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Visual Analysis of Heterogeneous Data
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Abstract—As heterogeneous data from different sources is being increasingly linked, it becomes difficult for users to understand
how the data is connected, to identify what means are suitable to analyze a given data set, or to find out how to proceed for a
given analysis task. We target this challenge with a new model-driven design process that effectively co-designs aspects of data,
view, analytics, and tasks. We achieve this by using the workflow of the analysis task as a trajectory through data, interactive
views, and analytical processes. The benefits for the analysis session go well beyond the pure selection of appropriate data sets
and range from providing orientation or even guidance along a preferred analysis path to a potential overall speed-up, allowing
data to be fetched ahead of time.
We illustrate the design process for a biomedical use case that aims at determining a treatment plan for cancer patients from the
visual analysis of a large, heterogeneous clinical data pool. As an example for how to apply the comprehensive design approach,
we present Stack’n’flip, a sample implementation which tightly integrates visualizations of the actual data with a map of available
data sets, views and tasks, thus capturing and communicating the analytical workflow through the required data sets.

Index Terms—visual analytics, analysis guidance, model-driven design, multiple data sets.
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1 INTRODUCTION AND RELATED WORK

THE advantages and challenges of multiple, hetero-
geneous data sets are widely recognized in the

field of Visual Analytics. Thomas and Cook recom-
mend the creation of “methods to synthesize infor-
mation of different types and from different sources
into a unified data representation” [1, p.11]. Such a
unified representation can be envisioned as an hetero-
geneous information landscape, in which information
foraging and sense-making take place. Like a person
exploring unknown territory in the real world, a
user navigating the high-dimensional, multi-faceted
and overwhelmingly large, combined data space of
multiple, heterogeneous data sets must be provided
with some means of orientation. This challenge has
been described in the context of information retrieval
as early as 1993 [2]. This publication also coined the
notion of information landscapes and identified differ-
ent strategies commonly used to gather information
within them – e.g., exploring the data in an undirected
fashion or following a concrete plan for finding the
desired information. In this paper, we take the next
step towards assisting these analytical strategies not
only by means of orientation within the data, but also
within the large and diverse set of available analysis
methods and visualization techniques.

In this context, data analysis can be aided by pro-
viding two different levels of analytical support:
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• Orientation communicates the current position
within the information landscape, the path of
analysis steps that led there (history), and pos-
sible directions for further investigation (e.g., re-
lated data sets).

• Guidance suggests concrete analysis steps to be
taken in order to get from an analysis hypothesis
to an analysis result.

The contribution of this paper is a model-driven
approach to achieve these two levels of analytical
support in two steps: First, a model in the sense of the
aforementioned unified representation is constructed
via an authoring process. This model goes beyond the
sole definition of the information landscape, as it also
contains details on suitable visualization and compu-
tation methods to access the data sets. In a second
step, this model is utilized to provide orientation by
means of making the model explicit to the user, and
to provide step-by-step guidance by inferring possible
paths within the modeled analysis setup, which will
lead the user to a desired analysis result.

Several ways of providing such orientation and
guidance were described in the field of visualiza-
tion. On a conceptual level, the literature offers two
prevalent strategies. The most common strategy is the
data-driven, bottom-up strategy, which gathers data
and distills it into navigational cues. For example, the
VisSheet system generates a number of previews for a
range of possible visualization parameter changes and
presents them to the user to choose from [3]. Another
example is the approach of HARVEST’s behavior-
driven visualization recommendation which analyzes
the user’s analytic activity [4]. When employing the
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concept of Social Navigation user data is crowdsourced
from multiple users and displayed as usage statis-
tics indicating popular or neglected user choices [5].
Similar data-driven techniques can be employed on a
higher level as well, as it is done by the VisComplete
system which mines a database of existing visualiza-
tion pipelines to aid the user in constructing new ones
by suggesting possible completions [6].

An approach used more rarely than the data-driven
strategy is the workflow-driven, top-down strategy,
which derives navigational assistance by instantiating
a predefined, abstract best-practice solution with con-
crete visual and computational techniques. One exam-
ple is the Systematic-Yet-Flexible system, which gives
a step-by-step guidance along a high-level workflow,
while leaving the choice of concrete techniques that
achieve the higher-level objectives to the user [7].

The approach presented in this paper falls into this
second category, but has a much larger scope: besides
the actual workflow, it also utilizes the aforemen-
tioned model of the analysis setup, which includes the
available data sets and their interrelations, the avail-
able algorithmic and visual methods and packages, as
well as their applicability to achieve individual steps
of the workflow. As a result of making this additional
information available, it is possible to automatically
determine suitable analytical techniques and subse-
quently use this information to provide navigational
cues on a much more specific, lower level along a
given analysis path. This proves especially useful in
interactive systems that exhibit a large number of
possible continuations at any given point – so that
the decision which functionality to use on which
part of the data and in which order is particularly
challenging.

Our concept of a model-driven design for visual
analysis support draws upon first ideas from our
earlier position paper [8].

2 CONCEPTUAL FOUNDATIONS

Large information landscapes with multiple, hetero-
geneous data sets and numerous visual and compu-
tational interfaces to access them require means of
support to ensure their timely and accurate analysis.
Providing such user support is not a trivial task, as
the degree of support required by the user may vary
during the analysis session – the user may need con-
crete guidance during one part of the analysis session
and only means for orientation during other parts. To
realize such a smooth back and forth between these
two levels of support, a visual analysis system must
have considerable knowledge about the available data
sets, the goals of its user, as well as its analytical ca-
pabilities. The presented approach encapsulates these
aspects in three models:

• a domain-independent model of the setup in
which the interactive visual analysis takes place

– describing the data sets, the visual and compu-
tational interfaces to the data, and the analytical
operations that can be performed with them,

• a model of the domain that captures what can be
done with a given setup in the context of a spe-
cific domain – describing the numerous domain-
specific tasks and relating them to the data sets
and analytical operations of a given setup model,

• and a model of the analysis session that lists
what has to be done to pursue a given analysis
goal – describing the analysis workflow as a
sequence of domain-specific tasks from a given
domain model.

The knowledge specified by these models requires
an authoring phase in which the models are put to-
gether. It is obvious that the overhead of such an elab-
orate modeling phase is not justified for straightfor-
ward setups with a manageable complexity. However,
with increasingly complex models, the benefits soon
outweigh the initial modeling costs. This is especially
true for highly repetitive analysis sequences, which
have to be modeled only once and can then be reused
over and over again. For such routine tasks, the
guidance ensures that every repetition is done with
the same care as the very first analysis and without
forgetting a crucial intermediate step. A guided analy-
sis thus provides a high degree of reproducibility and
traceability, which makes most sense for application
fields in which a faulty analysis may lead to dire situ-
ations, such as the diagnosis of patients or the analysis
of safety hazards in airplane inspection. Nevertheless,
if the user wants to deviate from the workflow of
a guided analysis to freely roam the information
landscape in a more explorative, unplanned fashion,
he can do so at any point, resulting in a fall-back from
guidance to orientation support. Transitioning back
from such an exploratory side step onto the planned
analysis path means that guidance can then continue
with step-by-step instructions again.

The setup model is authored once and needs to
be adapted or extended only when new data sets or
tools become available. With this underlying, domain-
independent model, different domain models can be
associated, as different application domains may use
the same setup to carry out the analysis. This can be
frequently observed, e.g., in the field of life sciences,
where a geneticist and a biochemist may use the same
data sources and interfaces, but perform completely
different tasks. In the last step, a concrete analysis
workflow is formulated, which is then tailored to the
availability of data and analysis methods for a given
case, by pruning tasks that cannot be performed.
This yields a streamlined analysis workflow, which
contains only those analysis paths that can be realized
with the given data and tools.

The next subsection outlines the overall authoring
process together with the different roles involved in
each individual authoring step.
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2.1 Overall Authoring Process and Involved Roles

The description of complex, possibly cross-domain
analyses requires a good deal of expertise in all fields
involved. As the assumption of an omniscient expert
is unrealistic, we elicit different roles for the authoring
of the different models. Table 1 lists the three roles
involved in the authoring, as well as two possible
roles for analysts using the models.

The process of authoring the different models is best
described as a step-wise procedure, which sequen-
tially adds to the complexity of the models until they
are fully specified. This is shown schematically in Fig-
ure 1. The authoring process consists of the following
sequence of steps, each being the responsibility of one
of the three expert roles from Table 1:

I Developing the data model: this is the respon-
sibility of the data manager, who describes the
data sets and their interrelations.

II Enriching the data model with interfaces: this
is done by the visual analysis expert, who
annotates the data sets with information about
how to access each of them – via graphical inter-
faces (visualizations) or through computational
interfaces (query languages, statistics packages).

III Compiling a list of operators for each interface:
this lies within the responsibility of the visual
analysis expert, who denotes which interface is
suitable to perform which operations, as some
interfaces may be more fitting than others.

IV Connecting tasks to the data model: for this, the
domain expert identifies the required data sets
for each of the high-level analysis tasks that are
commonly performed in a given scenario and
relates them to the task.

V Associating operators with the tasks: this is spec-
ified by the domain expert who links concrete
operators to carry out the given tasks on the
associated data. As the operators are domain in-

Role Description Category

Data Manager responsible for building and
maintaining the data model

author

Visual Analysis
Expert

responsible for compiling inter-
faces and their operators

Domain Expert responsible for compiling tasks
and analysis workflows

Informed
Analyst

works on open research ques-
tions with no predefined anal-
ysis workflow

user

Guided Analyst works on answering a rou-
tine question along a predefined
analysis workflow

TABLE 1
Roles in authoring and using models of setup, domain

and analysis session.

dependent, the translation from domain-specific
tasks to operators should be supported by the
visual analysis expert who contributes knowl-
edge about suitable analysis methods.

VI Specifying a workflow of analysis tasks: in this
step, the domain expert details concrete analysis
sessions for pursuing a given goal by defining
an analysis workflow using the tasks defined.

VII Pruning the workflow according to the actually
available data sets and tools: as a final step, it is
automatically determined, which paths within
the workflow cannot be performed for a concrete
instance of data and analysis tools. These are
then pruned from the workflow.

The first three steps of this process describe the rather
static setup of the analysis: data sources, ways to
access these data sources, and analytical operators to
run on them. Steps IV and V concern the domain
model, as they add the domain-specific tasks on top
of the setup model. The last two steps connect these
tasks to meaningful analysis sessions and prune these
sessions to use only the data and tools available at
analysis time.

With all these models available, we have identified
two different roles of users that can benefit from the
explicitly modeled setup and analysis session. The
first is the informed analyst who analyzes the data
freely, without following a predefined analysis path.
For the informed analyst, the key benefit is the provi-
sion of orientation, which allows him throughout the
entire exploration process, to pinpoint exactly which
part of the information landscape is currently under
investigation, which methods are available to analyze
this particular information, and which other parts of
the information landscape may be related and thus be
of interest. For informing an analyst, only the model
of the setup with all its data sets and different visual
and computational operators is needed.

The second role is the one of a guided analyst, who
follows a given analysis path and possibly conducts
similar analyses routinely. The guided analyst benefits
from the formal model of the analysis session, as it
provides exactly the step-by-step guidance on how to
pursue an analysis path to achieve a given analysis
goal with the data at hand. If necessary, the guided
analyst may also deviate from the proposed workflow,
in which case the user’s role switches to an informed
analyst.

It should be noted that a one-to-one mapping of a
specific person to a role is not required. Depending on
the use case and its complexity, the responsibilities of
one role can be performed by multiple individuals.
Also, one person can fulfill multiple roles – for in-
stance, the domain expert may fulfill one or both user
roles. It is also possible to further extend or subdivide
the suggested roles, for example with more concrete
user profiles for specific applications.

Having sketched the overall authoring process, it
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Fig. 1. The authoring process shown as a sequence of authoring steps (I-VII) carried out by data, visual analysis,
and domain experts. The authored models can be taken as aids for providing analytical support on two levels: the
setup model (1) for informing (providing orientation to) a user within the sets of data, computational procedures,
and visualizations, the intermediary domain model (2), and the model of the analysis session (3) relying on the
setup and domain model for guiding (providing step-by-step directions) the user.

remains to detail the individual authoring steps and
how they build upon one another.

The models are not targeted towards orientation
and guidance per se, but can potentially be used to
optimize all kinds of processes, such as the treatment
of missing data or collaborative analysis, as we have
envisioned in [8]. We embrace this generality as a
strong argument for such a comprehensive author-
ing approach. To reflect the clear distinction between
the general models and their specific application, we
keep the following explanation of the authoring steps
general as well. Nevertheless, we use the domain of
biomedicine to give examples.

2.2 Authoring the Setup Model
The setup model captures the basic infrastructure in
which the analysis takes place. Besides all the different
data sources being available (Step I), this includes the
software infrastructure for accessing the data (Step
II), as well as the available software tools, such as
visualization frameworks or statistics libraries, for
analyzing the data (Step III).

Step I: Developing the Data Model
The data model captures all data sets (shown green
in Figure 2) available in an analysis setup. This can
include local data sets (i.e., an electronic patient file),
data sets available from online databases (i.e., pharma-
ceutical lists or digital anatomical atlases), streamed
data (i.e., a patient’s vital signs coming from intensive
care), etc. Additionally, the different data sets contain
different types of data, such as imaging data from
body scans, gene expression data from micro-array
analyses, text data from electronic documents, etc.
The data sets are then related via common keys or
identifiers where this is possible. In our biomedical
use case, this can be for example the patient’s name
or social security number, thus identifying a patient’s
records across different data sets. In the case of dif-
ferent conventions being used for identifiers among
multiple data sets, an ontology can often be used to
map them.

A data model of this sort is commonly used to
plan and implement the combination of large database
collections [9]. Large organizations, such as hospitals,
usually have employees dedicated to define and re-
fine such models, to validate and cross-reference en-
tered data, and to supply necessary meta-data. Hence,
many larger setups and even many freely available
data collections, such as linkeddata.org or data.gov, do
already have a data model of some sort. Yet beyond
the pure organization of data sets, such data models
are rarely used. A first approach utilizing a data
model for visual analysis was only recently given
by Lieberman et al. [10]. They use well-established,
standard data models (e.g., ERM [11]), which our
approach also relies on. This makes it easy to reuse
or adapt existing data models for our setup model.

Step II: Enriching the Data Model with Interfaces
A first step to enhance the data model beyond what
is stored is to add information about how to access
each data set. The access is conceptually performed
through interfaces, which can be

• computational interfaces (purple in Figure 2),
which fetch the data either directly from the
source (low-level, query interfaces – e.g., SQL
or SPARQL) or calculate derived data, such as
clusterings or correlations (high-level, algorith-
mic interfaces – e.g., R statistics toolkit1 or WEKA2)

• visual interfaces (shown blue in Figure 2), e.g.,
scatter plots or parallel coordinates, allowing for
access using interactive, graphical methods, such
as visual queries or query by example.

These interfaces are provided by the software in-
frastructure of the analysis setup – database frontends,
statistical libraries, visualization frameworks, etc. As
different types of data require or permit different
interfaces, the information about which method of
access is available for each data set is added to
the data model. This is done through one-to-many

1. www.r-project.org
2. www.cs.waikato.ac.nz/ml/weka

linkeddata.org
data.gov
www.r-project.org
www.cs.waikato.ac.nz/ml/weka
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Fig. 2. The different parts of the setup, the domain and the analysis session: interfaces (blue and purple),
operators (red), data sets (green), and tasks (yellow). These parts are described and interrelated during the
authoring process. An example of a fully authored model of analysis setup, analysis domain, and analysis session
is shown in Figure 3.

assignments, as a data set may require a combination
of multiple visual interfaces to be properly displayed,
or as an algorithmic interface may need several data
sources to derive the desired information.

Step III: Compiling a List of Operators for the Interfaces
Operators (shown red in Figure 2) are domain-
independent analysis actions that describe in general
terms what each available interface can be used for.
For example, an SQL interface is perfect for querying
individual data items, a statistics library is well suited
for correlation analyses and clustering, and a parallel
coordinates view is ideal for interactive filtering.

The list of operators for each interface is usually
based on the experience of the visual analysis expert,
as well as on domain-specific conventions and rec-
ommendations from the literature. Hence, this step
encodes common knowledge and the current state of
research in the field of Visual Analytics in general.

This completes the modeling of the setup. It ef-
fectively describes the information landscape, and
computational as well as visual access methods, as
they are needed for guiding the informed analyst.

2.3 Authoring the Domain Model
The domain model adds a layer of domain-dependent
knowledge on top of the setup model. It does so
by associating tasks being formulated in terms of
the domain with the appropriate data (Step IV) and
operators (Step V).

Step IV: Connecting Tasks to the Data Model
As Munzner points out, the term “task” is overloaded
in the visualization literature [12]. Hence, it should be
made clear that the term “task” is being used here
for domain-dependent, textual descriptions of what
an analysis step should achieve on which data set.
An example of a domain-specific task is “Find all
patients with a common characteristic”. At this stage,
tasks (yellow in Figure 2) are described and linked to

the data sets they are performed on. In the example
given, patient characteristics may be scattered across
multiple data sets. As no concrete characteristic is
specified, the task would be connected to all of these
data sets.

Tasks are closest to the actual analytical process and
describe, in the words of the domain expert, what is
being analyzed with which goal. They are used later
as the building blocks of analysis sessions.

Step V: Associating Operators with the Tasks
While Step IV models what to do with which data
set, Step V finally defines how to do it, in order to
actually be able to carry out a task. This is achieved by
mapping the tasks to the domain-independent opera-
tors. The mapping can either assign a single operator
or a few operators to be carried out subsequently.
Otherwise, in the case of tasks getting too complex,
they can always be broken down into multiple more
fundamental tasks. In the case of the example task
“Find all patients with a common characteristic”, this
would be a single filter operator that filters the data
set of patients by the given characteristic. If a data
set provides multiple interfaces to perform the filter
operator with, e.g., an SQL interface and a parallel
coordinates visualization, then the task is connected
to all operators provided by the different interfaces.
Which one to choose is for the user to decide.

This completes the modeling of the domain. It
bridges the domain-dependent analysis steps and the
domain-independent analysis setup, and effectively
yields a graph that connects data sets and tasks
via domain-independent operators. The last authoring
steps define the missing workflows on top of the
domain model.

2.4 Authoring the Analysis Session Model
Often, an analysis session is seen as being equivalent
to performing a sequence of analytical tasks. Yet in
our concept, analysis sessions are more abstractly de-
fined, also capturing different analytical possibilities,
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in order to ensure their re-usability for other instances
of data (e.g., other patients). Specifically, an analysis
session model consists of two parts: the actual analysis
workflow (Step VI) and the constraints imposed on
the workflow due to unavailability of data sources or
analysis tools (Step VII).

Step VI: Specifying Workflows of Tasks
This authoring step assembles analysis workflows us-
ing the available tasks as building blocks in whichever
order they are needed. In addition to simply append-
ing tasks in a purely sequential order, Step VI also
makes it possible to model more complex analysis
patterns than a linear, step-by-step composition of
tasks. In order to capture the involved and convoluted
nature of analysis, branching, looping and forward
jumping is possible as well – in the very same spirit, as
task models [13] or user-task models [14] are authored
in the field of interface design.

The analysis workflows are modeled as directed
graphs with tasks as nodes and edges as transitions
from one task to the next. Alternative analysis paths
leading to the same analysis goal are rather common,
so the branching of a workflow is an important prop-
erty that makes it possible to capture and combine
multiple possible analysis paths in one analysis ses-
sion model. Likewise, the incorporation of forward
jumps as shortcuts allows the same session model
to be used for novice and professional users, alike.
The guided analysis can switch between a detailed
step-by-step walkthrough for the former and a less
elaborate, shorter “todo-list” for the latter – even in
the middle of the analysis. On top of that, loops make
it possible to encode any number of task repetitions
by revisiting a task (sequence) until its result is refined
enough to be taken as an input for the next task.
Moreover, it is possible to define preconditions per
task to specify certain requirements to be met, e.g., a
hierarchical clustering or aggregation to be performed
before visually analyzing the results of the processed
data. Likewise, postconditions can be formulated that
impose requirements on the result of an analysis task,
e.g., with regard to accuracy.

While the definition of the analysis workflows is
usually done by the domain expert, it is also possible,
to leave this to an informed user, who can also define
paths for the guided, routine users.

Step VII: Pruning the Workflows according to the Avail-
able Data Sets and Tools
As a final step, the analysis session model is adapted
to the constraints imposed by the unavailability of
data (e.g., as not all theoretically collectible data may
have been gathered for a given patient or the analyst
may not have the clearance to view them) and of
the analysis tools (e.g., licensing issues may prevent
their use or an analyst may not be properly trained
to use them). This adaptation is done by automatically

pruning all tasks that rely on unavailable data or inter-
faces from the workflows. As a result, the remaining
workflows cover all currently possible analysis paths
which can be chosen as the analysis progresses.

This completes the overall authoring process. It may
seem quite elaborate at first, but the modularity of
the three models ensures a high level of reusability.
The same setup model can be used to build different
domain models on top of it, and the same domain
model can in turn be used to author numerous work-
flows utilizing it. This makes a lot of sense, as the
definition of workflows is usually more short-lived
and prone to be changed and optimized more often
than the basic setup model or the domain model. The
following section briefly explores the final use of the
models for providing analytical support, which moti-
vated the externalization of the experts’ knowledge
about infrastructure, domain and workflows in the
first place.

2.5 Utilizing the Models for Analytical Support

The use of the setup model for orientation support
is rather straightforward, as the model itself already
provides a map in which to pinpoint the current
analysis step and determine possible next steps. Using
the analysis session model for the guidance support
requires some extra computation.

What needs to be determined first is whether any
continuous analysis paths are left after pruning. This
allows one to check whether or not an analysis goal
can be pursued at all by the specific analyst on the
given data within the current setup. If not, one could
for example request the collection of additional data
in order to obtain enough information to be able to
complete an analysis path. In our use case, this can be
additional tests or screenings for a patient. The session
model makes it possible to determine the smallest
gap among the analysis paths which can then be
bridged at minimal cost – financially or in terms of
the stress a patient has to go through. It thus realizes
the opposite direction of the pruning: the pruning
ensures that nothing is (intended to be) used that
is actually unavailable by removing these parts from
the model, whereas the reachability check makes sure
that everything is available that is needed at the bare
minimum to pursue the intended analysis goal.

Second, it must be determined which analysis path
to actually use for guiding the analyst among all
the possible analysis paths contained in the analysis
session model. For this, it is important to observe
that the paths differ in terms of their seamlessness and
effectiveness. A path is considered to be effective when
it is short compared to other possible analysis paths.
A path is called seamless if for each transition from one
task to the next, there exists a relation (edge) between
the data sets that the tasks are connected with as well.
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A seamless analysis path would allow the analyst to
proceed from one task to the next without destroy-
ing the mental map, as the data sets used by both
tasks are related via a common identifier. The more
discontinuities between data sets an analysis path
has to bridge, the less seamless it is. For a traceable
and swift analysis, paths that are more seamless and
effective are generally preferred and thus chosen for
the guidance.

To bring this whole process to life, the following
section gives an example for authoring the three
models and using both forms of analyst support.

3 APPLYING THE DESIGN PROCESS TO A
BIOMEDICAL USE CASE

Based on the theoretical foundation laid in the previ-
ous section, we demonstrate how to apply the concept
to a real use case. The use case covers a comprehen-
sive analysis of patient-related data. Our long-term
collaboration partners from the Institute of Pathology
at the Medical University of Graz approached us with
a need for visual analysis: they try to base a decision
of how to treat a newly diagnosed cancer patient on
a wider array of available data. In such a scenario,
they would like to analyze the patient’s basic data,
anamnesis, tissue data, gene expression data, etc. and
relate it to other reference patients. Moreover, they
want to be able to explore information about genes,
proteins or pathways, which they encounter during
an analysis. Hence, it is a prime example of visual
analysis across multiple, heterogeneous data sets.

3.1 Creating the Setup Model

The starting point for creating the setup model (cf.,
Section 2.2) is a well defined data model, which in
an optimal case can be based on an existing hospital
data management system. In this scenario, many of
the data sets are directly linked to the patient. This is
reflected in Figure 3 by the high degree of connectivity
from the patients’ basic information to other data sets.
The patient-related data sets include:
MR / CT / X-ray Magnetic resonance (MR), computer
tomography (CT) and X-ray data is acquired using
imaging techniques. For cancer patients, a tumor
might be visible in one, several or all of the imaging
data sets. In some cases, computer-based analysis,
such as automatic tumor segmentation, is employed.
Tissue samples When a tumor is discovered, the
standard procedure is to take a biopsy. The acquired
tissue is investigated under the microscope. High-
resolution scans are acquired and stored in a database.
Gene-/protein expression High-throughput tech-
niques like DNA micro-arrays enable the biomedical
expert to measure the regulation of ∼omics data
(genomics, proteomics, metabolomics, etc.– for details
see [15]) for a patient at a specific point in time. This

snapshot of the expression tells a life scientist how
active a gene/protein is, which influences the cellular
processes and in turn the disease itself. A common
procedure to analyze expression data is to cluster a
group of patients with known features and try to find
similarities and/or differences between their profiles
which allow to draw conclusions in the analysis.
Anamnesis The anamnesis is a patient’s medical
history – including illnesses, allergies, etc.
Lab results Lab results include blood levels, urine
and stool sample results, etc.

The patient-independent data sets are:
Pathways Pathways are models of the biochemical
processes in cells. They are especially valuable in
combination with ∼omics expression data [15].
Disease database Diseases and health-related con-
ditions are classified according to various disease
schemes (e.g., ICD).
Gene/protein database Information about genes and
proteins is stored in public databases as for exam-
ple GeneCards3 and EntrezGene4. These web sources
include meta-information such as short names, alter-
native identifiers, a detailed description, references to
publications and disease classifications.
Publications Articles published about genes, pro-
teins, pathways and diseases play an important role
during the analysis, as an analyst can gain deeper
knowledge on the topics if needed. The most com-
monly used database for literature research in the
biomedical domain is PubMed5.

To create the data model, the clinical data manager
collects those data sets (green in Figure 3) and defines
their relations (cf., authoring Step I). Having the data
model at hand, the design responsibility is handed
over to the visual analysis expert who chooses or
develops suitable visual as well as computational
interfaces and assigns those interfaces to the data
sets (Step II). This step requires in-depth knowledge
about the tools available for conducting the analy-
sis. In our scenario, we use the Caleydo visualiza-
tion framework [16], [17] for biomolecular-, tissue-,
patient- and meta-data. We use a commercial volume
visualization tool for MR/CT and X-ray data. The
visual analysis expert starts by compiling a list of the
available (visual as well as computational) interfaces,
as shown in Figure 3 at the bottom (visual interfaces
are shown in blue and computational interfaces in
purple). The available visualization techniques are
suitable for depicting data with specific properties.
For example, parallel coordinates are capable of visu-
alizing multi-dimensional data. Therefore, this visual
interface can be assigned to expression data as well
as patient information. Other visual interfaces are
the document viewer, heat map, web-browser, path-

3. www.genecards.org
4. www.ncbi.nlm.nih.gov/Entrez
5. www.ncbi.nlm.nih.gov/pubmed

www.genecards.org
www.ncbi.nlm.nih.gov/Entrez
www.ncbi.nlm.nih.gov/pubmed
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Fig. 3. Setup and domain model of the biomedical use case. The data sets (green) – either from local or online
sources – are connected when they share a common identifier. The interfaces (blue for visual interfaces, purple
for computational interfaces) are compiled from several tools and assigned to the data sets. For the analysis
session description, tasks (yellow) and operators (red) are added and connected to the data sets.

way viewer, etc. Caleydo’s computational interfaces
include the R statistics toolkit, WEKA and SQL, which
are assigned to the data sets using the same procedure
as before.

The visual analysis expert then compiles a list of
operators and assigns interfaces from the compiled
list (cf., Step III). In Figure 3, the operator pool is
presented as a series of red blocks. Operators in our
use case are for instance query, similarity analysis of
images as well as partitional and hierarchical cluster-
ing, where partitional clustering is realized through
the R interface, and hierarchical clustering through
WEKA. Note that the operators provided in Figure 3

are only a sample compilation for the workflow of
patient treatment planning.

3.2 Creating the Domain Model

In Step IV, the domain expert, in this case our partner
from the Medical University, defines a set of tasks
(yellow in Figure 3) and assigns the tasks to the
data on which they operate. A sequence of operators
which enable the fulfillment of the task is associated
to each task (Step V). One example for our use case
is the “Find gene”-task, which is assigned to the gene
database and can be accomplished using the Query
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operator. Note that this step does not include ordering
or connecting the tasks.

3.3 Creating the Analysis Session Model

In Step VI, the domain expert defines the workflow
as a sequence of tasks, which is the basis for guid-
ance. The following workflow, depicted in Figure 4,
is an example aimed at the goal described before:
determining a treatment plan for a patient diagnosed
with cancer. Patients are known to respond differently
both to therapy and the disease itself based on several
factors, including their genetic traits. Therefore, it is
crucial to identify the likely course of the disease for
a patient under different treatments.

1) Determine similar patients First, the guided
analyst filters patients based on their anamnesis
(for example in terms of age, gender, blood
values) using a computational approach.

2) Browse patients The analyst explores the pa-
tients that remain in the sample and tries to find
differences in their conditions.

3) View tissue For those patients, he explores the
tissue images, on which the initial diagnosis was
based. This is done to make sure that the patients
actually present similar manifestations.

4) Discard patients Remove patients with different
manifestations in terms of the tissue samples.

5) Cluster expression data To be able to identify
patients with similar gene expression patterns,
which might indicate common traits and there-
fore a similar course of the disease, the data is
clustered.

6) Inspect expression data The analyst inspects
the clustering results to find patterns where the
patient under investigation is similar to one
group of patients, while different to others. He
then selects a group of genes that clearly dis-
tinguishes the patient group from others. If the
genes’ functions are clear to the analyst (e.g.,
a well-known proto-onco or tumor suppressor
gene) he can directly jump to Task 9. If this is
not the case, he can proceed with the next task
to find out more about their function.

7) Explore related pathways To understand the
found genes’ function, the analyst explores the
pathways containing the genes.

8) View gene information Further information
about a particular gene is gathered by inspecting
its entry in an online database.

9) Select patients With the knowledge that the
genes are in fact relevant for the condition, the
analyst goes back to the gene expression view,
where he selects those patients that are in the
same group as the patient under investigation.

10) View Anamnesis The analyst then views the
anamnesis to judge whether previous courses

of actions were successful for similar cases and
bases his treatment decision on the findings.

11) Record Treatment Decision He records the treat-
ment decision in the patient’s anamnesis.

Fig. 4. The workflow of finding a treatment plan for a
newly diagnosed cancer patient.

Alternatively, instead of conducting an analysis
based on gene expression data (Tasks 5 to 8 in the left
branch of Figure 4), the guided analyst can choose to
conduct the selection of patients in Task 9 based on an
exploration, segmentation and comparison of tumor
images (cf., Tasks 5a to 7a). However, the right branch
is only feasible if the disease under investigation
causes tumors, visible in imaging data.

Preconditions are defined optionally for each task.
For instance, before viewing the tissue slices in Task 3,
the analyst needs to filter below 20 patients.

Before the models can be utilized by an analysis sys-
tem they need to be tailored to the given constraints
(cf., Step VII). In our scenario, we do not have the
patients’ protein expression profiles available, which
makes the protein database obsolete. Furthermore,
due to access restrictions at the hospital, lab results
cannot be a part of the setup. Based on the remain-
ing available setup resources, the automatic pruning
of paths is performed. As the exemplary defined
workflow samples are rather small, all tasks of the
workflow are possible and consequently remain in the
analysis session model.

4 IMPLEMENTATION IN REAL SYSTEMS

Before a real system can be developed based on
the described model, we first have to briefly discuss
ways to create such a model (i.e., authoring). This is
followed by an example of a concrete visual analysis
system which can make use of the gained information.
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4.1 Authoring
To be of use in actual systems, the models described
must be available in machine-readable form: either by
explicitly creating the model offline, or by capturing
interface actions and associating them with tasks at
runtime. The interactive method is only suitable for
the domain and the analysis session model, since it is
required to run the application.

Tools for offline creation of the model range from
dedicated authoring solutions6 to simple XML editors.
While these external tools can be used out-of-the-box,
an integrated solution is potentially more powerful:
on-the-fly editing and refinement can be tightly bound
to the visual data analysis. It enables users to create
and refine models – making a live role switch possible
– the analyst becomes the author.

The choice between these two variants is a trade-
off between flexibility and costs. This tight integration
of data analysis and authoring requires high initial
costs in terms of software engineering. As authoring
interfaces are not the focus of this paper, we have
defined the models covering our biomedical use case
directly in XML.

4.2 Implementation Example: Stack’n’flip
In this section we give a practical example that real-
izes a system using a previously authored model.

The “Stack’n’flip” system is grouped into two parts:
a space for data visualization, similar to what Shrin-
vasan and van Wijk [18] call the Data View, and a
space showing the relations between data, views and
analysis paths, similar to their Navigation View. While
our realization of this system and application goals
are very different from those proposed in [18], the
views are conceptually similar. Therefore these terms
were adopted. Two factors distinguish Stack’n’flip
from other systems: first, the navigation and the data
view are seamlessly integrated, and second, the kind
of support (guidance) based on the developed setup
model goes well beyond provenance and history.

Some approaches, such as Aruvi [18], History Mech-
anism [19], as well as Heer et al.’s temporal work
for Tableau [20] visualize the exploratory process in a
history tree. We take this principal idea a step further
by not only presenting history information, but also
proposing future steps – either following a predefined
path, or showing possible next steps independent of
the path. However, in contrast to the VisComplete ap-
proach of Vistrails [6], the path suggestions are not de-
rived purely from previous sessions and workflows,
but instead made by employing the authored models.
In addition, the associations between previous and
possible future analysis steps are made explicit on
both levels - the navigation view and the data view.

The Stack’n’flip implementation is a part of the
Caleydo visualization framework. It is developed in

6. e.g., Altova Authentic R© (www.altova.com/authentic.html)

Java and uses the Java OpenGL (JOGL) binding for
rendering. The authored model is loaded from a pre-
defined XML representation and is stored in a graph
data structure. The interactive support of Stack’n’flip
is based on simple graph traversal operations.

Data View

Exploring multiple data sets naturally lends itself to
the usage of multiple coordinated views. However,
traditional systems often present those multiple views
either in tiled windows or in tabs. This strategy does
not correspond well to an analysis path, however,
since it is frequently the case that the previous and
subsequent data sets may be contextually relevant,
while one data set is in focus.

To take this into consideration, we propose a stack-
ing of views as depicted in Figure 5. The views are
projected and rendered on 2D planes in a 2.5D scene,
making it related to Collins and Carpendale’s VisLinks
[21], the Bucket approach [17], or even Apple’sTMCover
Flow. The view in focus is in the center and parallel
to the screen. Other views are stacked to the left and
right of the focus view, tilted towards the user. The
adjacent views are either from the same data set, or
from a data set explored in a previous (on the left)
or upcoming (on the right) analysis step. This makes
it possible to easily relate data in adjacent views.
Additionally to conventional highlighting of selected
items, visual links [21] are shown between related
entities in adjacent views.

Navigation View

The contribution of the proposed approach is not
primarily the view arrangement, but the orientation
provided by a “map” through the information land-
scape – the navigation view. When designing such
a navigation view, it is important to find a balance
between the amount of information presented and the
requirement to give as much space as possible to the
data view, which contains the actual information.

We realized the map by depicting the network of
data sets as large symbols (see (1) in Figure 5). Tran-
sitions in the data model between loaded data sets
are visible at any time, while all possible transitions
are shown only when hovering over the associated
symbol (see (2) in Figure 5a). A red exclamation
mark followed by a short description indicates that
a precondition needs to be met before the analyst
can continue to a data set. By picking one of those
possible next data sets, the associated data is loaded
and shown in the data view. Its symbol is added to
the navigation view permanently.

The association between interfaces and data sets,
contained in the setup model, is shown as icons on
top of the data set symbol. Opening a new interface
for a particular data set is achieved by clicking the
interface icon.

www.altova.com/authentic.html)
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Fig. 5. (a) Stack’n’flip showing the guided analyst working on Task 6 of the described workflow. A heat map view
is shown in the center, a tissue browser on the left, a web-browser on the right and additional stacked views on
both sides. The succession of large symbols at the bottom represents the analysis path taken, with each symbol
showing a data set (1). On top of the data set symbols, smaller icons show which interfaces are available for
the data set. Possible future steps or branches (2) are either highlighted red, symbolizing the suggested analysis
path, or grey, showing alternative options. Visual links emphasize relations between the views (3). (b) The analyst
has selected a gene and can therefore move on to Task 7 and explore the loaded pathways. Visual links indicate
the location of the gene in the pathways. (c) To take an alternative analysis branch or even leave the suggested
path the guided analyst can always go back.

In case of a guided analysis, the information avail-
able through the analysis session model is employed
to highlight the recommended path, while still show-
ing other options to proceed (i.e., switching from
guided to informed support). The highlighting is real-
ized in red ((2) in Figure 5a). Recommended interfaces
for performing the next task are also shown in red
and are opened by default when the data set symbol
is clicked. A short description of the current task is
presented at the bottom of the navigation view.

Fusion of Navigation View and Data View
A key contribution of Stack’n’flip is the seamless
integration of navigation view and data view. Open,
active views are connected with a curve to their in-
terface symbol on top of the data set symbol, thereby
clarifying the relationship between the view and its
data set. This association of data sets and views makes
it explicit which data set is shown in which view,
and also allows the unambiguous use of the same
visualization technique for different data sets.

This merging of interactive visualization with anal-
ysis context is related to Ma’s Image Graphs [22],
Jankun-Kelly’s P-Set Model [23] as well as the Graphical
Histories by Heer [20]. However, Image Graphs and
the P-Set Model capture only the analysis process op-
erating on a homogeneous data set. In contrast, Heer’s
Graphical History view does handle heterogeneous

data, but is restricted to history information and there-
fore does not support real guidance or orientation in
the sense of Stack’n’flip.

Discussion of the System
We believe that the Stack’n’flip approach is general
enough to be utilized in many different forms. In fact,
as it mainly describes how to visually handle transi-
tions in heterogeneous data analysis, it is applicable
to a wide range of existing visualization frameworks.
We have chosen the 2.5D layout, because we have
shown in the past, that it is an effective method
for working with multiple, interconnected views (cf.,
[17]). However, pure 2D layouts, avoiding problems
arising from distortion, are of course possible as well.

As such, this system provides orientation when ex-
ploring heterogeneous data spaces by showing a his-
tory of previously explored data sets, a list of possible
connected data sets (in the navigation view) as well as
employed visualizations (through the stacking in the
data view) and is therefore suitable for the informed
analyst. This is especially important in comprehensive
analysis of data from different sources, as it requires
the analyst to switch back and forth between different
views and data sets, refining for example selections
or filters. Each switch requires mental effort and is
potentially confusing for the analyst. By making such
switches seamless and keeping the source view as
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contextual information, the mental effort can be re-
duced significantly.

The guided analyst benefits from the explicit path
laid out for him, while the navigation view shows
possible alternatives – thereby encouraging a devia-
tion from the pre-defined path (and therefore a switch
from guided analyst to informed analyst) for a deeper
understanding of the data.

5 FURTHER IMPLICATIONS

In this section we discuss how the models can po-
tentially be utilized for different purposes besides
orientation and guidance.

Visual Analytics goes well beyond simply provid-
ing the necessary tools for an analysis scenario – it
also aims at helping the analysts in choosing the ap-
propriate techniques by defining several processes as
best practice solutions for given analytical objectives.
These are based on high-level guidelines, such as
Keim’s Visual Analytics Mantra [24] or Shneiderman’s
well established Information Seeking Mantra [25].
Both have found their way into the design of Visual
Analytics systems, as they give valuable advice on
which kind of tools to provide at which point in
the analysis. These processes can be understood as
abstract design patterns for visual analysis software.
However, they are too abstract to actually specify
visual analysis techniques to be used on a concrete set
of data. Hence, most approaches derive suggestions
for the analysis from low-level events (mouse clicks,
etc.) recorded during previous analysis sessions.

In between high-level mantras and low-level mouse
clicks, a gap emerges that neither can fill. A mid-level
approach, like the one proposed, makes it possible to
formulate analysis sessions as abstractly as needed in
order to serve as reusable patterns and at the same
time being specific enough to be used for concrete
user support, thus merging the best of both worlds.
However, in our proposed design approach, high-
level mantras are still incorporated. Task 1-6 in Fig-
ure 6 is one example where Keim’s Visual Analytics
Mantra – “analyse first - show the important - zoom, filter
and analyse further - details-on-demand“ is evident.

The benefits of using the proposed three-stage
model is twofold: on the one hand, it can be employed
by a visual analysis system to provide analyst support
on different levels, as already discussed in detail; on
the other hand, it can help in the design phase of
a complex analysis scenario. Benefits gained by the
definition of the comprehensive models are:

Data selection The proposed concept makes it
possible to dynamically select a set of relevant data
sets for a specific analysis goal. Selecting a reduced list
of data sets needed in an analysis session makes the
analysis more targeted towards the goal. Additionally,
the system can anticipate the next steps of an analyst

Fig. 6. Sample analysis path showing the chosen
interfaces. Jumps between computational (purple) and
visual (blue) interfaces denote switches from the data
to the view domain and vice versa. High-level interac-
tion mantras can be found as reoccurring patterns.

and preprocess, pre-fetch or pre-layout data in other-
wise idle times. For example, fetching of large tissue
images from databases can be triggered before the
analyst traverses the data set during the interaction.
An example for a time-consuming preprocessing step
is clustering of gene expression data, based on a
selection of patients. Since an analyst can always
choose a path different from the preferred one, we
propose to pre-fetch data first for the preferred path,
and then for other possible paths, if enough process-
ing power, memory and/or bandwidth is available.
By conducting such operations in a separate thread,
such a system can utilize modern multi-core systems,
resulting in a significant speed-up.

Missing data or interface identification When
defining the analysis session model with an analysis
goal in mind, interfaces or data sources might be miss-
ing from the analysis setup in order to perform a task.
Due to the structured authoring process, however,
such missing interfaces or data sets are immediately
obvious to the domain expert. At this early stage the
domain expert can try to fill these gaps by requesting
the missing data sets or interfaces from the data
manager or visual analysis expert, respectively.

Post analysis optimization Based on the analysis
session model, it is possible to log the workflow
path actually taken by a user during an analysis
session. Figure 6 depicts an example path including
the interfaces used for each step. Switches between
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the visual (purple) and computational (blue) domain
are of special interest as these are often not seamless
and therefore imply a higher mental effort for the user.
The extracted data can be utilized to:

• optimize the workflow
By comparing the suggested path with the one
taken by the user, a feedback loop can be intro-
duced in the authoring process.

• optimize the analysis framework
Based on the insights gained, the underlying
application can be modified to better reflect the
user’s needs.

Generalization of workflows Analyst support
based on history and provenance information is an
integral part of various Visual Analytics systems (e.g.,
[5], [26]). However, by logging low-level application
events, the collected information is tightly coupled to
one specific setup and cannot be reused for guidance
purposes within different applications and tools. With
the proposed association of tasks to application and
domain independent operators, we detach implemen-
tation internal matters from the actual semantic path
information. This indirection allows us to employ
the collected path information in different analysis
setups as well. It is even possible to unhinge the
workflow with the associated domain independent
operator sequences from a specific setup in order to
find an alternative combination of analysis tools.

6 CONCLUSION AND FUTURE WORK

In this paper we have introduced a three-stage,
model-driven design process for the interactive visual
analysis of heterogeneous data sets, which allows a
system to guide a user on two different levels during
the analysis. In the first authoring stage, a basic model
of the given setup is created which considers data sets
from different sources, relations between them and
visual as well as computational interfaces operating
on them. A visual analysis system employing these
models can support the analyst by providing orien-
tation within the conglomerate of data sets, where
not only previous but also possible future analysis
steps are shown. On top of the setup, a set of domain-
specific tasks are defined, forming the domain model.
In the last stage, the analysis session model, which
contains a workflow with a concrete analysis goal
in mind, is defined. These three models are used to
actively guide the analyst along a predefined path.

We have demonstrated the concept for a biomedical
use case and presented a concrete implementation
based on an existing visualization framework. Initial
feedback from our project partners at the Medical
University of Graz was encouraging and the proposed
design approach will become a key component of our
joint biomedical research projects.

The current Stack’n’flip implementation provides
guidance based on the pre-defined models via the

compact navigation view. In a next step the navigation
view could be switched on demand to a full authoring
interface with on-the-fly model editing capabilities.
This tight integration of authoring and data analysis
has the potential to support a wide range of Visual
Analytics applications.

Approaches such as Stack’n’flip demonstrate the
usefulness of analyst support and are in fact impor-
tant for specific data analysis problems. However, as
visual analysis often employs highly specialized and
expensive tools, using a single super-application to
support users in all their analysis needs is unrealistic.
Consequently, there is a strong need for bridging the
gaps between these existing, independent tools. In this
paper we have provided the conceptual foundations
for doing so. What is left to do is to solve the tech-
nical problems of such a multi-tool scenario. In the
spirit of the Snap-Together Visualization [27], we have
previously explored possibilities to visually link infor-
mation across applications [28]. The approach works
without a common database on the basis of ID-Strings
that are collected from minimally-modified applica-
tions (e.g., via plug-ins) and matched by a light-weight
management application. The thereby identified re-
lated entities are connected by visual links. We plan
to extend this idea with model-driven guidance and
possibly also implementing a Stack’n’flip-like scenario
with independent tools.

Collaboration is another important topic for solving
complex domain problems. For a complex analysis,
experts from multiple domains with different back-
ground knowledge are required. We believe that the
proposed concept has the potential to also serve as a
basis for supporting this collaborative scenario.
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