
CFL/Dyck Reachability: An Algorithmic Perspective

Andreas Pavlogiannis, Aarhus University, Denmark

CFL/Dyck reachability is a simple graph-theoretic problem: given a CFL/Dyck language L over an alphabet
⌃, a graph G = (V,E) of ⌃-labeled edges, and two distinguished nodes s, t 2 V , does there exist a path
from s to t that spells out a word in L? This simple notion of language-based graph reachability serves as
the algorithmic formulation of a large number of problems in diverse domains, such as graph databases
and program static analysis. This paper takes an algorithmic perspective on CFL/Dyck reachability, and
overviews several recent advances concerning the decidability and complexity of the problem and some its
close variants, as realized in the areas of automata theory and program verification.

1. INTRODUCTION
CFL/Dyck reachability, and variants thereof, have played a key role in the practice of
automated program analysis for several decades. In particular for static analyses, a
directed graph G = (V,E) serves as the program model, and paths in G capture control-
flow/data-flow information in an over-approximate manner. As this over-approximation
might be too coarse-grained to yield useful analysis results, the graph program model
is typically enhanced with a language component L over some alphabet ⌃; the latter
also labels (some of) the edges of G. Now, paths in G are considered to represent
valid program behavior only if the labels on their edges produce a word in L. The
language L is predominantly a CFL language, and often the Dyck language of properly-
balanced parenthesis words, and is used to faithfully model programming constructs
such as matching function calls with returns, or matching get- and set- field accesses in
composite objects. An example illustrating the use of Dyck languages for modeling field
accesses is given in Figure 1.

Once this graph-and-language theoretic modeling has taken place, the program analysis
reduces to a language-respecting reachability question in G. E.g., a path from a node s
to a node t that matches parentheses representing calling contexts is considered as a
valid execution of the program from control node s to control node t while respecting
function calls. Thus we have an instance of the CFL/Dyck reachability problem on G.
This language-based tightening of the program model, by filtering out invalid paths not

1 ...
2 f.x=a;
3 b=f.y;
4 c=f.x;
5 ...

a b

c

f
(x)y

)x

Fig. 1: Modeling program behavior with language graph reachability. Parentheses are
used to match field accesses on the composite object f . The balanced path a

(x�! f
)x�! c

captures the fact that a flows into c. On the other hand, as the path a
(x�! f

)y�! b is
imbalanced, it does not witness the flow of a into b.

ACM SIGLOG News 5 October 2022, Vol. 9, No. 4

respecting L, has found application in a truly numerous types of static analyses, such as
dataflow analysis, alias and pointer analysis, slicing, and many others; we relegate our
discussion on related work to Section 6. Naturally, as the problem is of vital importance
to practitioners, it has been a subject of very active study, in two respects.

(1) Algorithmic complexity, as faster CFL/Dyck reachability algorithms yield faster
static analyses.

(2) Problem variations that have different modeling power, thereby increasing the
analysis precision, while sub-classes often allow for faster algorithms

In this paper we overview recent algorithmic results (both positive and negative) for
the standard Dyck reachability problem, as well as some of its popular variants. Table I,
Table II and Table III summarize the main results.

Table I: The complexity of Dyck reachability wrt the number of paren-
thesis symbols k, on graphs of n nodes and m edges. The upper bounds
for k � 1 solve the all-pairs problem. BMM refers to Boolean Matrix
Multiplication.

Dk reachability Upper bound Lower Bound
k = 0 O(n+m)† ⌦(n+m)†

k = 1 O(n! · log2 n)‡ BMM-hard††

k � 2 O(n3/ log n)‡‡ 2NPDA-hard† † †

† This is plain graph reachability.
‡ [Mathiasen and Pavlogiannis 2021].
†† [Cetti Hansen et al. 2021].
‡‡ [Chaudhuri 2008].
† † † [Heintze and McAllester 1997].

Table I concerns Dyck reachability, denoted Dk reachability, where k stands for the
number of different parenthesis symbols over which the Dyck language is defined. The
setting of k = 0 denotes plain graph reachability as studied in standard textbooks on
algorithms, which can be solved in linear time. The case of k � 2 represents general
Dyck reachability, which is solvable in O(n3/ log n) time and is known to be complete
for the class of two-way nondeterministic pushdown automata (2NPDA-complete). The
setting of k = 1 lies in between the two and corresponds to the computational model
known as counter automata (or one-dimensional vector addition systems). This case
was recently shown to be solvable in essentially matrix-multiplication time, and this
bound is tight.

Table II: The complexity of Dyck reachability on bidirected graphs of n
nodes and m edges. The upper bounds refer to the all-pairs problem.

Dk reachability† Upper bound Lower Bound
Worst-case O(m+ n · ↵(n)) ⌦(m+ n · ↵(n))
Expected O(n+m) ⌦(n+m)

† All results from [Chatterjee et al. 2018].

Table II concerns Dyck reachability on a special class of graphs called bidirected graphs.
These graphs have the property that all edges come in both directions and are labeled
with complementary parenthesis symbols. This symmetry is reminiscent of undirect-

ACM SIGLOG News 6 October 2022, Vol. 9, No. 4

edness in plain graphs, and indeed turns reachability to an equivalence relation. This
restriction was recently shown sufficient to reduce the algorithmic complexity of Dyck
reachability down to almost linear, with matching lower bounds.

Table III: The complexity of interleaved Dyck reachability on graphs
of n nodes and m edges.

Dk reachability General Bidirected

D1 �D1 NL-complete† O(n3 · ↵(n))‡

Dk �D1
Decidability

Open PSPACE††

Dk �Dk Undecidable‡‡ Undecidable‡

† [Englert et al. 2016].
‡ [Kjelstrøm and Pavlogiannis 2022].
†† [Ganardi et al. 2022].
‡‡ [Reps 2000].

Finally, Table III concerns interleaved Dyck reachability. Here we have two Dyck lan-
guages, over different parenthesis alphabets, and reachability witnesses must respect
both languages. This is a very expressive formalism, essentially corresponding to
emptiness-testing for intersections of CFLs; as such the reachability problem is unde-
cidable. However, the restriction of interleaved reachability to bidirected graphs was
only recently explored, showing that the problem remains undecidable, but decidability
is obtained if we also restrict one (or both) languages to single parentheses.
Next, we take a closer look at the results listed in Table I, Table II and Table III, as
well as at some other related results.

2. PRELIMINARIES

General notation. Given a finite alphabet ⌃, we denote by ⌃✏ = ⌃ [{✏}. Given a
natural number n, we let [n] = {1, . . . , n}.

Edge-labeled graphs. We consider edge-labeled graphs G = (V,E), where V is a set
of nodes and E ✓ V ⇥ V ⇥ ⌃✏ is a set of edges, partially labeled with symbols from an
alphabet ⌃ (unlabeled edges receive the special label ✏). Hence, an edge e is of the form
e = (u, v,�) where u, v 2 V and � 2 ⌃ (sometimes written as u

��! v). Sometimes we are
only interested on the endpoints of an edge e, in which case we represent e = (u, v),
and we often write ⌃(u, v) = � to refer to the label � of the edge (u, v). A path P is a
sequence of edges (e1, . . . , er) and each ei = (xi, yi,�i) is such that for all 1 i r � 1,
we have yi = xi+1. The length of P is |P | = r. We extend the edge labeling to paths, and
denote by ⌃(P) = ⌃(e1)⌃(e2) . . .⌃(er) the label of P . We say that a node u is reachable
from node v if there exists a path P : u v.

Language reachability. Given some alphabet ⌃, consider a ⌃-labeled graph G =
(E, V) and some language L ✓ ⌃⇤. Two nodes u, v 2 V are L-reachable, denoted as
u L v, if there exists a path P : u v such that ⌃(P) 2 L. Thus, language reachability
refines the standard notion of graph reachability by requiring that a path witnessing
reachability also produces a word that belongs to the corresponding language. This
notion is closely related to the emptiness of the intersection of L with a regular language.
Indeed, we may treat G as a non-deterministic finite automaton with u being the

ACM SIGLOG News 7 October 2022, Vol. 9, No. 4

initial state and v being the final state, defining some regular language LG. Hence,
the language reachability question for u and v is deciding whether LG \ L = ;. We
will maintain our view of language reachability as opposed to language emptiness, to
emphasize the fact that the problem is studied with respect to graphs G of varying
size and properties, while L is some fixed language with a constant-size syntactic
description.

CFL and Dyck reachability. When L is a context-free language (CFL), the language-
reachability problem is known as CFL reachability. Here we assume without loss
of generality that CFL is specified via a corresponding context-free grammar (CFG)
G = (N ,⌃,R,S), where N is a set of non-terminals, R is a set of production rules, and
S 2 N is the initial non-terminal. We also assume that G is given in Chomsky normal
form, which is also a frequent assumption of algorithms solving the CFL memberhip
problem. Given a non-terminal A 2 N and a word � 2 ⌃⇤, we denote by A ` � the fact
that A produces � according the rules of G.

One specific class of CFL languages that is frequently used in CFL reachability is
that of Dyck languages. A Dyck language Dk, parameterized by some natural number
k 2 N, is defined with respect to a matched alphabet ⌃ = ⌃O [⌃C , where ⌃O =
{↵1, . . . ,↵k} and ⌃C = {↵1, . . . ,↵k}. Every ↵i is matched by the corresponding ↵i. It is
common to interpret ↵i as an opening a parenthesis (i, and ↵i as a closing parenthesis
)i, and Dyck languages be called parenthesis languages. For notational clarity, we will
stick to ↵i and ↵i, but call them “parentheses”. The Dyck language is the language of
all properly-balanced parenthesis words, generated by the following grammar.

S ! S S | A1 A1 | . . . | Ak Ak | ✏ ; Ai ! ↵i S ; Ai ! S ↵i

As a corner case, we take D0 = ⌃⇤, i.e., we have plain graph reachability.

3. CFL AND DYCK REACHABILITY
In this section we present the main results on standard CFL and Dyck reachability.

3.1. An Algorithm for CFL/Dyck Reachability
We begin with the standard algorithm on CFL reachability, which naturally also solves
reachability over Dyck languages. The input is a labeled graph G = (V,E), and a CFG
G defining the respective CFL L.

The basic algorithm for CFL/Dyck reachability. The basic algorithm for comput-
ing CFL reachability can be seen as a generalization of the standard CYK algorithm
that solves the membership problem for CFLs. The algorithm expects the input gram-
mar G in Chomsky normal form, and performs a fixpoint computation on G, by inserting
an edge u

C�! v in G whenever it discovers that there is a path P : u v such that
C ` ⌃(P). In the end, we have that u L v iff the algorithm has produced an edge u

S�! v,
where S is the initial non-terminal symbol of G. Algorithm 1 gives the algorithm in
pseudocode, while Figure 2 shows the main saturation steps of Line 16 and Line 23.

Correctness and complexity. The soundness of the algorithm is captured in the
following statement: for every triplet (u, v, A) inserted in W , there exists a path P : u v
such that A ` ⌃(P). This can be shown by a straightforward induction on the elements
inserted in W. The completeness is captured by an analogous invariant, namely: for
every pair of nodes u, v such that there exists a path P : u v such that A ` ⌃(P), the
algorithm will insert a triplet (u, v, A) in W. This can be shown by an induction on
the depth of the derivation tree that witnesses A ` ⌃(P). Regarding the running time,

ACM SIGLOG News 8 October 2022, Vol. 9, No. 4

Algorithm 1: The basic algorithm for CFL/Dyck reachability.
Input: A ⌃-labeled graph G = (V,E), a CFG G for a language L ✓ ⌃⇤.
Output: {(u, v) : u L v}.
// Initialization

1 Initialize a worklist W
2 foreach rule A ! a in G do
3 foreach edge u

a�! v in G do
4 Insert u A�! v in G
5 Insert (u, v,A) in W
6 end
7 if a = " then
8 foreach node u do
9 Insert u A�! u in G

10 Insert (u, v, A) in W
11 end
12 end

// Computation

13 while W 6= ; do
14 Extract a triplet (u, v, A) from W
15 foreach rule C ! AB in G do
16 foreach edge v

B�! w in G do
17 if u C�! w is not an edge in G then
18 Insert u C�! w in G
19 Insert (u,w,C) in W
20 end
21 end
22 foreach edge w

B�! u in G do
23 foreach rule C ! BA in G do
24 if w C�! v is not an edge in G then
25 Insert w C�! v in G
26 Insert (w, v, C) in W
27 end
28 end
29 end
30 return {(u, v) : u S�! v is an edge in G}

u v w
A B

C

u vw
AB

C

Fig. 2: Combining a newly-discovered edge u
A�! v with the grammar rules C ! AB

(left) and C ! BA (right).

if G has n nodes then the algorithm takes O(n3) time in the worst case. To see this,
observe that every triplet (u, v,A) is inserted in W at most once, hence we can bound
the number of times that the while loop is executed by O(n2). Each iteration takes time
O(n), by iterating over the neighbors of u and v in G, leading to a total bound of O(n3).

A logarithmic speedup. The cubic bound of Algorithm 1 can be slightly improved to
O(n3/ log n) by making use of the standard “four Russians” technique [Arlazarov et al.
1970]. In algorithmic parlance, the technique is also known under the term “word tricks”.
The key idea is that sets representing the edges adjacent to a node and labeled with a
specific symbol A can be represented as bit sets. In the RAM model, a single machine
word consists of ⇥(log n) bits, hence each set is represented using O(n/ log n) machine
words. Basic set operations such as union, intersection and complementation amount
to bit-wise logical OR, AND and XOR operations, which, when applied on machine
words, require O(n/ log n) time, as opposed to O(n) time, yielding a logarithmic speedup.
Moreover, the set difference X = Y \Z can be computed in time O(|X|+n log n), by first
computing X in O(n log n) time using set operations, and then repeatedly retrieving the
most significant bit of X in O(1) time, setting it to zero, and repeating.

ACM SIGLOG News 9 October 2022, Vol. 9, No. 4

These fast operations on sets are directly applicable to Algorithm 1. Instead of iterating
over w with v

B�! w in Line 16, we iterate over all such w for which we don’t have u
C�! w.

This amounts to computing the difference between the set storing the edges v
B�! w and

u
C�! w, using word tricks. The same applies to Line 23, yielding a total running time

of O(n3/ log n), by counting O(n2) time for adding new edges to G, plus O(n2 · n/ log n)
time for computing these set differences. This speedup of Algorithm 1 by using word
tricks was observed in [Chaudhuri 2008], resulting in the following theorem.

THEOREM 3.1 ([CHAUDHURI 2008]). Dyck reachability on connected graphs of n
nodes can be solved in O(n3/ log n) time.

A sub-quadratic bound for output-sparse graphs. In several application domains,
it has been observed that the graph G remains sparse at the end of Algorithm 1, i.e.,
after all new edges have been added to it [Sridharan and Fink 2009; Zhang et al. 2013].
It is thus natural to consider the complexity of the algorithm as a function of the number
of edges at the end of the algorithm. The key insight is that the total running time of
Algorithm 1 can be bounded by the number of edges plus the number of triangles in
G at the end of the algorithm. Indeed, observe that every saturation step of Figure 2
produces a triangle in G, and the number of triangles precisely counts the total work
performed in Line 16 and Line 23. It is well known that a graph of m edges has O(m3/2)
triangles [Suri and Vassilvitskii 2011], which results in the following theorem.

THEOREM 3.2. Algorithm 1 takes O(m3/2) time on graphs that have m edges at the
end of the algorithm.

Theorem 3.2 yields the following corollary for output-sparse graphs, i.e., when m = O(n).

COROLLARY 3.3. Algorithm 1 takes O(n2) time on output-sparse graphs.

3.2. Lower Bounds
The cubic bound of Theorem 3.1, and the lack of any considerable improvement on it
over the years, has lead researchers into investigating lower bounds for the problem. As
usual, such lower bounds are conditional instead of absolute, i.e., they have the general
form “problem A cannot be solved in time faster than tA as long as problem B cannot
be solved in time faster than tB”.

2NPDA completeness. The first such lower bound was shown for CFL reachability
in [Heintze and McAllester 1997].

THEOREM 3.4 ([HEINTZE AND MCALLESTER 1997]). CFL reachability is 2NPDA-
complete.

2NPDA is the class of languages (or problems) defined by two-way nondeterminis-
tic pushdown automata. It is known that problems in 2NPDA are solvable in cubic
time [Aho et al. 1968], but no truly subcubic algorithm is known to date. Rytter ob-
tained a log n improvement for such problems [Rytter 1985], and further a log2 n im-
provement for the subclass of 2NPDA recognized by loop-free automata [Rytter 1986].
Naturally, these logarithmic improvements translate to CFL reachability. The log n
improvement has already been described in Section 3.1; the log2 n improvement was
obtained in [Chaudhuri 2008], established for the class of bounded-stack Recursive
State Machines (RSMs), that can be seen as an analogue to loop free two-way automata.

Dyck reachability and Boolean Matrix Multiplication. The complexity of CFL
parsing has been studied extensively. The textbook-standard CYK algorithm follows

ACM SIGLOG News 10 October 2022, Vol. 9, No. 4

a dynamic-programming approach and solves the problem in O(n3) time, for a word
of length n [Hopcroft et al. 2001]. Valiant’s famous parser [Valiant 1975] reduces the
CFL-recognition to Boolean Matrix Multiplication (BMM), achieving a the improved
bound of O(n!), where ! ' 2.372 is the BMM exponent. Note that this subcubic bound
is based on fast-matrix-multiplication algorithms. If we only focus on combinatorial
algorithms, the parsing problem is known to admit no O(n3�") algorithms, for an fixed
" > 0, under the combinatorial BMM hypothesis (i.e., assuming that BMM has no truly
subcubic combinatorial algorithm) [Lee 2002]. As CFL reachability can be seen as a
generalization of CFL parsing (a word can be encoded as a path-graph), the BMM
lower-bound holds for CFL reachability as well. On the other hand, recognizing Dyck
languages can be done in O(n) time, by a simple left-to-write pass on the input word.
Thus, one might hope that Dyck reachability on graphs that are “path-like”, Dyck
reachability can be performed in sub-cubic time. Unfortunately, this turns out to not
be the case, at least if we interpret “path-like” graphs as graphs that have bounded
pathwidth [Robertson and Seymour 1983].

THEOREM 3.5 ([CHATTERJEE ET AL. 2018]). Dyck reachability is BMM-hard, even
on graphs with bounded pathwidth.

The proof of Theorem 3.5 reduces the general CFL-parsing problem, which is known
to be BMM-hard [Lee 2002], to Dyck reachability. It is conceptually close to the Chom-
sky–Schützenberger representation theorem [Chomsky and Schützenberger 1963],
where the graph G plays the role of the regular language in the theorem.

SETH and subcubic certificates. The area of fine-grained complexity is concerned
with lower bounds of problems in PTime, and in particular, in bounding the degree of the
polynomial expressing the complexity of the problem. Reducibility between problems
in PTime is done using fine-grained reductions. Given two problems A and B, and
functions tA, tB : N ! N, a fine-grained reduction from (A, tA) to (B, tB) is an algorithm
that transforms every instance I of A to an instance J of B such that

(1) I is positive iff J is positive,
(2) the running time of the reduction is tA(|I|)1�� , for some fixed � > 0, and
(3) for any fixed " > 0 there is a fixed � > 0 such that tB(|J |)1�" = O(tA(|I|))1��.

Such a reduction implies that if B admits a polynomial complexity improvement over
tB (i.e., a time bound sublinear in tB), then A also admits a polynomial complexity
improvement over tA. Thus, taking as a hypothesis that tA is a lower bound for A, we
obtain that B has a ⌦(tB) is lower bound.

One of the most popular hypotheses in fine-grained complexity theory is the Strong
Exponential Time Hypothesis (SETH), which roughly conjectures that for any fixed
" > 0, as ` increases, `-SAT over n variables cannot be solved in time 2(1�")n. A very
natural question is, thus, whether CFL/Dyck reachability can be shown to have a cubic
lower bound based on SETH. A recent work investigated this relationship, showing that
CFL/Dyck reachability admits subcubic certificates, which has negative implications
for the question at hand [Chistikov et al. 2022]. A problem A admits positive (resp.,
negative) certificates of size s, if there is an algorithm M such that

— for every positive (resp., negative) instance I of A there exists a word c of length s
such that M(I, s) accepts in time s, and

— for every negative (resp., positive) instance I 0 of A, for every word c0 of length s, we
have that M(I, s) rejects in time s.

ACM SIGLOG News 11 October 2022, Vol. 9, No. 4

The following theorem is based on showing that (i) positive instances of Dyck reacha-
bility admit certificates of size O(n2), while (ii) negative instances admit certificates
of size O(n!). Roughly speaking, the certificates for positive instances are similar to
the usual backpointers stored in the dynamic-programming table of CYK parsing in
order to recover a parse tree [Hopcroft et al. 2001], relating every pair of nodes (u, v) of
G with a non-terminal Nu,v that can be produced via a path u v. For the certificate to
be verifiable in O(n2) time, it also stores in (u, v) a rule that produces Nu,v, as well as
the intermediate node w for which Nu,w and Nw,v are the right-hand sides of that rule
(i.e., we have Nu,v ! Nu,wNw,v). The certificates for negative instances are somewhat
more complex. The intuition is to capture in the certificate the state of Algorithm 1
at saturation, i.e., when no more edges can be inserted in G, while s

S�! t is not an
edge of G. Naturally, this can be achieved by iterating over all rules C ! AB and all
paths of length two u

A�! v
B�! v, and verifying that u C�! v is also in G; however, naively

computing this requires ⇥(n3) time. The trick is to encode this computation as a fixed
number of BMMs, and rely on fast BMM to reduce the cubic bound to n!.

THEOREM 3.6 ([CHISTIKOV ET AL. 2022]). Dk reachability admits certificates of
length O(n!).

The Nondeterministic SETH (NSETH) is a hypothesis analogous to SETH, which
roughly excludes 2(1�")n algorithms for solving `-TAUT, as ` increases [Carmosino et al.
2016]. An important implication of NSETH is that, if a problem admits certificates of
size s, it cannot be shown to have a SETH-based lower bound of size polynomially larger
than s. Concretely, for our setting, Theorem 3.6 implies the following corollary.

COROLLARY 3.7 ([CHISTIKOV ET AL. 2022]). For any fixed " > 0, there is no fine-
grained reduction from (SAT, 2n) to (Dk reachability, n!+"), under NSETH.

3.3. The Case of k = 1

In this section we turn our attention to Dyck reachability over k = 1 parenthesis symbol.
The conceptual stack that is associated with the language now acts as a counter, where
an opening-parenthesis edge u

↵�! v increases the counter and a closing parenthesis
edge u

↵�! v decreases the counter. A path witnessing reachability must ensure that
(i) the counter remains non-negative along the path, and (ii) the counter becomes 0 at
the end of the path. Under this interpretation, we use +1 (resp., �1) to represent an
opening (resp., closing) parenthesis. The setting is also known as counter automata, or
one-dimensional vector addition systems with states. Naturally, the general cubic upper
bound of Theorem 3.1 applies for k = 1. However, this setting admits an improved upper
bound, which is further matched by an almost-tight lower bound.

Upper bound. One important property of D1 reachability is that reachability witnesses
are, without loss of generality, polynomially bounded in length. In particular, if v is
D1-reachable from u, then there exists a witness path of length L = O(n2) [Deleage and
Pierre 1986]. In contrast, shortest witnesses for D2 reachability can be exponentially
long [Pierre 1992]. The key idea behind the algorithm for D1 reachability is to reduce
the problem to O(log2 n) plain, all-pairs reachability instances, and use fast matrix
multiplication to solve each of them. The algorithm comes in two steps.

Step 1: Reachability with respect to the language (+1)`(�1)`. Consider the language
L= = (+1)`(�1)`, i.e., all counter increments precede counter decrements. Pictorially,
paths P with �(P) 2 L= exhibit a single local maximum on the counter value. There
is a simple algorithm to solve reachability with respect to L=, that is a combination of

ACM SIGLOG News 12 October 2022, Vol. 9, No. 4

G G1

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

e1

e2

e3

G2

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

e1

e2

e3

G3

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

e1

e2

e3

a

bc

d

e

+1

+1

+1 �1�1

Fig. 3: Illustration of Algorithm 2 on the Dyck graph G (left). L= reachability in G as
witnessed by paths P : x y with maximum counter value 2i�1 is captured in graph
Gi (right) by the path x1 y1. Dashed edges in Gi represent the summarization of the
path, which is carried over to Gi+1 as a single edge.

saturation with successive doubling. The algorithm constructs a sequence of O(log n)
plain (i.e., not labeled) digraphs (Gi = (K,Ri))i. The node set K is common to all Gi

and consists of three copies x1, x2, x3 for every node x 2 V . In iteration i, the algorithm
performs all-pairs reachability in Gi, and using this information, constructs the edge set
Ri+1. Each Gi consists of three copies of G, where L=-labeled paths of maximum counter
value at most 2i�1 are summarized as ✏-labeled edges in the first and second copy. Paths
between the nodes in the first and third copy are used to summarize monotonically
increasing and (resp., decreasing) paths in G with counters reaching 2i (resp., �2i). We
refer to Algorithm 2 for a detailed description and to Figure 3 for an illustration.

Algorithm 2: Algorithm for L= reachability.
Input: A Dyck graph G = (V,E)

Output: A set {(x, y)}x,y2V such that x L=y.
// Initialization

1 Construct a node set K = {x1, x2, x3 : x 2 V }
2 Construct an edge set R1, initially R1 ;
3 foreach j 2 [2] do
4 Insert xj �! yj 2 R1 iff x ✏�! y 2 E

5 Insert xj �! yj+1 2 R1 iff x +1��! y 2 E

6 Insert yj+1 �! xj 2 R1 iff x �1��! y 2 E
7 end
8 Construct the graph G1 = (K,R1)
9 Let L an upper bound on d(x, y) for all

x, y 2 V

// Computation

10 foreach i 2 [dlogLe] do
11 Compute all-pairs reachability in Gi

12 Construct an edge set Ri+1, initially
Ri+1 ;

13 foreach j 2 [2] do
14 Insert xj �! yi 2 Ri+1 iff x1 y1 in Gi

15 Insert xj �! yj+1 2 Ri+1 iff x1 y3 in Gi

16 Insert yj+1 �! xj 2 Ri+1 iff y3 x1 in Gi

17 end
18 Construct the graph Gi+1 = (K,Ri+1)
19 end
20 return RdlogLe+1

Step 2: D1 reachability. Observe that L= ✓ D1, i.e., if two nodes are L=-reachable then
they are also D1-reachable. Of course the opposite is not true, as the counter along
reachability witnesses may exhibit many local maxima. Nevertheless, consider that
we apply Algorithm 2 for reachability with respect to L= on G. We may attempt to
identify all such reachable pairs x L= y, and insert edges x

✏�! y in G, in order to
directly represent L=-reachability information. Let G2 be the resulting graph, and let

ACM SIGLOG News 13 October 2022, Vol. 9, No. 4

Path

C
ou

nt
er

Fig. 4: Illustration of a path P in graph Gi (black) and its summarization path P 0 in
graph Gi+1 (gray). The number of local maxima in P 0 is at most half of that in P .

G1 = G. Naturally, D1 reachability on G1 coincides with that on G2. Observe, however,
that certain nodes that were D1-reachable in G1 but not L=-reachable, now become
L=-reachable in G2 (e.g., this occurs when the witness path in G1 exhibits the counter
sequence +1,�1,+1,+1,�1,�1). We may thus feel tempted to repeat this process on
G2, thereby obtaining another graph G3, and so on. The obvious question is: is there
a bound on how many iterations we have to go through until we have discovered all
D1-reachable pairs? The crucial observation is as follows: for all i, if x D1 y is witnessed
in Gi by a path with ` > 1 local maxima, then x D1 y is witnessed in Gi+1 by a path with
 d`/2e local maxima. Figure 4 provides an illustration.
Since D1-reachability witnesses are polynomially bounded in length, and the number of
local maxima of a path cannot exceed its length, it follows that after dlogLe iterations,
x D1 y resorts to reachability with respect to L= in GdlogLe. Overall, the algorithm
for D1 reachability simply performs dlogLe = O(log n) repetitions of L=-reachability
operations. We thus have the following theorem.

THEOREM 3.8 ([MATHIASEN AND PAVLOGIANNIS 2021]). D1 reachability on
graphs of n nodes can be solved in O(n! · log2 n) time, where ! 2.373 is the
matrix-multiplication exponent.
An interesting aspect of Theorem 3.8 is that, similarly to Theorem 3.1 concerning the
general case, the upper bound also holds for all-pairs reachability.

Lower bounds. Observe that Theorem 3.8 solves all-pairs Dyck reachability (over
k = 1) in essentially the same time as all-pairs plain reachability (over k = 0). As the
latter problem is at least as hard as BMM, it follows that the bound of Theorem 3.8 is
essentially tight for the all-pairs version. On the other hand, single-pair plain reach-
ability can be solved in time linear in the size of the graph. It is thus natural to ask
whether the O(n! · log2 n) bound for single pair Dyck reachability (over k = 1) is tight.
Here we sketch a recent proof [Cetti Hansen et al. 2021] that this is indeed the case.
The proof follows a fine-grained reduction from the problem of triangle-detection: given
an undirected graph H = (R, T), does H contain a triangle (i.e., a clique of size 3)?
Triangle detection can be reduced to matrix multiplication, and can thus be solved in
O(n3) time by combinatorial algorithms, and in O(n!) time in general. Interestingly, it
was recently shown that neither bound admits polynomial improvements, under the
(combinatorial, for the former) BMM hypothesis [Williams 2019].

Reduction. Consider an instance H = (R, T) of the triangle detection problem, and we
construct a labeled graph G = (V,E) as follows. We assume without loss of generality
that R = [`], i.e., it is the set of integers {1, . . . , `}. The set of nodes of G is V =
{s, t}[

S
i2[`]{ai, bi, ci, di} i.e., we have four nodes in V per node i 2 R, plus two auxiliary

ACM SIGLOG News 14 October 2022, Vol. 9, No. 4

1

23

4

s a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

t
+1

+1

+1

+1 �1

�1

�1

�1

Fig. 5: An input graph H (left) and the labeled graph G constructed in our reduction
(right). The path s, a1, b2, c3, d1, t in G is a witness of the triangle (1, 2, 3) in H.

nodes. The edge relation is E = A [B [C, where A = {s +1��! a1, d1
�1��! t}, and

B =
[

(i,j)2E

{ai
0�! bj , bi

0�! cj , ci
0�! dj} C =

[

i2[`�1]

{ai
+1��! ai+1, di+1

�1��! di}

Figure 5 provides an illustration. It is easy to verify that t is reachable from s iff H has
a triangle, which leads to the following theorem.

THEOREM 3.9 ([CETTI HANSEN ET AL. 2021]). D1 reachability on graphs of n
nodes requires ⌦(n!) time, where ! is the matrix multiplication exponent.
Given Theorem 3.9, the upper bound established in Theorem 3.8 is thus optimal (modulo
polylogarithmic improvements). Finally, as the reduction towards Theorem 3.9 is a
combinatorial one, it also implies a combinatorial cubic lower bound for the problem.

COROLLARY 3.10. For any fixed " > 0, there is no combinatorial algorithm for D1

reachability operating in O(n3�") time on graphs of n nodes, under the combinatorial
BMM hypothesis.

3.4. Reachability on Recursive State Machines
One important class of CFL reachability is reachability on Recursive State Machines
(RSMs) [Alur and Madhusudan 2004]. From a static analysis perspective, RSMs natu-
rally model the organization of a program into functions, and capture analysis sensitiv-
ity in calling contexts. Although RSM reachability is equivalent to CFL reachability,
one can express the complexity of RSM reachability with respect to certain parameters
of the RSM, as opposed to the generic cubic bound O(n3) for CFL reachability on graphs.
This expression often yields a sub-cubic (or even linear!) upper bound when these
parameters remain small, which is a common case in static analyses. In the following
we give a formal account of RSMs and their reachability problem.

Recursive State Machines. A recursive state machine (RSM) is a tuple R =
hM1, . . . ,Mki, where every module Mi = hBi, Yi, Ni, �ii is given by
— a finite set Bi of boxes,
— a mapping Yi : Bi 7! [k],
— a finite set Ni = Ini [Eni [Ex i [Call i [Ret i of nodes, partitioned into

— internal nodes Ini,
— entry nodes Eni,
— exit nodes Ex i,
— call nodes Call i = {hb, ei | b 2 Bi and e 2 EnYi(b)},
— return nodes Ret i = {hb, xi | b 2 Bi and x 2 ExYi(b)},

ACM SIGLOG News 15 October 2022, Vol. 9, No. 4

— a transition relation �i ✓ (Ini [Eni [Ret i)⇥ (Ini [Ex i [Call i),

We write B for
S

k

i=1 Bi, and similarly for N , In, En, Ex , Call , Ret , �. An important
parameter of RSMs is the number of entry and exit nodes of the modules. In particular,
we let ✓e = max1ik |Eni| and the exit bound ✓x = max1ik |Ex i|, i.e., the maximum
number of entries and exits, respectively, over all modules. A stack is a sequence of
boxes S = b1 . . . br, where b1 is the top; and " is the empty stack. For a box b and a stack
S, we denote with bS the concatenation of b and S, i.e., a push of b onto the top of S.

Configurations and transitions. A configuration of an RSM R is a tuple hu, Si, where
u 2 In [En [Ret is an internal, entry, or return node, and S is a stack. For S = b1 . . . br,
where bi 2 Bji for 1 i r and some ji, we require that Yji(bi) = ji�1 for 1 < i r, as
well as u 2 NYj1 (b1)

. This captures the case that the control is inside the module of node
u, which was entered via box b1 from module Mj1 , which was entered via box b2 from
module Mj2 , and so on. We define a transition relation =) over configurations such that
hu, Si =) hu0, S0i iff there exists a transition t 2 �i and one of the following holds:

(1) Internal transition: u0 2 Ini, t = hu, u0i, and S0 = S.
(2) Call transition: u0 = e 2 EnYi(b) for some box b 2 Bi, t = hu, hb, eii, and S0 = bS.
(3) Return transition: u0 = hb, xi 2 Ri for some box b 2 Bi and exit node x 2 ExYi(b),

t = hu, xi, and S = bS0.

For any module Mi and two nodes s, t 2 Ni, we say that t is reachable from s if
hs, ✏i =)⇤ ht, ✏i, where =)⇤ is the reflexive transitive closure of =). Observe that RSM
reachability coincides with Dyck reachability, if we interpret the RSM as a graph,
and call and return transitions are labeled with opening and closing parenthesis,
respectively, parameterized by the box they start from, and end to, respectively.

THEOREM 3.11 ([ALUR AND MADHUSUDAN 2004; CHATTERJEE ET AL. 2017]).
RSM reachability can be solved in O(m · ✓ + n · ✓2) time, on an RSM with n nodes and
m edges, where ✓ = min(✓e, ✓x) and ✓e (resp., ✓x) is the entry bound (resp., exit bound).

When ✓ = ⌦(n), Theorem 3.11 yields the familiar cubic bound. However, in several
static analyses, the modeling yields ✓ = O(1), which leads to a linear bound.

4. DYCK REACHABILITY ON BIDIRECTED GRAPHS
In this section we turn our attention to Dyck reachability on a special class of graphs
called bidirected. Recall that Dyck languages are defined over a parentheses al-
phabet ⌃ = ⌃O [⌃C , where ⌃O = {↵1, . . . ,↵k} are the opening parentheses, and
⌃C = {↵1, . . . ,↵k} are the closing parentheses. A graph G = (V,E) is called bidirected

if for all u, v 2 V and f 2 ⌃✏, we have u
f�! v 2 E iff v f�! u 2 E, where ↵i = ↵i and

✏ = ✏. Bidirectedness is the analogue of undirectedness on plain graphs, as it turns
reachability to an equivalence: any path P : u v now can be reversed to P : v u
with �(P) = �(P). Thus, if P witnesses the Dyck reachability of v from u, P witnesses
the Dyck reachability of u from v. The nodes of G are hence partitioned into Dyck
Strongly Connected Components (DSCCs), which are maximal subsets of V containing
inter-reachable nodes. In contrast to standard SCCs, all paths witnessing reachability
between two nodes in a DSCC might have to traverse nodes outside the DSCC.

For economy of presentation, in this section we only refer to edges labeled with a closing
parenthesis symbol (or have an empty label), with the understanding that the reverse,
complementary-labeled edges are implied.

ACM SIGLOG News 16 October 2022, Vol. 9, No. 4

Upper Bound. The equivalence property hints on a simple principle for computing
DSSCs. The idea is that for any two distinct nodes u, v to belong to some DSCC X, there
must exist two (not necessarily distinct) nodes x, y that belong to some DSCC Y , and a
closing parenthesis ↵i such that x ↵i�! u, y

↵i�! v 2 E. See Figure 6 for an illustration.

xu vz
↵

↵ ↵

↵↵

↵

↵,↵

(a)

xu vz
↵

↵ ↵

↵↵

↵

↵,↵

(b)

xu vz
↵

↵ ↵

↵↵

↵

↵,↵

(c)

Fig. 6: Illustration of the merging principle on bidirected graphs . (6a) Nodes u and v
are in the same DSCC since node x has an outgoing edge to each of u and v labeled with
↵. (6b) Similarly, nodes z and v belong to the same DSCC, since there exist two nodes u
and v such that (i) u and v belong to the same DSCC, (ii) u has an outgoing edge to z,
and v has an outgoing edge to itself, and (iii) both outgoing edges are labeled with the
same closing parenthesis symbol. (6c) The final DSCC.

s

tu

v

w x

y

z

↵1

↵2

↵1

↵2

↵3

↵3

↵2

Fig. 7: A state of Algorithm 3 consists of a set of trees, with outgoing edges coming only
from the root of each tree.

z

tu

v

w x

y

s

↵1,↵2

↵2

↵2

↵3

(a)

v

tu

z

w x

y

s

↵1,↵2, ↵3

↵2

(b)

Fig. 8: The intermediate stages of Algorithm 3 starting from the state of Figure 7.

ACM SIGLOG News 17 October 2022, Vol. 9, No. 4

Algorithm 3: Algorithm for Dk reachability
Input: A ⌃k-labeled bidirected graph G = (V,E)
Output: A DisjointSets map of DSCCs
// Initialization

1 Q an empty queue
2 Edges a map V ⇥ ⌃C ! V ⇤ implemented as a linked list
3 DisjointSets a disjoint-sets data structure over V
4 foreach u 2 V do
5 DisjointSets.MakeSet(u)
6 for i 1 to k do
7 Edges[u][↵i] (v : (u, v,↵i) 2 E)
8 if |Edges[u][↵i]| � 2 then Insert (u,↵i) in Q
9 end

10 end
// Computation

11 while Q is not empty do
12 Extract (u,↵i) from Q
13 if u = DisjointSets.Find(u) then
14 Let S {DisjointSets.Find(w) : w 2 Edges[u][↵i]}
15 if |S| � 2 then
16 Let x some arbitrary element of S \ {u}
17 Make DisjointSets.Union(S, x)
18 for j 1 to k do
19 foreach v 2 S \ {x} do
20 if u 6= v or i 6= j then
21 Move Edges[v][↵j] to Edges[x][↵j]
22 else
23 Append (x) to Edges[x][↵j]
24 end
25 end
26 if |Edges[x][↵j]| � 2 then Insert (x,↵j) in Q
27 end
28 else
29 Let x the single node in S
30 end
31 if u 62 S or |S| = 1 then Edges[u][↵i] (x)
32 end
33 return DisjointSets

The above principle can be directly turned into an algorithm that repeatedly computes
DSCCs (see Algorithm 3). For efficiency, we use a Disjoint Sets data structure to
maintain DSCCs discovered so far. Each DSCC is represented as a tree T rooted on
some node x 2 V , and x is the only node of T that has outgoing edges. However, any node
of T can have incoming edges. See Figure 7 for an illustration. Upon discovering that a
root node x of some tree T has two or more outgoing edges x ↵i�! u1, x

↵i�! u2, . . . , x
↵i�! ur,

for some ↵i, the algorithm uses r Find operations of the Disjoint Sets data structure
to determine the trees Ti that the nodes ui belong to. Afterwards, a Union operation is
performed between all Ti to form a new tree T , and all the outgoing edges of the root of
each Ti are merged to the outgoing edges of the root of T . Figure 8 illustrates this step.
The running time of Algorithm 3 is O(m) time to process all edges of G, plus O(n) union
operations, each amortizing time ↵(n) (or O(1) time in expectation). We thus arrive at a
significant improvement over the cubic bound of Theorem 3.1.

ACM SIGLOG News 18 October 2022, Vol. 9, No. 4

THEOREM 4.1 ([CHATTERJEE ET AL. 2018]). Dyck reachability on bidirected
graphs of n nodes and m edges can be computed in O(m+ n · ↵(n)) time, and O(n+m)
expected time.

Lower Bound. Given the closeness of bidirected Dyck reachability to plain reachability
on undirected graphs, it is perhaps tempting to remove the ↵(n) factor in Theorem 4.1,
leading to the truly linear bound O(n+m). Unfortunately, it turns out that this is not
the case, i.e., the factor ↵(n) is necessary. The key insight is that Dyck reachability on
bidirected graphs can encode the Union-Find problem, which suffers the ⌦(n · ↵(n))
lower bound [Tarjan 1979; Banachowski 1980].

THEOREM 4.2 ([CHATTERJEE ET AL. 2018]). Any Dyck-reachability algorithm for
bidirected graphs with n nodes and m = ⌦(n) edges requires ⌦(m+ n · ↵(n)) time.

5. INTERLEAVED BIDIRECTED DYCK REACHABILITY
In this section we turn our attention to interleaved bidirected Dyck reachability. This
setting concerns two Dyck languages, on separate alphabets, that are interleaved: a
path witnessing reachability must produce, simultaneously, properly parenthesis words,
one for each Dyck language. We first give a formal definition of this interleaving, and
then outline some recent results concerning various classes of this problem.

Interleaved Dyck languages. Given natural numbers k1, k2 2 N, consider two dis-
joint matched (parenthesis) alphabets ⌃1,⌃2, and let D(⌃i) be the Dyck language with
respect to ⌃i. Given some word w 2 (⌃1 [⌃2)⇤, we denote by w ⌫ ⌃ the projection of w
on the alphabet ⌃i. The interleaved Dyck language over ⌃1,⌃2 is defined as

D(⌃1)�D(⌃2) =
�
� 2 (⌃1 [⌃2)

⇤ : � ⌫ ⌃i 2 D(⌃i) for each i 2 [2]

.

For example, given ⌃1 = {↵1,↵1} and ⌃2 = {↵2,↵2}, we have ↵1↵2↵1↵2 2 D(⌃1)�D(⌃2).
As per standard so far, we typically ignore the alphabets ⌃i and write Dk1 �Dk2 for the
interleaved Dyck language over two implicit alphabets, each of size ki.
Interleaved Dyck reachability arises naturally in various static analysis settings, where
each Dyck language is used to capture different kind of analysis sensivities, i.e., preci-
sion with respect to specific programming features, such as calling contexts and field
accesses [Reps 2000; Späth et al. 2019; Kjelstrøm and Pavlogiannis 2022]. See Figure 9
for an illustration. It is not hard to see that the underlying reachability problem be-
comes undecidable on general graphs [Reps 2000]. Here we outline some results for
interleaved Dyck reachability on bidirected graphs, as well as on subclasses where one
Dyck langauge is over one parenthesis symbol (i.e., a counter, similarly to Section 3.3).

D1 �D1 reachability. Perhaps the simplest instance of interleaving occurs when we
only have two Dyck languages, each over a single parenthesis symbol. Hence, each Dyck
language acts as a counter, and the setting is known as two-dimensional VASS. Even
for non-bidirected graphs, the reachability problem is known to be NL-complete (and
thus in PTime) [Englert et al. 2016].
Bidirectedness allows to simplify D1 �D1 reachability, thereby obtaining a small poly-
nomial complexity bound. The key technical underpinning of bidirectedness is the
following. If a node t is D1 � D1-reachable from a node s, then there exists a witness
path along which both counters remain bounded by O(n2) [Kjelstrøm and Pavlogiannis
2022]. This leads to a simple algorithm for the problem. We first flatten the input graph
G on the first counter, i.e., we create a graph G0 in which every node also stores one of
the O(n2) values that the first counter can take, and edges in G manipulating the first
counter become ✏-labeled in G0, while connecting nodes with the corresponding counter

ACM SIGLOG News 19 October 2022, Vol. 9, No. 4

1 ...
2 void setX(Point p, int v){
3 p.x = v;
4 }
5 int getX(Point r){
6 return r.x;
7 }
8 ...

9 ...
10 int a,b;
11 Point q;
12 setX(q, a);
13 b=getX(q);
14 ...

a

v

p

q r

ret

b

{12

[x

}12 {13
]x

}13

Fig. 9: (Left): A program on which to perform context-sensitive and field-sensitive alias
analysis. (Right): A graph where the curly braces model context sensitivity and square
brackets model field sensitivity. The path P : a b produces two interleaved words,
{12}12{13}13 and [x]x. As both words are balanced, P witnesses that b may alias a.

changes (e.g, an edge u
+1��! v in G connects all nodes (u, i) �! (v, i+ 1) in G0). Note that

G0 has n3 nodes, but it is a simple bidirected counter graph (i.e., with respect to the
counter that we did not flatten). It thus suffices to use Theorem 4.1 to solve bidirected
reachability on G0. We may further assume that G (and thus also G0) is sparse, as any
node with 3 or more outgoing edges has two edges labeled with the same alphabet,
and thus the corresponding endpoints can be contracted to a single node (recall the
bidirectedness algorithm in Section 4). We thus arrive at the following theorem.

THEOREM 5.1. Bidirected D1�D1 reachability can be computed in O(n3 ·↵(n)) time,
where ↵(n) is the inverse Ackermann function.

Dk �D1 reachability. The next step is to allow one of the two Dyck languages be over
multiple parentheses, giving rise to Dk �D1 reachability. The setting is known as one-
dimensional Pushdown VASS (PVASS). Interestingly, the decidability of reachability
for non-bidirected PVASS has remained a long-standing open problem [Schmitz and
Zetzsche 2019; Ganardi et al. 2022]. The more general coverability problem asks whether
a node t is reachable from a node s, as witnessed by paths whose counter can have any
value at the end (but must remain non-negative along the path), and is known to be
decidable [Leroux et al. 2015]. Focusing on bidirected graphs, the problem turns out
to be decidable. The crux of the proof is on the insight that coverability, together with
bidirectedness, implies reachability. This observation was first made in [Kjelstrøm and
Pavlogiannis 2022], and was combined with the decidability of coverability [Leroux
et al. 2015] to obtain the decidability of reachability on bidirected graphs. Later, this
result was improved to PSPACE [Ganardi et al. 2022].

THEOREM 5.2 ([GANARDI ET AL. 2022]). Bidirected Dk � D1 reachability is in
PSPACE.

Dk � Dk reachability. Finally, we look at bidirected Dk � Dk reachability. The non-
bidirected case is well-known to be undecidable [Reps 2000], as the two Dyck languages
can encode the intersection of CFLs, for which the emptiness of intersection is un-
decidable [Hopcroft et al. 2006]. The bidirected case was studied recently, showing
that undecidability remains. The proof is based on a reduction from the corresponding
non-bidirected case [Kjelstrøm and Pavlogiannis 2022].

THEOREM 5.3 ([KJELSTRØM AND PAVLOGIANNIS 2022]). Bidirected Dk � Dk

reachability is undecidable.

ACM SIGLOG News 20 October 2022, Vol. 9, No. 4

6. RELATED WORK
The CFL/Dyck reachability problem has applications to a very wide range of static
analyses, such as interprocedural data-flow analysis [Reps et al. 1995], slicing [Reps
et al. 1994], shape analysis [Reps 1995], impact analysis [Arnold 1996], type-based
flow analysis [Rehof and Fähndrich 2001], taint analysis [Huang et al. 2015], data-
dependence analysis [Tang et al. 2017], alias/points-to analysis [Lhoták and Hendren
2006; Zheng and Rugina 2008; Xu et al. 2009], and many others. RSM reachability has
also been studied under the lens of parameterized complexity, and in particular under
the assumption that modules have low treewidth [Chatterjee et al. 2015; Chatterjee
et al. 2016; Chatterjee et al. 2020] a property that is known to hold for the control-flow
graphs of most programs [Thorup 1998; Chatterjee et al. 2017].

Bidirected graphs as program models have been a standard approach to handle mutable
heap data [Sridharan and Bodı́k 2006; Xu et al. 2009] – though it can sometimes
be relaxed for read-only accesses [Milanova 2020], and the de-facto formulation of
demand-driven points-to analyses [Sridharan et al. 2005; Zheng and Rugina 2008;
Yan et al. 2011; Vedurada and Nandivada 2019]. Bidirectedness is also used for CFL-
reachability formulations of pointer analysis [Reps 1997]. The algorithmic benefit
of bidirectedness was highlighted in [Yuan and Eugster 2009], where an O(n · log n)
algorithm was presented when the underlying graph is a bidirected tree. Later this
bound was improved to O(n) for trees, while the problem was shown to take O(n2) time
(and O(n · log n) expected time) on general bidirected graphs, thereby breaking below
the cubic bound [Zhang et al. 2013]. This sequence of results ended with the work of
[Chatterjee et al. 2018], the results of which have been presented here.

Reachability in VASS has been a long-studied problem. Though its decidability has
been known for many decades [Mayr 1981], its complexity was settled only recently to
Ackermann complete [Leroux and Schmitz 2019; Czerwiński and Orlikowski 2022]. In
the case of PVASS, the decidability of reachability in one dimension is open [Schmitz
and Zetzsche 2019]. On the other hand, it was recently shown that bidirectedness
suffices to make the problem decidable in all dimensions [Ganardi et al. 2022].

7. CONCLUSION AND FUTURE DIRECTIONS
CFL/Dyck reachability is a fascinating problem with truly numerous applications in
static program analysis. In this paper we have focused on algorithmic aspects of the
problem, for which there has been a lot of progress recently. In particular, we have
looked into the following classes.

(1) Traditional Dyck reachability Dk, for which we have seen upper and lower bounds
depending on k.

(2) Dyck reachability Dk on bidirected graphs, which is solved faster than traditional
Dyck reachability.

(3) Interleaved Dyck reachability on general and bidirected graphs, which is a signifi-
cantly harder problem, also closely connected to VASS.

A number of exciting questions are still open. Is D1 reachability truly harder to solve
than plain reachability, or can the log2 n-factor of the former be improved? Does general
Dk reachability admit a truly sub-cubic algorithm? Although many researchers find this
unlikely, it would be insightful to strengthen this belief with other complexity lower
bounds, relating the problem to popular hypotheses in fine-grained complexity theory.
Finally, in the context of VASS, is Dk � D1 reachability decidable? And does Dk � D1

reachability on bidirected graphs admit a polynomial time-bound?

ACM SIGLOG News 21 October 2022, Vol. 9, No. 4

The demand for more precise static analyses, particularly while programming languages
are becoming more feature-rich, suggests further progress on graph-modeling aspects.
In particular, one may consider moving one level up in the Chomsky hierarchy, i.e.,
lifting CFL-reachability to context-sensitive language (CSL) reachabiliy. The provably
higher expressive power that comes with CSLs makes them a potentially more useful
tool than CFLs. If such modeling indeed proves useful, it would further open up a new
collection of algorithmic problems, similarly to the case of context-free models.

ACKNOWLEDGMENTS

This work was partially supported by a research grant (VIL42117) from VILLUM FONDEN.

References

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. 1968. Time and tape complex-
ity of pushdown automaton languages. Information and Control 13, 3 (1968), 186–206.
DOI:http://dx.doi.org/https://doi.org/10.1016/S0019-9958(68)91087-5

Rajeev Alur and P. Madhusudan. 2004. Visibly Pushdown Languages. In Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing (STOC ’04). Association for Computing Machinery,
New York, NY, USA, 202–211. DOI:http://dx.doi.org/10.1145/1007352.1007390

Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and IgorAleksandrovich Faradzhev. 1970. On
economical construction of the transitive closure of an oriented graph. In Doklady Akademii Nauk, Vol.
194. Russian Academy of Sciences, 487–488.

Robert S. Arnold. 1996. Software Change Impact Analysis. IEEE Computer Society Press, Los Alamitos, CA,
USA.

Lech Banachowski. 1980. A complement to Tarjan’s result about the lower bound on the complexity of the set
union problem. Inform. Process. Lett. 11, 2 (1980), 59 – 65.

Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and Stefan
Schneider. 2016. Nondeterministic Extensions of the Strong Exponential Time Hypothesis and Conse-
quences for Non-Reducibility. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science (ITCS ’16). Association for Computing Machinery, New York, NY, USA, 261–270.
DOI:http://dx.doi.org/10.1145/2840728.2840746

Jakob Cetti Hansen, Adam Husted Kjelstrøm, and Andreas Pavlogiannis. 2021. Tight bounds for reach-
ability problems on one-counter and pushdown systems. Inform. Process. Lett. 171 (2021), 106135.
DOI:http://dx.doi.org/https://doi.org/10.1016/j.ipl.2021.106135

Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. 2018. Optimal Dyck Reachability for
Data-Dependence and Alias Analysis. Proc. ACM Program. Lang. 2, POPL, Article Article 30 (Dec. 2018),
30 pages.

Krishnendu Chatterjee, Amir Kafshdar Goharshady, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis.
2020. Optimal and Perfectly Parallel Algorithms for On-demand Data-Flow Analysis. In Programming
Languages and Systems, Peter Müller (Ed.). Springer International Publishing, Cham, 112–140.

Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Andreas Pavlogiannis. 2017. JTDec: A Tool for Tree
Decompositions in Soot. In Automated Technology for Verification and Analysis, Deepak D’Souza and
K. Narayan Kumar (Eds.). Springer International Publishing, Cham, 59–66.

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, and Andreas Pavlogiannis. 2016. Optimal Reachability and
a Space-Time Tradeoff for Distance Queries in Constant-Treewidth Graphs. In 24th Annual European
Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark. 28:1–28:17.

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Andreas Pavlogiannis, and Prateesh Goyal. 2015. Faster
Algorithms for Algebraic Path Properties in Recursive State Machines with Constant Treewidth.
In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL ’15). Association for Computing Machinery, New York, NY, USA, 97–109.
DOI:http://dx.doi.org/10.1145/2676726.2676979

Swarat Chaudhuri. 2008. Subcubic Algorithms for Recursive State Machines. SIGPLAN Not. 43, 1 (Jan.
2008), 159–169. DOI:http://dx.doi.org/10.1145/1328897.1328460

Dmitry Chistikov, Rupak Majumdar, and Philipp Schepper. 2022. Subcubic Certificates for
CFL Reachability. Proc. ACM Program. Lang. 6, POPL, Article 41 (jan 2022), 29 pages.
DOI:http://dx.doi.org/10.1145/3498702

ACM SIGLOG News 22 October 2022, Vol. 9, No. 4

Noam Chomsky and Marcel-Paul Schützenberger. 1963. The Algebraic Theory of Context-Free
Languages*. In Computer Programming and Formal Systems, P. Braffort and D. Hirschberg
(Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 35. Elsevier, 118–161.
DOI:http://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)72023-8

Wojciech Czerwiński and Łukasz Orlikowski. 2022. Reachability in Vector Addition Systems is Ackermann-
complete. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). 1229–
1240. DOI:http://dx.doi.org/10.1109/FOCS52979.2021.00120

Jean-Luc Deleage and Laurent Pierre. 1986. The Rational Index of the Dyck Language D1. Theor. Comput.
Sci. 47, 3 (Nov. 1986), 335–343.

Matthias Englert, Ranko Lazić, and Patrick Totzke. 2016. Reachability in Two-Dimensional Unary Vector
Addition Systems with States is NL-Complete. In Proceedings of the 31st Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS ’16). Association for Computing Machinery, New York, NY, USA,
477–484. DOI:http://dx.doi.org/10.1145/2933575.2933577

Moses Ganardi, Rupak Majumdar, Andreas Pavlogiannis, Lia Schütze, and Georg Zetzsche. 2022. Reachability
in Bidirected Pushdown VASS. In 49th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 2022) (Leibniz International Proceedings in Informatics (LIPIcs)), Mikołaj Bojańczyk,
Emanuela Merelli, and David P. Woodruff (Eds.), Vol. 229. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 124:1–124:20. DOI:http://dx.doi.org/10.4230/LIPIcs.ICALP.2022.124

Nevin Heintze and David McAllester. 1997. On the Cubic Bottleneck in Subtyping and Flow Analysis.
In Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science (LICS ’97). IEEE
Computer Society, Washington, DC, USA, 342–. http://dl.acm.org/citation.cfm?id=788019.788876

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2001. Introduction to Automata The-
ory, Languages, and Computation, 2nd Edition. SIGACT News 32, 1 (mar 2001), 60–65.
DOI:http://dx.doi.org/10.1145/568438.568455

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to Automata Theory, Languages,
and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., USA.

Wei Huang, Yao Dong, Ana Milanova, and Julian Dolby. 2015. Scalable and Precise Taint Analy-
sis for Android. In Proceedings of the 2015 International Symposium on Software Testing and
Analysis (ISSTA 2015). Association for Computing Machinery, New York, NY, USA, 106–117.
DOI:http://dx.doi.org/10.1145/2771783.2771803

Adam Husted Kjelstrøm and Andreas Pavlogiannis. 2022. The Decidability and Complexity of Interleaved
Bidirected Dyck Reachability. Proc. ACM Program. Lang. 6, POPL, Article 12 (jan 2022), 26 pages.
DOI:http://dx.doi.org/10.1145/3498673

Lillian Lee. 2002. Fast Context-Free Grammar Parsing Requires Fast Boolean Matrix Multiplication. J. ACM
49, 1 (jan 2002), 1–15. DOI:http://dx.doi.org/10.1145/505241.505242

Jérôme Leroux and Sylvain Schmitz. 2019. Reachability in Vector Addition Systems is Primitive-Recursive
in Fixed Dimension. In Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS ’19). IEEE Press, Article 50, 13 pages.

Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. 2015. On the Coverability Problem for Pushdown
Vector Addition Systems in One Dimension. In Automata, Languages, and Programming, Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 324–336.

Ondřej Lhoták and Laurie Hendren. 2006. Context-Sensitive Points-to Analysis: Is It Worth It?. In Proceedings
of the 15th International Conference on Compiler Construction (CC). 47–64.

Anders Alnor Mathiasen and Andreas Pavlogiannis. 2021. The Fine-Grained and Parallel Complexity of
Andersen’s Pointer Analysis. Proc. ACM Program. Lang. 5, POPL, Article 34 (Jan. 2021), 29 pages.
DOI:http://dx.doi.org/10.1145/3434315

Ernst W. Mayr. 1981. An Algorithm for the General Petri Net Reachability Problem. In Proceedings of the
Thirteenth Annual ACM Symposium on Theory of Computing (STOC ’81). Association for Computing
Machinery, New York, NY, USA, 238–246. DOI:http://dx.doi.org/10.1145/800076.802477

Ana Milanova. 2020. FlowCFL: Generalized Type-Based Reachability Analysis: Graph Reduction and Equiva-
lence of CFL-Based and Type-Based Reachability. Proc. ACM Program. Lang. 4, OOPSLA, Article 178
(Nov. 2020), 29 pages. DOI:http://dx.doi.org/10.1145/3428246

Laurent Pierre. 1992. Rational indexes of generators of the cone of context-free languages. Theoretical Com-
puter Science 95, 2 (1992), 279 – 305. DOI:http://dx.doi.org/https://doi.org/10.1016/0304-3975(92)90269-L

Jakob Rehof and Manuel Fähndrich. 2001. Type-base Flow Analysis: From Polymorphic Subtyping to
CFL-reachability. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). 54–66.

ACM SIGLOG News 23 October 2022, Vol. 9, No. 4

Thomas Reps. 1995. Shape Analysis As a Generalized Path Problem. In Proceedings of the 1995 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-based Program Manipulation (PEPM ’95).
ACM, 1–11.

Thomas Reps. 1997. Program Analysis via Graph Reachability. In Proceedings of the 1997 International
Symposium on Logic Programming (ILPS). 5–19.

Thomas Reps. 2000. Undecidability of Context-sensitive Data-dependence Analysis. ACM Trans. Program.
Lang. Syst. 22, 1 (2000), 162–186.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph
Reachability. In POPL. ACM, New York, NY, USA.

Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. 1994. Speeding Up Slicing. SIGSOFT
Softw. Eng. Notes 19, 5 (1994), 11–20.

Neil Robertson and P.D. Seymour. 1983. Graph minors. I. Excluding a forest. Journal of Combinatorial Theory,
Series B 35, 1 (1983), 39–61. DOI:http://dx.doi.org/https://doi.org/10.1016/0095-8956(83)90079-5

Wojciech Rytter. 1985. The Complexity of Two-Way Pushdown Automata and Recursive Programs. In
Combinatorial Algorithms on Words, Alberto Apostolico and Zvi Galil (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 341–356.

Wojciech Rytter. 1986. Fast Recognition of Pushdown Automaton and Context-Free Languages. Inf. Control
67, 1–3 (oct 1986), 12–22. DOI:http://dx.doi.org/10.1016/S0019-9958(85)80024-3

Sylvain Schmitz and Georg Zetzsche. 2019. Coverability Is Undecidable in One-Dimensional Pushdown
Vector Addition Systems with Resets. In Reachability Problems, Emmanuel Filiot, Raphaël Jungers, and
Igor Potapov (Eds.). Springer International Publishing, Cham, 193–201.

Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, Flow-, and Field-Sensitive Data-Flow Analysis
Using Synchronized Pushdown Systems. Proc. ACM Program. Lang. 3, POPL, Article 48 (Jan. 2019), 29
pages. DOI:http://dx.doi.org/10.1145/3290361

Manu Sridharan and Rastislav Bodı́k. 2006. Refinement-based Context-sensitive Points-to Analysis for Java.
SIGPLAN Not. 41, 6 (2006), 387–400.

Manu Sridharan and Stephen J. Fink. 2009. The Complexity of Andersen’s Analysis in Practice. In Proceedings
of the 16th International Symposium on Static Analysis (SAS ’09). Springer-Verlag, Berlin, Heidelberg,
205–221.

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodı́k. 2005. Demand-driven Points-to Analysis
for Java. In OOPSLA.

Siddharth Suri and Sergei Vassilvitskii. 2011. Counting Triangles and the Curse of the Last Reducer.
In Proceedings of the 20th International Conference on World Wide Web (WWW ’11). Association for
Computing Machinery, New York, NY, USA, 607–614. DOI:http://dx.doi.org/10.1145/1963405.1963491

Hao Tang, Di Wang, Yingfei Xiong, Lingming Zhang, Xiaoyin Wang, and Lu Zhang. 2017. Conditional
Dyck-CFL Reachability Analysis for Complete and Efficient Library Summarization. In Programming
Languages and Systems, Hongseok Yang (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 880–908.

Robert Endre Tarjan. 1979. A class of algorithms which require nonlinear time to maintain disjoint sets. J.
Comput. System Sci. 18, 2 (1979), 110 – 127.

Mikkel Thorup. 1998. All Structured Programs Have Small Tree Width and Good Register Allocation.
Information and Computation (1998).

Leslie G. Valiant. 1975. General Context-Free Recognition in Less than Cubic Time. J. Comput. Syst. Sci. 10,
2 (apr 1975), 308–315. DOI:http://dx.doi.org/10.1016/S0022-0000(75)80046-8

Jyothi Vedurada and V. Krishna Nandivada. 2019. Batch Alias Analysis. In Proceedings of the 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE ’19). IEEE Press,
936–948. DOI:http://dx.doi.org/10.1109/ASE.2019.00091

Virginia Vassilevska Williams. 2019. On some fine-grained questions in algorithms and complexity. Technical
Report.

Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling CFL-Reachability-Based Points-To Analysis
Using Context-Sensitive Must-Not-Alias Analysis. In Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming (Genoa). 98–122.

Dacong Yan, Guoqing Xu, and Atanas Rountev. 2011. Demand-driven Context-sensitive Alias Analysis for
Java. In Proceedings of the 2011 International Symposium on Software Testing and Analysis (ISSTA).
155–165.

Hao Yuan and Patrick Eugster. 2009. An Efficient Algorithm for Solving the Dyck-CFL Reachability Problem
on Trees. In Proceedings of the 18th European Symposium on Programming Languages and Systems:
Held As Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009 (ESOP).
175–189.

ACM SIGLOG News 24 October 2022, Vol. 9, No. 4

Qirun Zhang, Michael R. Lyu, Hao Yuan, and Zhendong Su. 2013. Fast Algorithms for Dyck-CFL-Reachability
with Applications to Alias Analysis. In Proceedings of the 34th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’13). Association for Computing Machinery, New York,
NY, USA, 435–446. DOI:http://dx.doi.org/10.1145/2491956.2462159

Xin Zheng and Radu Rugina. 2008. Demand-driven Alias Analysis for C. In Proceedings of the 35th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’08). ACM, 197–
208.

ACM SIGLOG News 25 October 2022, Vol. 9, No. 4

