
CELLULAR COOPERATION WITH

SHIFT UPDATING AND REPULSION:

SUPPLEMENTARY MATERIAL

ANDREAS PAVLOGIANNIS1, KRISHNENDU CHATTERJEE1,

BEN ADLAM2 & MARTIN A. NOWAK2

(1) IST Austria, Klosterneuburg, A-3400, Austria

(2) Program for Evolutionary Dynamics, Department of Organismic and Evo-

lutionary Biology, Department of Mathematics, Harvard University, Cam-

bridge, MA 02138, USA

1. Computational aspects of the generic shift-update rule

In this section we describe the computational aspects of the update rules we

consider. We outline the methods used in our simulations for obtaining a shift path

P : v2 v1 given a birth and a death event in positions v2 and v1, respectively, of

an n×n grid. We have already described in the main article the fact that obtaining

robust estimations of the fixation probabilities for populations of non-trivial size is a

computationally expensive process that requires many iterations until convergence.

Since the computation of such paths P lies at the core of every iteration, it is

important that this step is efficient: for example a quadratic time procedure on

grid size 16× 16 would require around 65× 103 computational steps, which would

make the whole computational procedure very expensive, and hence by efficient

we do not mean quadratic or cubic, but something which is almost-linear (such as

N · logN , where N is the population size). We describe the details below.

We denote by [n] = {0, . . . n − 1} the set of natural numbers less than n. The

simulation is executed on a grid where every cell occupies a position from the set

[n]2. Each cell at position (i, j) ∈ [n]2 is of one type, either A or B, and has four

neighbors at positions (i′, j′) such that |i− i′| (mod n−2)+ |j−j′| (mod n−2) = 1,
1

2 A. PAVLOGIANNIS, K. CHATTERJEE, B. ADLAM, M. A. NOWAK

(i.e., the grid wraps around and forms a torus). Given a position v ∈ [n]2, we denote

by Nh(v) ⊆ [n]2 the set of such neighbors of v. Given the current instance of the

grid, a function wtv : Nh(v)→ R≥1 maps every neighboring position v′ of v to the

repulsion force between v and v′ according to the type of the cells in positions v

and v′, i.e.

wtv(v′) =


1 if v and v′ are occupied by same-type cells

α otherwise

where α ≥ 1 is the strength of the repulsion between different-type neighbors.

Recall that the population size is N = n2.

Consider a death event at some position v1 of the grid. A crucial step in the

generic shift-update rule is computing the resistance value d(v) of every position v of

the grid, defined as d(v) = minP :v v1 α(P), where α(P) is the sum of the repulsion

forces along the path P . This is performed as a standard shortest-path computation

using the well-known Dijkstra’s algorithm on the underlying graph, where the task

is to compute the resistance value of every position in [n]2 to v1, using wtv as the

weight functions for every position v ∈ [n]2 (Supplementary Algorithm 1). We

describe Dijkstra’s algorithm below.

Supplementary Algorithm 1: ResistanceValueComputation : Dijkstra′sAlgorithm

Input: Target grid coordinate v1 and repulsion force function wtv : Nh(v)→ R≥1

for all positions v
Output: The resistance value d(v) of every position v

1 Initialize a priority queue PriorityQueue

2 PriorityQueue.Push(v1, 0)

3 foreach v ∈ [n]2 with v 6= v1 do
4 PriorityQueue.Push(v,∞)

5 end

6 while PriorityQueue is not empty do
7 Assign (v, x)← PriorityQueue.Pop()

8 Assign d(v)← x

9 foreach v′ ∈ Nh(v) in PriorityQueue do
10 PriorityQueue.DecreaseKey(v′, d(v) + wtv(v

′))

11 end

12 end

13 return d

SUPPLEMENTARY MATERIAL 3

1.1. Dijkstra’s shortest path algorithm. Dijkstra’s shortest path algorithm

considers graphs with non-negative edge weights as input, and a target position

v1, and computes the resistance values (or distance values) from all vertices to the

target. The algorithm computes the distances in a greedy fashion. Initially, it

sets the resistance value d(v1) of v1 as 0. Let X be the set of positions v whose

resistance values d(v) to v1 has been correctly computed.The algorithm stores pairs

(v, x) (which is a pair of a grid position and an overapproximation of its resistance

value) in a priority queue. Given the already computed resistance values for X,

in each step the algorithm extends the computation by adding a position greedily

that has the least resistance value among the ones whose resistance value has not

yet been computed (i.e., the ones that are still in the priority queue). In other

words, it considers all neighbors of positions in X, and given the already computed

resistance values in X, it finds the position with the minimum resistance value and

includes the position in X. Supplementary Algorithm 1 gives a formal description

of the algorithm. Informally, the correctness of Supplementary Algorithm 1 lies on

two invariants, which are maintained by the use of PriorityQueue. In particular, at

every iteration the following hold:

(1) For the element (v, x) extracted from PriorityQueue we have x = d(v).

(2) For every element (v′, x′) in PriorityQueue we have x′ = minP :v′ v1 α(P),

where P ranges over paths that traverse only grid positions which have

already been extracted from PriorityQueue (except v′ itself).

The most standard PriorityQueue implementations support the DecreaseKey op-

eration in logarithmic time in the size of the queue, whereas Push and Pop require

constant time. Since every position v has a constant number of neighboring posi-

tions (i.e., |Nh(v)| = 4), the DecreaseKey operation will be executed at most 4 · n2

times. We thus arrive to the following known proposition about the almost-linear

running time of Supplementary Algorithm 1.

Proposition 1. Supplementary Algorithm 1 requires O(N · logN) time, where N

is the number of positions.

4 A. PAVLOGIANNIS, K. CHATTERJEE, B. ADLAM, M. A. NOWAK

Consider now the case that a birth event has taken place in some position v2

of the grid. The following two paragraphs describe how the path P : v2 v1 is

constructed algorithmically, for each specific instance of the shift-update rule (i.e.,

LR and LNR).

1.2. The least-resistance rule:LR. The least-resistance rule chooses a path P :

v2 v1 uniformly at random among all least resistance paths, i.e. α(P) = d(v2).

A description of the process is given in Algorithm 2. In words, the process starts

from v2, and the current path Pcur : v2 cur is extended by a neighbor v ∈ Nh(cur)

such that d(cur) = d(v) + wtcur(v), until v1 is reached.

Supplementary Algorithm 2: LR

Input: Grid coordinates v1 and v2 of the cell death and birth events respectively
Output: A least resistance path P : v2 v1 according to the LR rule

1 Compute the resistance value function d : [n]2 → R using Dijkstra’s algorithm
(Supplementary Algorithm 1)

2 Assign cur← v2
3 Assign P← (cur)

4 while cur 6= v1 do
5 LeastResistanceNeighbors← {v ∈ Nh(cur) : d(cur) = d(v) + wtcur(v)}
6 Assign cur← an element of LeastResistanceNeighbors uniformly at random

7 Extend P← P ◦ (cur)
8 end

9 return P

Since the weight functions wtv map to positive integers, the least resistance path

P : v2 v1 returned by Supplementary Algorithm 2 is acyclic, i.e., it traverses

every position of the grid at most once. Hence, given the resistance values of line 1,

Supplementary Algorithm 2 requires otherwise linear time. As the population size

is N = n2, we obtain the following proposition, which states that the running time

of Supplementary Algorithm 2 is almost linear, as desired.

Proposition 2. The time required by Supplementary Algorithm 2 is O(N · logN).

1.3. The least neighbor-resistance rule:LNR. The least neighbor-resistance

rule chooses a path P : v2 v1 by a random process, which maintains a cur-

rent path Pcur : v2 cur, and extends it with a position from the set NhR =

SUPPLEMENTARY MATERIAL 5

{v ∈ Nh(cur) : d(v) < d(cur)} (i.e., a neighboring position that has smaller re-

sistance value than the current). Every element of NhR is chosen with probability

proportional to 1
d(v) , i.e., neighbors that see less resistance to the vacancy of the

grid are chosen with higher probability. A description of the process is given in

Supplementary Algorithm 3.

Supplementary Algorithm 3: LNR

Input: Grid coordinates v1 and v2 of the cell death and birth events respectively
Output: A least resistance path P : v2 v1 according to the LNR rule

1 Compute the resistance value function d : [n]2 → R using Dijkstra’s algorithm
(Supplementary Algorithm 1)

2 Assign cur← v2
3 Assign P← (cur)

4 while cur 6= v1 do

5 LessResistanceNeighbors←
{(

v, 1
d(v)

)
: v ∈ Nh(cur) and d(cur) > d(v)

}
6 Assign (cur, p)← an element of LessResistanceNeighbors at random,

proportionally to the second component
7 Extend P← P ◦ (cur)
8 end

9 return P

Similarly as in the case of the LR update rule, we obtain the following proposition,

which states that the running time of Supplementary Algorithm 3 is almost linear,

as desired.

Proposition 3. The time required by Supplementary Algorithm 3 is O(N · logN).

