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Diffusion processes

Natural spread through networks
propagation of information in social networks
spread of mutation in biological networks

Type of Diffusion process

1 Progressive:
independent cascade,
linear threshold,...

2 Non-Progressive:
Moran, Voter,...

This paper: Non-Progressive model that describes the spread of
mutation/novel-trait.
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Heterogeneous Moran Process - This Work
Graph: Population of n agents spread over nodes of graph G = (V,E,w).

Mutant Resident
Type of Agents

Fitness

Fitness Graph

⇒ t = 0: mutants X = S appear in the network.
⇒ t > 0: repeat Birth-Death steps until X = V or ¬X = V (X = ∅):

1 Birth: Pick a node uuu proportionally to its fitness, fX(u)
∑v∈V fX(v) .

2 Death: Pick an out-neighbor node vvv of uuu proportionally to
edge-weight w(u, v)w(u, v)w(u, v) and transfer the trait/type of uuu on vvv.

Petros Petsinis, Andreas Pavlogiannis, Josef Tkadlec, Panagiotis Karras AU, CU, KU

Seed Selection in the Heterogeneous Moran Process 3 / 13



Heterogeneous Moran Process - This Work
Graph: Population of n agents spread over nodes of graph G = (V,E,w).

Mutant Resident
Type of Agents

Fitness

Fitness Graph

⇒ t = 0: mutants X = S appear in the network.
⇒ t > 0: repeat Birth-Death steps until X = V or ¬X = V (X = ∅):

1 Birth: Pick a node uuu proportionally to its fitness, fX(u)
∑v∈V fX(v) .

2 Death: Pick an out-neighbor node vvv of uuu proportionally to
edge-weight w(u, v)w(u, v)w(u, v) and transfer the trait/type of uuu on vvv.

Petros Petsinis, Andreas Pavlogiannis, Josef Tkadlec, Panagiotis Karras AU, CU, KU

Seed Selection in the Heterogeneous Moran Process 3 / 13



Heterogeneous Moran Process - This Work
Graph: Population of n agents spread over nodes of graph G = (V,E,w).

Mutant Resident
Type of Agents

Fitness

Fitness Graph

⇒ t = 0: mutants X = S appear in the network.
⇒ t > 0: repeat Birth-Death steps until X = V or ¬X = V (X = ∅):

1 Birth: Pick a node uuu proportionally to its fitness, fX(u)
∑v∈V fX(v) .

2 Death: Pick an out-neighbor node vvv of uuu proportionally to
edge-weight w(u, v)w(u, v)w(u, v) and transfer the trait/type of uuu on vvv.

Petros Petsinis, Andreas Pavlogiannis, Josef Tkadlec, Panagiotis Karras AU, CU, KU

Seed Selection in the Heterogeneous Moran Process 3 / 13



Heterogeneous Moran Process - This Work
Graph: Population of n agents spread over nodes of graph G = (V,E,w).

Mutant Resident
Type of Agents

Fitness

Fitness Graph

⇒ t = 0: mutants X = S appear in the network.
⇒ t > 0: repeat Birth-Death steps until X = V or ¬X = V (X = ∅):

1 Birth: Pick a node uuu proportionally to its fitness, fX(u)
∑v∈V fX(v) .

2 Death: Pick an out-neighbor node vvv of uuu proportionally to
edge-weight w(u, v)w(u, v)w(u, v) and transfer the trait/type of uuu on vvv.

Petros Petsinis, Andreas Pavlogiannis, Josef Tkadlec, Panagiotis Karras AU, CU, KU

Seed Selection in the Heterogeneous Moran Process 3 / 13



Heterogeneous Moran Process - This Work
Graph: Population of n agents spread over nodes of graph G = (V,E,w).

Mutant Resident
Type of Agents

Fitness

Fitness Graph

⇒ t = 0: mutants X = S appear in the network.
⇒ t > 0: repeat Birth-Death steps until X = V or ¬X = V (X = ∅):

1 Birth: Pick a node uuu proportionally to its fitness, fX(u)
∑v∈V fX(v) .

2 Death: Pick an out-neighbor node vvv of uuu proportionally to
edge-weight w(u, v)w(u, v)w(u, v) and transfer the trait/type of uuu on vvv.

Petros Petsinis, Andreas Pavlogiannis, Josef Tkadlec, Panagiotis Karras AU, CU, KU

Seed Selection in the Heterogeneous Moran Process 3 / 13



Fixation Probability

Setting Parameters: Fitness graph G and a seed set of mutants S.

Fixation Probability: The probability fp
G
(S) that a seed set of

mutants S leads to fixation.

Fitness Graph Fitness Graph Fitness Graph
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Relation to other Moran Processes

Two-Graphs

Heterogeneous

Positional

Standard

Neutral

Mutant-Biased

Neutral: m(u) = r(u) = δ, ∀u ∈ V .
Standard: m(u) = 1 + δ and r(u) = 1, ∀u ∈ V, δ ≥ −1.
Positional: m(u) = 1 + δ, ∀u ∈ A ⊆ V and r(u) = 1, ∀u ∈ V, δ ≥ 0.
Mutant-Biased: m(u) ≥ r(u), ∀u ∈ V .
Heterogeneous: m(u) and r(u), ∀u ∈ V .
Two-Graphs: type-dependent fitness graphs Gm and Gr.
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Seed Selection - Fixation Maximization

Optimization Problem: Given a fitness graph G and a budget k,
which k nodes S∗ should initiate the mutant invasion so as to max-
imize the fixation probability?

S∗ = argmaxS,∣S∣=k fpG(S)

Results Overview:
1 FPRAS: for undirected mutant-biased G.
2 Inapproximability: NP-hard to

distinguish between maximum
fixation probability ϵ and 1 − ϵ.

3 NP-hardness of finding
S∗ = argmaxS,∣S∣=k fpG(S)
on mutant-biased G.

4 Approximations for mutant-biased G;
proving monotonicity and submodularity.
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FPRAS

The complexity of computing fp
G
(S) is OPEN even for the standard

model.

Lemma 1 - Expected Time
For undirected mutant-biased fitness graphs, the expected time to a

homogeneous state (X = V or ¬X = V ) is O(n2mmax

rmin
)
3
.

Approximate fp
G
(S) via monte-carlo simulations in P-time.
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Inapproximability

Theorem 1 - Inapproximation

For any 0 < ϵ < 1/2, it is NP-hard to distinguish between instances
with maxS fpG(S) ≤ ϵ and those with maxS fpG(S) > 1 − ϵ.

Proof.
Reduction from Set Cover; NP-hard to distinguish between
maximum fixation probability ≤ ϵ (¬Set Cover) and > 1 − ϵ (Set
Cover). There exist y = 1/O(n3) and x = O(n10) such that:

1

y

V1

V2

xxx

1 1

y y y y

1 1 1 1 1

1

y
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xxx

1 1

y y y y
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fp
G
(S) ≤ ϵ fp

G
(S) > 1 − ϵ
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NP-hardness for Mutant-Biased G

Theorem 2 - NP-hardness
For mutant-biased G, it is NP-hard to distinguish between instances
with maxS fpG(S) ≤ 1−n2n and those with maxS fpG(S) > 1−n2n.

Proof.
Reduction from Set Cover; NP-hard to distinguish between
maximum fixation probability ≤ 1−n2n (¬Set Cover) and > 1−n2n

(Set Cover). There exist y = O(1) and x = 2O(n logn) such that:
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Monotonicity and Submodularity

Loopy Process: In each time t, with mutants Xt =X, the
Birth-Death process runs on GX = (GX , (1,1)) with:

wX(u, v) =
⎧⎪⎪⎨⎪⎪⎩

fX(u)
fmax

⋅w(u, v), if u ≠ v
1 − fX(u)

fmax
(1 −w(u, v)), if u = v

Lemma 2 - Loopy Process
For any seed set, the Heterogeneous and Loopy Moran processes
share the same fixation probability.
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Monotonicity and Submodularity

Corollary 1- Monotonicity (Two-Graphs)

For any mutant-biased G and any two seed sets S ⊆ S′, it
holds fp

G
(S) ≤ fp

G
(S′) [Melissourgos et al., 2022, Corollary 6].

Proof.
Using Loopy-Process, we prove Heterogeneous ⊂ Two-Graphs.

Lemma 3 - Submodularity

For any mutant-biased G, function fp
G
(S) is submodular.

Proof.
Loopy-Processes fp

G
(S), fp

G
(T ), fp

G
,(S ∪ T ) and fp

G
(S ∩ T ). At

time t, node u reproduces with equal probability in all cases;
examine the probability that ∣Xt+1∣ ≥ ∣Xt∣ and prove:

fp
G
(S) + fp

G
(T ) ≥ fp

G
(S ∪ T ) + fp

G
(S ∩ T ).
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Approximations

Corollary 2 - Approximations

For undirected mutant-biased G, function fp
G
(S) is:

Monotone + Submodular
ÚÚÙ

(1-1/e)(1-1/e)(1-1/e) greedy approximation algorithm [Nemhauser, 1978]
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Results Overview
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1 FPRAS: for undirected mutant-biased G.
2 Inapproximability: NP-hard to distinguish between maximum

fixation probability ϵ and 1 − ϵ.
3 NP-hardness of finding S∗ = argmaxS,∣S∣=k fpG(S)

on mutant-biased G.
4 Approximations for mutant-biased G; proving monotonicity

and submodularity.

Thank you!
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