t1 t2

1 acq(l)

2 w(x)

3 w(y)

4 r(x)

5 rel(l)

6 w(y)

• Sequences of events

• Event e = <t, op>

• t is the thread that performs e

• op is an operation

• Operations:

• Read/Write to memory locations

• Acquire and release of locks

• Well formed-ness

• At most one thread holds a lock at any time
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Correct reordering*
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Reorderings must satisfy some properties -
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*  Herlihy and Wing, Linearizability: A Correctness Condition for Concurrent Objects, TOPLAS 1990 

   Smaragdakis et al, Sound predictive race detection in polynomial time, POPL 2012

✔❌
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Some Notations

Let ρ be a sequence of events with Events(ρ) ⊆ Events(σ). 
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(i) For every lock , there is at most one unmatched acquire of  in ρ 
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(iii) RFρ ⊆ RFσ

ℓ ℓ
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A feasible trace ideal I of σ is a set of events such that
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There is no algorithm that solves the data race prediction problem for in time  

O(n2- ), for any >0, unless the Orthogonal Vectors conjecture fails.

≥ ≥ ≥
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for ideal realizability
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