
Information Processing Letters 171 (2021) 106135

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Tight bounds for reachability problems on one-counter and

pushdown systems

Jakob Cetti Hansen, Adam Husted Kjelstrøm, Andreas Pavlogiannis ∗

Department of Computer Science, Aarhus University, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 January 2021
Received in revised form 19 April 2021
Accepted 19 April 2021
Available online xxxx
Communicated by Leah Epstein

Keywords:
Pushdown systems
One-counter systems
Dyck reachability
Formal languages

We consider the problem of reachability on One-Counter Systems (OCSs) and Pushdown
Systems (PDSs). The problem has a well-known O (n3) bound on both models, while the
bound is believed to be tight for PDSs. Here we establish new upper and lower bounds
for reachability on OCSs and restricted PDSs. We show that the problem can be solved
(i) in O (nω · log2 n) time on OCSs, and (ii) in O (n2) time on sparse PDSs when restricted
to witness executions of stack height bounded by logn. Moreover, we prove similar lower
bounds.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Pushdown Systems (PDSs) and One-Counter Systems
(OCSs) are fundamental models of computation and among
the standard formalisms in program verification. The use
of pushdown storage allows static program analyses to
model various notions of sensitivity (e.g., context-, field-
sensitivity), which increases analysis precision [1]. OCSs
can capture the effect of pointer references and derefer-
ences, and thus provide a useful setting for pointer analy-
ses [2].

The most fundamental question in these models is
reachability: given two states, is there an execution that
starts in one and ends in the other? Pushdown reacha-
bility, also known as CFL/Dyck reachability [3], has truly
numerous applications in program verification [4,5]. More-
over, when system behavior is guided by inputs, reachabil-
ity is the standard algorithmic formulation of the language
emptiness problem, i.e., whether there exists a sequence
of inputs that makes the system reach an accepting state.

* Corresponding author.
E-mail address: pavlogiannis@cs.au.dk (A. Pavlogiannis).
https://doi.org/10.1016/j.ipl.2021.106135
0020-0190/© 2021 The Author(s). Published by Elsevier B.V. This is an open acce
(http://creativecommons.org/licenses/by/4.0/).
Due to its importance, the reachability problem for PDSs
has been studied extensively [6–8], and has a well-known
O (n3) bound. Although sub-cubic algorithms exist [9], they
only offer poly-logarithmic improvements, and it is be-
lieved that there is no polynomial improvement over the
cubic bound [10–12]. OCSs are a special case of PDSs,
where the stack alphabet is unary, and thus inherits the
cubic bound for reachability.

Given the large interest on the problem, two questions
emerge naturally. First, is there an algorithm for OCSs that
breaks below the cubic bound? Second, are there natural
sub-classes of the problem for PDSs that can be solved
more efficiently? We give tight answers to these questions
in this work.
Contributions. Our contributions are matching upper- and
lower-bounds for reachability problems on OCSs and PDSs.
In particular, we show the following.
One-counter systems. Given an OCS C of n states, we show
that the all-pairs reachability problem is solvable in O (nω ·
log2 n) time, where ω is the matrix-multiplication expo-
nent. This generalizes a recent result of [2] and breaks the
cubic bound for OCSs. Moreover, we show that even single-
pair reachability is hard for finding triangles in undirected
graphs [13] and thus inherits the (conditional) (i) nω and
ss article under the CC BY license

https://doi.org/10.1016/j.ipl.2021.106135
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2021.106135&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:pavlogiannis@cs.au.dk
https://doi.org/10.1016/j.ipl.2021.106135
http://creativecommons.org/licenses/by/4.0/

J. Cetti Hansen, A. Husted Kjelstrøm and A. Pavlogiannis Information Processing Letters 171 (2021) 106135
(ii) combinatorial n3 lower bounds of that problem. Note
that (i) matches our upper bound (up to poly-logarithmic
factors), hence our algorithm is optimal wrt polynomial im-
provements.
Pushdown systems. Given a sparse PDS P , we consider the
stack-bounded reachability question with maximum stack
height b. The problem is motivated by static analysis ap-
plications, where the setting often gives rise to a sparse
PDS (e.g., [3]), and witness bounding is used for fast ap-
proximate solutions (e.g., [7]). We show that the problem
admits a straightforward algorithm with complexity O (n2)

for b = log n, as opposed to the general O (n3). Moreover,
we show that the problem is hard for Orthogonal-Vectors
when just b = ω(log n), in which case it has a (conditional)
quadratic lower bound.

2. Reachability on one-counter systems

In this section we present our results for reachability
on One-Counter Systems.
One-counter systems A One-Counter System (OCS) is a tuple
C = (Q , δ, δ=0) where Q is a finite set of control states,
δ ⊆ Q × Q ×{−1, 0, 1} is the transition relation and δ=0 ⊆
δ is the zero-test transition relation. When δ=0 = ∅ we call
C a one-counter net (OCN). Note that larger counter values
in the transition function can be easily transformed to the
{−1, 0, 1} case by the addition of extra states.

A configuration of an OCS is an element (q, c) ∈ Q ×N ,
where q is the control state and c is a non-negative
counter value. The semantics of C are defined wrt the
configuration space GC with edge relation such that
(q1, c1) → (q2, c2) iff there exists some z ∈ {−1, 0, 1} such
that (i) (q1, q2, z) ∈ δ, (ii) c2 = c1 + z, and (iii) c2 ≥ 0. In
words, the transition (q1, q2, z) can be fired in (q1, c1) iff
c1 + z ≥ 0, in which case the system transitions to state
q2 and adds z to the counter. Moreover, we require that if
(q1, q2, z) ∈ δ=0 then c1 = 0, i.e., the transition is fired by
first testing if the counter is 0.
The reachability problem for OCS. The (state) reachability
problem for an OCS C is the following problem.

One-counter reachability.
Input: An OCS C = (Q , δ, δ=0) and two states qs, qt ∈
Q .
Output: YES if there is a path P : (q1, 0) � (q2, 0) in
GC , and NO otherwise.

We will also concern ourselves with the all-pairs vari-
ant, which asks to solve the reachability problem for all
pairs of states in Q × Q .

2.1. Upper bound

We first focus on the upper bound for the all-pairs
problem. It was recently shown in [2] that the problem for

OCNs can be solved in O (nω · log2 n) time.1 Here we gener-
alize that result to OCSs, and obtain the following theorem.

Theorem 1. The all-pairs reachability problem for OCSs can be
solved in O (nω · log2 n) time on an OCS C with n states, where
ω is the matrix multiplication exponent.

Proof. Let C = (Q , δ, δ=0). First, we construct an OCS C1 =
(Q 1, δ1, δ1=0) such that every zero-test transition is of the
form (q1, q2, 0). We achieve this by first letting C1 be iden-
tical to C , except that δ1=0 = ∅ and δ1 = δ \ δ=0. For every
pair (p, z) ∈ Q ×{−1, 0, 1}, we introduce a fresh state p′ ∈
Q 1. Then, for every zero-test transition (p, q, z) ∈ δ=0, we
introduce the transitions (p, p′, 0), (p′, q, z) ∈ δ1. Moreover,
we introduce a fresh zero-test transition (p, p′, 0) ∈ δ1=0. It
is easy to see that two states are reachable in C iff they
are reachable in C1, while C1 has O (n) states.

Second, we construct an OCN C2 = (Q 1, δ1 \ δ1=0, ∅), i.e.,
C2 is identical to C1 without the zero-test transitions. We
use the algorithm of [2] to compute all-pairs reachability
on C2. Finally, we construct a graph G = (Q 1, E), where

E = δ1=0 ∪ {(q1,q2,0) : q2 is reachable from q1 in C2}
and compute the transitive closure on G . The correctness
of the above procedure follows straightforwardly.

Regarding the complexity, the construction of C1, C2

and G requires time linear in the size of the corresponding
OCS/OCN, which is bounded by O (n2). Moreover, the algo-
rithm of [2] runs on an OCN with O (n) nodes, and thus
takes O (nω · log2 n) time, while the transitive closure on G
takes O (nω) time. �
2.2. Lower bound

Finally, we establish two lower bounds for the reach-
ability problem of OCNs. Our source of hardness is the
problem of detecting triangles in undirected graphs.

Triangle detection.
Input: An undirected graph G = (V , E)

Output: YES if there exist three nodes i, j, k ∈ V
with (i, j), (j, k), (k, i) ∈ E , and NO otherwise.

The triangle detection problem can be solved in O (n3)

time by combinatorial algorithms, and in O (nω) time in
general. The corresponding hypothesis states that these
bounds are tight wrt polynomial improvements, and it has
been recently connected to other popular hypotheses in
fine-grained complexity [13]. Our lower bounds follow a
fine-grained reduction [14] from triangle detection.
Reduction. Consider an instance G = (V , E) of the triangle
detection problem, and we construct a OCN C as follows.
We assume wlog that V = [m], i.e., it is the set of integers
{1, . . . , m}. The set of states is

1 The bound in [2] is phrased in the context of Dyck reachability with
one parenthesis, which is a model isomorphic to OCNs.
2

J. Cetti Hansen, A. Husted Kjelstrøm and A. Pavlogiannis Information Processing Letters 171 (2021) 106135

1

23

4

qs a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

d1

d2

d3

d4

q f
+1

+1

+1

+1 −1

−1

−1

−1

Fig. 1. An input graph G (left) and the OCA C constructed in our reduction (right). The path s, a1, b2, c3, d1, e in C is a witness of the triangle (1, 2, 3) in G .
Q = {qs,q f } ∪
⋃

i∈[m]
{ai,bi, ci,di}

i.e., we have four states per node i ∈ V , plus two auxiliary
states. The transition relation is δ = A ∪ B ∪ C , where A =
{(qs, a1, 1), (d1, q f , −1)}, and

B =
⋃

(i, j)∈E

{(ai,b j,0), (bi, c j,0), (ci,d j,0)}

C =
⋃

i∈[m−1]
{(ai,ai+1,+1), (di+1,di,−1)}

Fig. 1 provides an illustration. We now prove the correct-
ness of the above reduction, i.e., that q f is reachable from
qs iff G has a triangle.

Theorem 2. Under the triangle hypothesis, the following hold
for the reachability problem on OCNs with n states, for any con-
stant ε > 0.

1. The problem has no algorithm with complexity O (nω−ε).
2. The problem has no combinatorial algorithm with complex-

ity O (n3−ε).

Proof. Consider the configuration space GC . Note that GC
is acyclic, so every path visits each configuration at most
once. It is easy to see that if (qs, 0) � (ai, k), for some k ∈
N , then k = i. Symmetrically, if (di, k) � (q f , 0), for some
k ∈N , then k = i. Thus, any path P : (qs, 0) � (q f , 0) must
be of the form

P : (qs,0) � (ai, i) → (b j, i) → (ck, i) → (d�, i) � (q f ,0)

which is only possible if i = �. By construction, the in-
termediate transitions exist in C iff (i, j), (j, k), (i, k) ∈ E ,
meaning that {i, j, k} ⊆ V form a triangle.

We now turn our attention to complexity. Let n = |Q |,
and note that n = 4 · m + 2 = O (m), while clearly |δ| =
O (n2). Since O (n2) is below the bounds stated in Item 1
and Item 2, we have a fine-grained reduction from the
problem of triangle detection to the reachability problem
of OCNs, as desired. �

Finally, observe that, under Item 1 of Theorem 2, our
upper bound of Theorem 1 is optimal wrt polynomial im-
provements, as OCNs are a special case of OCSs.
3

3. Pushdown reachability with bounded witnesses

In this section we present our results for reachability
on pushdown systems.
Pushdown systems. A pushdown system (PDS) is a tuple
P = (Q , �, δ) where Q is a finite set of control states, �
is the finite stack alphabet, and δ ⊆ Q × � × Q × �∗ is a
finite transition relation. We assume wlog that � = {0, 1},
as any PDS with stack alphabet of constant size can be
easily converted to an equivalent one where the alphabet
is binary.

A configuration of P is an element (q, w) ∈ Q × �∗ ,
where q is a control state and w is the stack word. The
semantics of P are defined wrt the configuration space
GP with edge relation such that (q1, w1) → (q2, w2) iff
(q1, γ , q2, w) ∈ δ, where w ∈ �∗ and γ ∈ � ∪ {ε} are such
that either (i) w1 = γ = ε and w2 = w , or (ii) γ
= ε
and there exists w ′ ∈ �∗ such that w1 = γ w ′ and w2 =
w w ′ . We write (q1, w1) � (q2, w2) to denote a path
P : (q1, w1) → (q2, w2) → ·· · → (qk, wk) with (q1, w1) =
(q1, w1) and (qk, wk) = (q2, w2). The maximum stack height
of P is defined as MSH(P) = maxi |wi |, i.e., it is the length
of the largest stack word in a configuration of P .
The reachability problem for PDS. The (state) reachability
problem for a PDS P asks, given two states qs, qt ∈ Q , to
decide whether there exists a path P : (q1, ε) � (q2, ε) in
GP . The problem is known to be solvable in O (n3) time,
where n = |Q |, while no truly sub-cubic algorithm is ex-
pected to exist [10,11]. PDSs are one of the standard for-
malisms in static program analysis, where the analysis is
phrased as a PDS reachability question [4,5,11]. The practi-
cal performance of these analyses further depends on two
aspects of this setting. First, PDSs are typically sparse, i.e.,
we have |δ| = O (n) [3,15,16]. Second, for efficiency rea-
sons, such analyses typically restrict the search space to
paths where the stack height is bounded [7,8,17–19]. Mo-
tivated by these two aspects, we study stack-bounded and
sparse pushdown reachability.

Stack-bounded, sparse pushdown reachability.
Input: A PDS P = (Q , �, δ) with |δ| = O (|Q |), a
bound b, and two states q1, q2 ∈ Q .
Output: YES if there is a path P : (q1, ε) � (q2, ε)

in GP with MSH(P) ≤ b, NO if there is no path
(q1, ε) � (q2, ε) in GP , and YES/NO in any other
case.

J. Cetti Hansen, A. Husted Kjelstrøm and A. Pavlogiannis Information Processing Letters 171 (2021) 106135

qs

p2
1 p1

1 p0
1

p2
2 p1

2 p0
2

q�

q0
1 q1

1 q2
1

q0
2 q1

2 q2
2

qe

ε/ε

ε/ε

ε/1 ε/0

ε/ε

ε/1 ε/1

ε/ε

ε/ε

ε/ε

0/ε

1/ε

0/ε

ε/ε

0/ε

0/ε

1/ε

ε/ε

Fig. 2. The PDS P for the OV instance A = {01,11} and B = {01,10}. An edge from p to q labeled x/y corresponds to a transition (p, x,q, y) ∈ δ.
3.1. Upper bound

In this section we establish the following theorem.

Theorem 3. The stack-bounded, sparse reachability problem
with stack bound b = log n can be solved in O (n2) time on a
PDS P with n states.

Proof. Let Glogn
P be the configuration space of P pro-

jected on configurations that are elements of (Q , �≤logn).
We construct Glogn

P explicitly and use plain reachability
to check if there exists a path q′

1 � q′
2 in Glog n

P where
q′

1 = (q1, ε) and q′
2 = (q2, ε).

Our M S H(P) is bounded by log n which means the
amount of different configurations of the stack is bounded
by 2logn = n. The number of nodes in Glogn

P is then
bounded by n · 2log n = n2. Because P is sparse, then Glog n

P
is also sparse, so we can compute the problem in O (n2)

using plain reachability as Glog n
P is just a plain, directed

graph with O (n2) nodes and O (n2) edges. �
3.2. Lower bound

In the previous section we saw that a straightforward
algorithm reduces the complexity of stack-bounded, sparse
pushdown reachability from the general cubic bound down
to quadratic when the stack bound is b = log n. The sim-
plicity of that algorithm motivates the following question:
can a better bound (i.e., below quadratic) be established by
a (possibly) more involved algorithm? Here we show that
this is unlikely when b = ω(log n). Our reduction is from
the problem of Orthogonal Vectors.

Orthogonal Vectors (OV).
Input: Two set of vectors A, B ⊆ {0, 1}D of size m
each
Output: YES if there exists two vectors a ∈ A and
b ∈ B that are orthogonal, i.e., ∀i ∈ [D] : a[i] ·b[i] = 0,
and NO otherwise.

The naive algorithm to solve OV is by matching every
pair of vectors in A and B and checking if they are or-
thogonal, which yields a straightforward bound O (m2 · D).
The corresponding hypothesis states that the problem is
not solvable in O (m2−ε) time, for any ε > 0, as long as
D = ω(log n) [14]. We show that stack-bounded, sparse
pushdown reachability is OV-hard for stack bound b = D .

Reduction. Consider an instance A, B of OV, where A =
(ai)1≤i≤m and B = (bi)1≤i≤m , and we construct a PDS P as
follows. Fig. 2 provides an illustration. The set of states is
Q = {qs, qe, q�} ∪ ⋃

i∈[m]
j∈[D+1]−1

{p j
i , q

j
i }.

We now define the transition function of P . We start
with the vectors of A.
For every i ∈ [m], we have (qs, ε, pD

i , ε), (p0
i , ε, q�, ε) ∈ δ.

Moreover, for every j ∈ [D], we have (p j+1
i , ε, p j

i , ai[j]) ∈ δ.
We now proceed to the vectors of B .
For every i ∈ [m], we have (q�, ε, q0

i , ε), (qD
i , ε, qe, ε) ∈ δ.

Moreover, for every j ∈ [D], we have (q j−1
i , 0, q j

i , ε) ∈ δ

and if ai[j] = 0, we also have (p j−1
i , 1, q j

i , ε) ∈ δ.
Let P = (Q , {0, 1}, δ) and solve pushdown reachability
from qs to qe on P .

We now prove the correctness of the above construc-
tion, which establishes the following lower bound.

Theorem 4. The stack-bounded, sparse pushdown reachability
problem with stack bound b = ω(log n) has no O (n2−ε)-time
algorithm, for any ε > 0, under the OV hypothesis.

Proof. Consider any i, j ∈ [m]. We show by induction on k
that (pk

i , ε) � (qk
j, ε) iff ∀k′ ≤ k we have ai[k′] · b j[k′] = 0.

The statement holds trivially for k = 0. Now, assume by
the induction hypothesis that the statement holds for
some k. Indeed, if ai[k + 1] · b j[k + 1] = 0, then by con-
struction, (pk+1

i , ε) → (pk
i , γ) � (qk

j, γ) → (pk+1
j , ε), as we

have (qk
j, 0, qk+1

j , ε) ∈ δ, and moreover (pk+1
i , ε, pk

i , 0) ∈
δ (if ai[k + 1] = 0), otherwise (pk+1

i , ε, pk
i , 1) ∈ δ and

(qk
j, 1, qk+1

j , ε) ∈ δ (if ai[k + 1] = 1 and b j[k + 1] = 0). On
the other hand, if ai[k +1] ·b j[k +1]
= 0, then by construc-
tion, (pk+1

i , ε, pk
i , 0) /∈ δ and (qk

j, 1, qk+1
j , ε) /∈ δ, and thus

no path (pk+1
i , ε) � (qk+1

j , ε) exists. So given (pk
i , ε) �

(pk
j, ε), then (pk+1

i , ε) � (pk+1
j , ε) iff ai[k + 1] · b j[k + 1] =

0.
In the end, we have (pD

i , ε) � (qD
j , ε) iff ∀k ∈ [D], we

have ai[k] · b j[k] = 0, meaning ai and b j are orthogonal. By
construction, we have (qs, ε) � (qe, ε) iff (pD

i , ε) � (qD
j , ε)

for some i, j ∈ [m]. Finally, note that P contains no cycles.
Thus any path P : (qs, ε) � (qe, ε) must be of the form
(ps, ε) � (q�, w) � (pe, ε). Finally, b = MSH(P) = |w| = D .

We now look at the complexity. The PDS P has |δ| ≤
(2 · D + 2) · 2 · m edges so |δ| = O (D · m) and |Q | ≤
(D + 1) · 2 · m + 3 nodes, thus |Q | = O (D · m). Hence the
construction is an instance of stack-bounded, sparse push-
down reachability. Since the reduction takes O (D ·m) time,
4

J. Cetti Hansen, A. Husted Kjelstrøm and A. Pavlogiannis Information Processing Letters 171 (2021) 106135
an O (n2−ε) time algorithm for reachability on P would
yield an O (m2−ε′

) bound for OV, for ε, ε′ > 0. �
Remark 1. Program analyses are often parametric on the
treewidth of the underlying structure [12,18,20], as control-
flow graphs are known to have low treewidth [21]. In
our reduction, the PDS P is a series-parallel graph, hence
our lower-bound in Theorem 4 also holds for graphs of
treewidth 2. Thus treewidth alone is not a sufficient re-
striction to break the quadratic bound.

4. Conclusion

In this work we have studied reachability on OCSs and
PDSs. We have shown that the former model admits an
O (nω · log2 n) bound, while the latter admits an O (n2)

bound when the input PDSs is sparse and we restrict
the search space to witness executions of bounded stack
height. Moreover, we have proven similar lower bounds
based on popular conjectures in fine-grained complexity,
showing that our upper-bounds are close to optimal.

Declaration of competing interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this pa-
per.

References

[1] J. Späth, K. Ali, E. Bodden, Context-, flow-, and field-sensitive data-
flow analysis using synchronized pushdown systems, in: POPL, 2019.

[2] A.A. Mathiasen, A. Pavlogiannis, The fine-grained and parallel com-
plexity of Andersen’s pointer analysis, in: Proc. ACM Program. Lang.,
vol. 5 (POPL), Jan. 2021.

[3] Q. Zhang, M.R. Lyu, H. Yuan, Z. Su, Fast algorithms for Dyck-
CFL-reachability with applications to alias analysis, in: PLDI, 2013,
pp. 435–446.

[4] T. Reps, S. Horwitz, M. Sagiv, Precise interprocedural dataflow analy-
sis via graph reachability, in: POPL, 1995, pp. 49–61.

[5] T. Reps, Program analysis via graph reachability, in: Proceedings of
the 1997 International Symposium on Logic Programming, ILPS ’97,
MIT Press, Cambridge, MA, USA, 1997, pp. 5–19.

[6] A. Bouajjani, J. Esparza, O. Maler, Reachability analysis of pushdown
automata: application to model-checking, in: CONCUR, Springer
Berlin Heidelberg, 1997, pp. 135–150.

[7] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T.W. Reps, M. Yan-
nakakis, Analysis of recursive state machines, ACM Trans. Program.
Lang. Syst. (2005).

[8] K. Chatterjee, B. Kragl, S. Mishra, A. Pavlogiannis, Faster Algorithms
for Weighted Recursive State Machines, Springer, Berlin, Heidelberg,
2017, pp. 287–313.

[9] S. Chaudhuri, Subcubic algorithms for recursive state machines, in:
POPL, 2008, pp. 159–169.

[10] N. Heintze, D. McAllester, On the cubic bottleneck in subtyping and
flow analysis, in: LICS ’97, IEEE Computer Society, Washington, DC,
USA, 1997, p. 342.

[11] K. Chatterjee, B. Choudhary, A. Pavlogiannis, Optimal Dyck reachabil-
ity for data-dependence and alias analysis, in: Proc. ACM Program.
Lang., vol. 2 (POPL), Dec. 2018.

[12] K. Chatterjee, G. Osang, Pushdown reachability with constant
treewidth, Inf. Process. Lett. 122 (2017) 25–29.

[13] V.V. Williams, R.R. Williams, Subcubic equivalences between path,
matrix, and triangle problems, J. ACM 65 (5) (Aug. 2018).

[14] V.V. Williams, On some fine-grained questions in algorithms and
complexity, Tech. Rep, 2019.

[15] M. Madsen, A. Møller, Sparse dataflow analysis with pointers and
reachability, in: M. Müller-Olm, H. Seidl (Eds.), Static Analysis,
Springer International Publishing, Cham, 2014, pp. 201–218.

[16] A. Tavares, B. Boissinot, F. Pereira, F. Rastello, Parameterized con-
struction of program representations for sparse dataflow analyses,
in: A. Cohen (Ed.), Compiler Construction, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014, pp. 18–39.

[17] G. Xu, A. Rountev, Detecting inefficiently-used containers to avoid
bloat, in: PLDI ’10, ACM, New York, NY, USA, 2010, pp. 160–173.

[18] K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, P. Goyal, Faster algo-
rithms for algebraic path properties in recursive state machines with
constant treewidth, in: POPL, 2015, pp. 97–109.

[19] J. Späth, L.N.Q. Do, K. Ali, E. Bodden, Boomerang: demand-driven
flow- and context-sensitive pointer analysis for Java, in: ECOOP,
vol. 56, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016, 22.

[20] K. Chatterjee, A.K. Goharshady, R. Ibsen-Jensen, A. Pavlogiannis, Opti-
mal and perfectly parallel algorithms for on-demand data-flow anal-
ysis, in: ETAPS (ESOP), vol. 12075, Springer, 2020, pp. 112–140.

[21] M. Thorup, All structured programs have small tree width and good
register allocation, Inf. Comput. (1998).
5

http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0D4B0FF7088CFECE60C68270B4B56BA2s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0D4B0FF7088CFECE60C68270B4B56BA2s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibDF96EA541DF4C105A0FFE8628787E0F2s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibDF96EA541DF4C105A0FFE8628787E0F2s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibDF96EA541DF4C105A0FFE8628787E0F2s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib790188DCDD35736FF43D531E00635FDDs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib790188DCDD35736FF43D531E00635FDDs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib790188DCDD35736FF43D531E00635FDDs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib24DF31C0A4A0E8C9B8FF3729830AA58As1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib24DF31C0A4A0E8C9B8FF3729830AA58As1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0C8BCCB5552940B29B231B1C53423CFDs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0C8BCCB5552940B29B231B1C53423CFDs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0C8BCCB5552940B29B231B1C53423CFDs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib1B143BC8FDDAA66D739BA5BD61293B86s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib1B143BC8FDDAA66D739BA5BD61293B86s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib1B143BC8FDDAA66D739BA5BD61293B86s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibF3963486341CF6153D7405F843AA8ECCs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibF3963486341CF6153D7405F843AA8ECCs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibF3963486341CF6153D7405F843AA8ECCs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibE2DAD25953629A790C96480AE38C405Bs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibE2DAD25953629A790C96480AE38C405Bs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibE2DAD25953629A790C96480AE38C405Bs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib00472D5EC4DCE204117AC50C99EE129Cs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib00472D5EC4DCE204117AC50C99EE129Cs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib3A7139386886AE55515D48873E49FE97s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib3A7139386886AE55515D48873E49FE97s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib3A7139386886AE55515D48873E49FE97s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib9CF81B3C2D2F15C9F0E9DCBE4D23D19Cs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib9CF81B3C2D2F15C9F0E9DCBE4D23D19Cs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib9CF81B3C2D2F15C9F0E9DCBE4D23D19Cs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib1A5ED7FFDA4BE6859FD1EBCBAB8863AFs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib1A5ED7FFDA4BE6859FD1EBCBAB8863AFs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibF3A082D3B8C191169C1A54BE40DB46F6s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibF3A082D3B8C191169C1A54BE40DB46F6s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib47186BF08B5E4D6A99CEE05E853C3B82s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib47186BF08B5E4D6A99CEE05E853C3B82s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib6C38EF06B9EEF2C33BB95E7551966238s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib6C38EF06B9EEF2C33BB95E7551966238s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib6C38EF06B9EEF2C33BB95E7551966238s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0E322C1528B7E6EB2A559A70B9DCBDC7s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0E322C1528B7E6EB2A559A70B9DCBDC7s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0E322C1528B7E6EB2A559A70B9DCBDC7s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib0E322C1528B7E6EB2A559A70B9DCBDC7s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibBBBCDB03F325D1BBE395FA89017A26EBs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bibBBBCDB03F325D1BBE395FA89017A26EBs1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib7CF0F8F027E5F39B44C735F55D8948B4s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib7CF0F8F027E5F39B44C735F55D8948B4s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib7CF0F8F027E5F39B44C735F55D8948B4s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib2D1C5318EB758FCC663E7D3B8A4A6AD0s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib2D1C5318EB758FCC663E7D3B8A4A6AD0s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib2D1C5318EB758FCC663E7D3B8A4A6AD0s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib7CA3A8536FA1792DFE424168A348D584s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib7CA3A8536FA1792DFE424168A348D584s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib7CA3A8536FA1792DFE424168A348D584s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib02D101683E0A647DE322714C8B46B462s1
http://refhub.elsevier.com/S0020-0190(21)00050-8/bib02D101683E0A647DE322714C8B46B462s1

	Tight bounds for reachability problems on one-counter and pushdown systems
	1 Introduction
	2 Reachability on one-counter systems
	2.1 Upper bound
	2.2 Lower bound

	3 Pushdown reachability with bounded witnesses
	3.1 Upper bound
	3.2 Lower bound

	4 Conclusion
	Declaration of competing interest
	References

