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We consider the problem of reachability on One-Counter Systems (OCSs) and Pushdown 
Systems (PDSs). The problem has a well-known O (n3) bound on both models, while the 
bound is believed to be tight for PDSs. Here we establish new upper and lower bounds 
for reachability on OCSs and restricted PDSs. We show that the problem can be solved 
(i) in O (nω · log2 n) time on OCSs, and (ii) in O (n2) time on sparse PDSs when restricted 
to witness executions of stack height bounded by logn. Moreover, we prove similar lower 
bounds.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Pushdown Systems (PDSs) and One-Counter Systems 
(OCSs) are fundamental models of computation and among 
the standard formalisms in program verification. The use 
of pushdown storage allows static program analyses to 
model various notions of sensitivity (e.g., context-, field-
sensitivity), which increases analysis precision [1]. OCSs 
can capture the effect of pointer references and derefer-
ences, and thus provide a useful setting for pointer analy-
ses [2].

The most fundamental question in these models is 
reachability: given two states, is there an execution that 
starts in one and ends in the other? Pushdown reacha-
bility, also known as CFL/Dyck reachability [3], has truly 
numerous applications in program verification [4,5]. More-
over, when system behavior is guided by inputs, reachabil-
ity is the standard algorithmic formulation of the language 
emptiness problem, i.e., whether there exists a sequence 
of inputs that makes the system reach an accepting state. 
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Due to its importance, the reachability problem for PDSs 
has been studied extensively [6–8], and has a well-known 
O (n3) bound. Although sub-cubic algorithms exist [9], they 
only offer poly-logarithmic improvements, and it is be-
lieved that there is no polynomial improvement over the 
cubic bound [10–12]. OCSs are a special case of PDSs, 
where the stack alphabet is unary, and thus inherits the
cubic bound for reachability.

Given the large interest on the problem, two questions 
emerge naturally. First, is there an algorithm for OCSs that 
breaks below the cubic bound? Second, are there natural 
sub-classes of the problem for PDSs that can be solved 
more efficiently? We give tight answers to these questions 
in this work.
Contributions. Our contributions are matching upper- and 
lower-bounds for reachability problems on OCSs and PDSs. 
In particular, we show the following.
One-counter systems. Given an OCS C of n states, we show 
that the all-pairs reachability problem is solvable in O (nω ·
log2 n) time, where ω is the matrix-multiplication expo-
nent. This generalizes a recent result of [2] and breaks the 
cubic bound for OCSs. Moreover, we show that even single-
pair reachability is hard for finding triangles in undirected 
graphs [13] and thus inherits the (conditional) (i) nω and 
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(ii) combinatorial n3 lower bounds of that problem. Note 
that (i) matches our upper bound (up to poly-logarithmic 
factors), hence our algorithm is optimal wrt polynomial im-
provements.
Pushdown systems. Given a sparse PDS P , we consider the 
stack-bounded reachability question with maximum stack 
height b. The problem is motivated by static analysis ap-
plications, where the setting often gives rise to a sparse 
PDS (e.g., [3]), and witness bounding is used for fast ap-
proximate solutions (e.g., [7]). We show that the problem 
admits a straightforward algorithm with complexity O (n2)

for b = log n, as opposed to the general O (n3). Moreover, 
we show that the problem is hard for Orthogonal-Vectors 
when just b = ω(log n), in which case it has a (conditional) 
quadratic lower bound.

2. Reachability on one-counter systems

In this section we present our results for reachability 
on One-Counter Systems.
One-counter systems A One-Counter System (OCS) is a tuple 
C = (Q , δ, δ=0) where Q is a finite set of control states, 
δ ⊆ Q × Q ×{−1, 0, 1} is the transition relation and δ=0 ⊆
δ is the zero-test transition relation. When δ=0 = ∅ we call 
C a one-counter net (OCN). Note that larger counter values 
in the transition function can be easily transformed to the 
{−1, 0, 1} case by the addition of extra states.

A configuration of an OCS is an element (q, c) ∈ Q ×N , 
where q is the control state and c is a non-negative 
counter value. The semantics of C are defined wrt the 
configuration space GC with edge relation such that 
(q1, c1) → (q2, c2) iff there exists some z ∈ {−1, 0, 1} such 
that (i) (q1, q2, z) ∈ δ, (ii) c2 = c1 + z, and (iii) c2 ≥ 0. In 
words, the transition (q1, q2, z) can be fired in (q1, c1) iff 
c1 + z ≥ 0, in which case the system transitions to state 
q2 and adds z to the counter. Moreover, we require that if 
(q1, q2, z) ∈ δ=0 then c1 = 0, i.e., the transition is fired by 
first testing if the counter is 0.
The reachability problem for OCS. The (state) reachability 
problem for an OCS C is the following problem.

One-counter reachability.
Input: An OCS C = (Q , δ, δ=0) and two states qs, qt ∈
Q .
Output: YES if there is a path P : (q1, 0) � (q2, 0) in 
GC , and NO otherwise.

We will also concern ourselves with the all-pairs vari-
ant, which asks to solve the reachability problem for all 
pairs of states in Q × Q .

2.1. Upper bound

We first focus on the upper bound for the all-pairs 
problem. It was recently shown in [2] that the problem for 

OCNs can be solved in O (nω · log2 n) time.1 Here we gener-
alize that result to OCSs, and obtain the following theorem.

Theorem 1. The all-pairs reachability problem for OCSs can be 
solved in O (nω · log2 n) time on an OCS C with n states, where 
ω is the matrix multiplication exponent.

Proof. Let C = (Q , δ, δ=0). First, we construct an OCS C1 =
(Q 1, δ1, δ1=0) such that every zero-test transition is of the 
form (q1, q2, 0). We achieve this by first letting C1 be iden-
tical to C , except that δ1=0 = ∅ and δ1 = δ \ δ=0. For every 
pair (p, z) ∈ Q ×{−1, 0, 1}, we introduce a fresh state p′ ∈
Q 1. Then, for every zero-test transition (p, q, z) ∈ δ=0, we 
introduce the transitions (p, p′, 0), (p′, q, z) ∈ δ1. Moreover, 
we introduce a fresh zero-test transition (p, p′, 0) ∈ δ1=0. It 
is easy to see that two states are reachable in C iff they 
are reachable in C1, while C1 has O (n) states.

Second, we construct an OCN C2 = (Q 1, δ1 \ δ1=0, ∅), i.e., 
C2 is identical to C1 without the zero-test transitions. We 
use the algorithm of [2] to compute all-pairs reachability 
on C2. Finally, we construct a graph G = (Q 1, E), where

E = δ1=0 ∪ {(q1,q2,0) : q2 is reachable from q1 in C2}
and compute the transitive closure on G . The correctness 
of the above procedure follows straightforwardly.

Regarding the complexity, the construction of C1, C2

and G requires time linear in the size of the corresponding 
OCS/OCN, which is bounded by O (n2). Moreover, the algo-
rithm of [2] runs on an OCN with O (n) nodes, and thus 
takes O (nω · log2 n) time, while the transitive closure on G
takes O (nω) time. �
2.2. Lower bound

Finally, we establish two lower bounds for the reach-
ability problem of OCNs. Our source of hardness is the 
problem of detecting triangles in undirected graphs.

Triangle detection.
Input: An undirected graph G = (V , E)

Output: YES if there exist three nodes i, j, k ∈ V
with (i, j), ( j, k), (k, i) ∈ E , and NO otherwise.

The triangle detection problem can be solved in O (n3)

time by combinatorial algorithms, and in O (nω) time in 
general. The corresponding hypothesis states that these 
bounds are tight wrt polynomial improvements, and it has 
been recently connected to other popular hypotheses in 
fine-grained complexity [13]. Our lower bounds follow a 
fine-grained reduction [14] from triangle detection.
Reduction. Consider an instance G = (V , E) of the triangle 
detection problem, and we construct a OCN C as follows. 
We assume wlog that V = [m], i.e., it is the set of integers 
{1, . . . , m}. The set of states is

1 The bound in [2] is phrased in the context of Dyck reachability with 
one parenthesis, which is a model isomorphic to OCNs.
2
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Fig. 1. An input graph G (left) and the OCA C constructed in our reduction (right). The path s, a1, b2, c3, d1, e in C is a witness of the triangle (1, 2, 3) in G .
Q = {qs,q f } ∪
⋃

i∈[m]
{ai,bi, ci,di}

i.e., we have four states per node i ∈ V , plus two auxiliary 
states. The transition relation is δ = A ∪ B ∪ C , where A =
{(qs, a1, 1), (d1, q f , −1)}, and

B =
⋃

(i, j)∈E

{(ai,b j,0), (bi, c j,0), (ci,d j,0)}

C =
⋃

i∈[m−1]
{(ai,ai+1,+1), (di+1,di,−1)}

Fig. 1 provides an illustration. We now prove the correct-
ness of the above reduction, i.e., that q f is reachable from 
qs iff G has a triangle.

Theorem 2. Under the triangle hypothesis, the following hold 
for the reachability problem on OCNs with n states, for any con-
stant ε > 0.

1. The problem has no algorithm with complexity O (nω−ε).
2. The problem has no combinatorial algorithm with complex-

ity O (n3−ε).

Proof. Consider the configuration space GC . Note that GC
is acyclic, so every path visits each configuration at most 
once. It is easy to see that if (qs, 0) � (ai, k), for some k ∈
N , then k = i. Symmetrically, if (di, k) � (q f , 0), for some 
k ∈N , then k = i. Thus, any path P : (qs, 0) � (q f , 0) must 
be of the form

P : (qs,0) � (ai, i) → (b j, i) → (ck, i) → (d�, i) � (q f ,0)

which is only possible if i = �. By construction, the in-
termediate transitions exist in C iff (i, j), ( j, k), (i, k) ∈ E , 
meaning that {i, j, k} ⊆ V form a triangle.

We now turn our attention to complexity. Let n = |Q |, 
and note that n = 4 · m + 2 = O (m), while clearly |δ| =
O (n2). Since O (n2) is below the bounds stated in Item 1
and Item 2, we have a fine-grained reduction from the 
problem of triangle detection to the reachability problem 
of OCNs, as desired. �

Finally, observe that, under Item 1 of Theorem 2, our 
upper bound of Theorem 1 is optimal wrt polynomial im-
provements, as OCNs are a special case of OCSs.
3

3. Pushdown reachability with bounded witnesses

In this section we present our results for reachability 
on pushdown systems.
Pushdown systems. A pushdown system (PDS) is a tuple 
P = (Q , �, δ) where Q is a finite set of control states, �
is the finite stack alphabet, and δ ⊆ Q × � × Q × �∗ is a 
finite transition relation. We assume wlog that � = {0, 1}, 
as any PDS with stack alphabet of constant size can be 
easily converted to an equivalent one where the alphabet 
is binary.

A configuration of P is an element (q, w) ∈ Q × �∗ , 
where q is a control state and w is the stack word. The 
semantics of P are defined wrt the configuration space 
GP with edge relation such that (q1, w1) → (q2, w2) iff 
(q1, γ , q2, w) ∈ δ, where w ∈ �∗ and γ ∈ � ∪ {ε} are such 
that either (i) w1 = γ = ε and w2 = w , or (ii) γ 
= ε
and there exists w ′ ∈ �∗ such that w1 = γ w ′ and w2 =
w w ′ . We write (q1, w1) � (q2, w2) to denote a path 
P : (q1, w1) → (q2, w2) → ·· · → (qk, wk) with (q1, w1) =
(q1, w1) and (qk, wk) = (q2, w2). The maximum stack height
of P is defined as MSH(P ) = maxi |wi |, i.e., it is the length 
of the largest stack word in a configuration of P .
The reachability problem for PDS. The (state) reachability 
problem for a PDS P asks, given two states qs, qt ∈ Q , to 
decide whether there exists a path P : (q1, ε) � (q2, ε) in 
GP . The problem is known to be solvable in O (n3) time, 
where n = |Q |, while no truly sub-cubic algorithm is ex-
pected to exist [10,11]. PDSs are one of the standard for-
malisms in static program analysis, where the analysis is 
phrased as a PDS reachability question [4,5,11]. The practi-
cal performance of these analyses further depends on two 
aspects of this setting. First, PDSs are typically sparse, i.e., 
we have |δ| = O (n) [3,15,16]. Second, for efficiency rea-
sons, such analyses typically restrict the search space to 
paths where the stack height is bounded [7,8,17–19]. Mo-
tivated by these two aspects, we study stack-bounded and 
sparse pushdown reachability.

Stack-bounded, sparse pushdown reachability.
Input: A PDS P = (Q , �, δ) with |δ| = O (|Q |), a 
bound b, and two states q1, q2 ∈ Q .
Output: YES if there is a path P : (q1, ε) � (q2, ε)

in GP with MSH(P ) ≤ b, NO if there is no path 
(q1, ε) � (q2, ε) in GP , and YES/NO in any other 
case.
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Fig. 2. The PDS P for the OV instance A = {01,11} and B = {01,10}. An edge from p to q labeled x/y corresponds to a transition (p, x,q, y) ∈ δ.
3.1. Upper bound

In this section we establish the following theorem.

Theorem 3. The stack-bounded, sparse reachability problem 
with stack bound b = log n can be solved in O (n2) time on a 
PDS P with n states.

Proof. Let Glogn
P be the configuration space of P pro-

jected on configurations that are elements of (Q , �≤logn). 
We construct Glogn

P explicitly and use plain reachability 
to check if there exists a path q′

1 � q′
2 in Glog n

P where 
q′

1 = (q1, ε) and q′
2 = (q2, ε).

Our M S H(P) is bounded by log n which means the 
amount of different configurations of the stack is bounded 
by 2logn = n. The number of nodes in Glogn

P is then 
bounded by n · 2log n = n2. Because P is sparse, then Glog n

P
is also sparse, so we can compute the problem in O (n2)

using plain reachability as Glog n
P is just a plain, directed 

graph with O (n2) nodes and O (n2) edges. �
3.2. Lower bound

In the previous section we saw that a straightforward 
algorithm reduces the complexity of stack-bounded, sparse 
pushdown reachability from the general cubic bound down 
to quadratic when the stack bound is b = log n. The sim-
plicity of that algorithm motivates the following question: 
can a better bound (i.e., below quadratic) be established by 
a (possibly) more involved algorithm? Here we show that 
this is unlikely when b = ω(log n). Our reduction is from 
the problem of Orthogonal Vectors.

Orthogonal Vectors (OV).
Input: Two set of vectors A, B ⊆ {0, 1}D of size m
each
Output: YES if there exists two vectors a ∈ A and 
b ∈ B that are orthogonal, i.e., ∀i ∈ [D] : a[i] ·b[i] = 0, 
and NO otherwise.

The naive algorithm to solve OV is by matching every 
pair of vectors in A and B and checking if they are or-
thogonal, which yields a straightforward bound O (m2 · D). 
The corresponding hypothesis states that the problem is 
not solvable in O (m2−ε) time, for any ε > 0, as long as 
D = ω(log n) [14]. We show that stack-bounded, sparse 
pushdown reachability is OV-hard for stack bound b = D .

Reduction. Consider an instance A, B of OV, where A =
(ai)1≤i≤m and B = (bi)1≤i≤m , and we construct a PDS P as 
follows. Fig. 2 provides an illustration. The set of states is 
Q = {qs, qe, q�} ∪ ⋃

i∈[m]
j∈[D+1]−1

{p j
i , q

j
i }.

We now define the transition function of P . We start 
with the vectors of A.
For every i ∈ [m], we have (qs, ε, pD

i , ε), (p0
i , ε, q�, ε) ∈ δ. 

Moreover, for every j ∈ [D], we have (p j+1
i , ε, p j

i , ai[ j]) ∈ δ. 
We now proceed to the vectors of B .
For every i ∈ [m], we have (q�, ε, q0

i , ε), (qD
i , ε, qe, ε) ∈ δ. 

Moreover, for every j ∈ [D], we have (q j−1
i , 0, q j

i , ε) ∈ δ

and if ai[ j] = 0, we also have (p j−1
i , 1, q j

i , ε) ∈ δ.
Let P = (Q , {0, 1}, δ) and solve pushdown reachability 
from qs to qe on P .

We now prove the correctness of the above construc-
tion, which establishes the following lower bound.

Theorem 4. The stack-bounded, sparse pushdown reachability 
problem with stack bound b = ω(log n) has no O (n2−ε)-time 
algorithm, for any ε > 0, under the OV hypothesis.

Proof. Consider any i, j ∈ [m]. We show by induction on k
that (pk

i , ε) � (qk
j, ε) iff ∀k′ ≤ k we have ai[k′] · b j[k′] = 0. 

The statement holds trivially for k = 0. Now, assume by 
the induction hypothesis that the statement holds for 
some k. Indeed, if ai[k + 1] · b j[k + 1] = 0, then by con-
struction, (pk+1

i , ε) → (pk
i , γ ) � (qk

j, γ ) → (pk+1
j , ε), as we 

have (qk
j, 0, qk+1

j , ε) ∈ δ, and moreover (pk+1
i , ε, pk

i , 0) ∈
δ (if ai[k + 1] = 0), otherwise (pk+1

i , ε, pk
i , 1) ∈ δ and 

(qk
j, 1, qk+1

j , ε) ∈ δ (if ai[k + 1] = 1 and b j[k + 1] = 0). On 
the other hand, if ai[k +1] ·b j[k +1] 
= 0, then by construc-
tion, (pk+1

i , ε, pk
i , 0) /∈ δ and (qk

j, 1, qk+1
j , ε) /∈ δ, and thus 

no path (pk+1
i , ε) � (qk+1

j , ε) exists. So given (pk
i , ε) �

(pk
j, ε), then (pk+1

i , ε) � (pk+1
j , ε) iff ai[k + 1] · b j[k + 1] =

0.
In the end, we have (pD

i , ε) � (qD
j , ε) iff ∀k ∈ [D], we 

have ai[k] · b j[k] = 0, meaning ai and b j are orthogonal. By 
construction, we have (qs, ε) � (qe, ε) iff (pD

i , ε) � (qD
j , ε)

for some i, j ∈ [m]. Finally, note that P contains no cycles. 
Thus any path P : (qs, ε) � (qe, ε) must be of the form 
(ps, ε) � (q�, w) � (pe, ε). Finally, b = MSH(P ) = |w| = D .

We now look at the complexity. The PDS P has |δ| ≤
(2 · D + 2) · 2 · m edges so |δ| = O (D · m) and |Q | ≤
(D + 1) · 2 · m + 3 nodes, thus |Q | = O (D · m). Hence the 
construction is an instance of stack-bounded, sparse push-
down reachability. Since the reduction takes O (D ·m) time, 
4
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an O (n2−ε) time algorithm for reachability on P would 
yield an O (m2−ε′

) bound for OV, for ε, ε′ > 0. �
Remark 1. Program analyses are often parametric on the 
treewidth of the underlying structure [12,18,20], as control-
flow graphs are known to have low treewidth [21]. In 
our reduction, the PDS P is a series-parallel graph, hence 
our lower-bound in Theorem 4 also holds for graphs of 
treewidth 2. Thus treewidth alone is not a sufficient re-
striction to break the quadratic bound.

4. Conclusion

In this work we have studied reachability on OCSs and 
PDSs. We have shown that the former model admits an 
O (nω · log2 n) bound, while the latter admits an O (n2)

bound when the input PDSs is sparse and we restrict 
the search space to witness executions of bounded stack 
height. Moreover, we have proven similar lower bounds 
based on popular conjectures in fine-grained complexity, 
showing that our upper-bounds are close to optimal.
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