
STAG: Smart Tools and Applications in Graphics (2019)
M. Agus, M. Corsini and R. Pintus (Editors)

ReVize: A Library for Visualization Toolchaining with Vega-Lite

Marius Hogräfer1 and Hans-Jörg Schulz1

1Department of Computer Science, Aarhus University, Denmark

Abstract
The field of tools for data visualization has been growing in recent years, with each tool contributing new ways to create and
work with visualizations, and each offering a specialized set of features, interaction metaphors and user interfaces. This means
on one hand that users have a wide choice in visualization tools. On the other hand, though, this choice might also lock-in
the user: Once made, it becomes difficult and sometimes even impossible to switch to another tool – e.g., to further refine a
visualization made in one tool inside another. In turn, users are forced to work around any shortcomings of the chosen tool, as
switching to another tool is even more cumbersome. In this paper, we introduce ReVize, an open-source library for visualization
toolchaining. ReVize makes use of Vega-Lite as a common exchange format to be able to add toolchain support to web-based
tools. In contrast to existing approaches, this solution to visualization toolchaining allows for authoring a visualization with
multiple tools in a back-and-forth fashion, without a preset order in which tools are to be used. We demonstrate ReVize by
adding toolchain support to three existing tools – KNIME, ColorBrewer, and VisFlow – for using them in concert to author
visualizations.

CCS Concepts
• Software and its engineering → Software tools and libraries; • Human-centered computing → Visualization systems;

1. Introduction

Working on a data visualization project usually involves a number
of specific steps that are supported by specific tools: OpenRefine
might be used to scrape and preprocess the data. R is then invoked
to run some data aggregation. The resultant dataset is then loaded
into Lyra [SH14] to create the mapping between data and visuals.
Multiple excursions are made from Lyra to ColorBrewer [HB03]
for deciding on a suitable color scale. And in the end, the visualiza-
tion is then included in a Jupyter Notebook [KRkP∗16] for record
keeping and later publication.

We term such a sequence of tools used for data visualization a
visualization toolchain. Each tool in this toolchain fulfills a certain
role along the visualization pipeline [CMS99]; some tools focus on
data pre-processing while others allow for the interactive definition
and adjustment of the mapping. This results in a wide variety of
visualization tools [GBTS13, MMWC18, SLR∗20, Kir19].

Getting back to our example above, let us assume that a collab-
orator finds a problem with the final visualization in the Jupyter
Notebook. To fix it will require adjustments to the preprocessing
of the data carried out in OpenRefine. While doable, this will in
turn necessitate a re-run of the entire toolchain to re-generate the
visualization with the now improved data.

The reason for having to re-run the subsequent steps of the
toolchain is that no information about the transformation between
steps is stored in the file formats. In the data space for example,

CSV files are passed between tools. The mapping transforms those
into the geometry space, for example encoding its output as SVG
files. And those are finally rendered in image or view space, for
example resulting in PNGs. Not only does each transformation be-
tween formats lose all information about the previous ones, but also
within one stage of the pipeline no process information is retained.
There is no part in a CSV to store a prior, e.g. unaggregated set of
data; there is no part in an SVG to store a prior, e.g. unbundled set
of edges; and there is no part in a PNG to store a prior, e.g. un-
smoothed version of a heatmap. All this process information gets
lost when moving from one tool in the toolchain to the next.

This is the point where we advocate to shift from “lossy” file
formats like the ones mentioned above, to declarative visualiza-
tion grammars. These grammars are able to describe, store, and
exchange visualizations in all their aspects from filtering and ag-
gregating the data via color mapping and labeling all the way to
defining interactions. As a result of this shift, any visualization tool
can access and modify any part of the same full visualization de-
scription at any time without incurring the need to re-run the whole
toolchain.

While this shift to visualization grammars is well under way with
grammar-based visualizations becoming more and more popular,
tool support is lagging behind. This is particularly so for tools be-
ing able to not only import and render such grammar-based visu-
alizations, but also to export a visualization to a declarative gram-
mar [SH14,WQM∗17]. This might be due to the growing complex-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://orcid.org/0000-0002-3649-9339
https://orcid.org/0000-0001-9974-535X


Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

ity of existing grammars such as Vega and Vega-Lite [SMWH17],
which probably discourages authors from implementing the re-
quired functionalities. After all, importing and exporting a visual-
ization grammar is a little more involved than parsing and writing
CSV files. Yet, such import/export functionality for a visualization
grammar would be needed to use multiple, different visualization
tools in such an ad hoc manner and without incurring dependencies
on other tools (i.e., the need to re-run).

At this crucial point, our toolchaining library – ReVize – comes
into play, which we present in this paper. ReVize is an open-
source JavaScript library for extending web-based visualization
tools with toolchaining support by allowing for the import and
export of Vega-Lite specifications. To handle the aforementioned
complexity of Vega-Lite, ReVize hierarchically deconstructs com-
posite views of a visualization specification, which allows us to
access encodings and configurations on a per-view basis. Addition-
ally, the model maintains a bi-directional mapping between data
and views that allows exporting partial views of a composition
as independent declarative specifications. We present architectural
constraints and lessons learned from using ReVize to extend three
visualization tools with toolchaining support (ColorBrewer, KN-
IME, and VisFlow) and discuss the use of a common exchange
format between visualization tools based on a use case. ReVize is
published on the node package manager repository and on Github
(see https://www.npmjs.com/package/revize).

2. Related Work

In this section, we present the literature on how visualization is
shared across toolchains. We divide this problem into two parts:
First, we present approaches to working on a visualization within a
single tool and then present ways in which a visualization is shared
between multiple tools.

2.1. Authoring a Visualization within the same Tool

To begin, we briefly discuss the different approaches in the litera-
ture, in which a visualization is authored within one tool.

The first approach is the use of proprietary file formats to store
a visualization’s structure for future editing. This approach is often
implemented in “monolithic” tools, in which all aspects of a visu-
alization can be manipulated, such as Lyra [SH14] and Charticula-
tor [RLB19]. While limiting the authoring process to a single tool,
proprietary formats nevertheless enable refining an existing visual-
ization or reusing its structure as a template for other datasets.

Another common technique in this category are multiple coor-
dinated views (MCV) [Rob07, JE12]. Therein, a visualization is
viewed and authored inside one tool in context of other views on
the same dataset. Whenever the user interacts with the data in one
view, all other visualizations are also updated. MCV is commonly
achieved through the Observer pattern, in which the tool notifies
views about changes of shared variables, which are manipulated by
the user. For example, Improvise [Wea04], Snap-Together [NS07]
or VisFlow [YS17] implement MCV as linked selections. Lark
[TIC09] allows explicit manipulation of different steps along the
visualization pipeline in a joined view.

An approach related to MCV are computational notebooks such
as Observable [Obs19] or Jupyter Lab [Jup19], where users can edit
a visualization’s source code directly and see immediate changes in
the resulting view. These notebooks can be stored for later refine-
ment and shared with others. In Idyll [CH18], authors can make
parameters of experiments discussed in an article modifiable. Then,
readers can change these variables and observe their influence on
the outcome of the experiment, as all dependent part of the text and
diagrams in the article automatically update.

Our toolchaining approach has similarities with single-tool ap-
proaches and expands on them. First, similar to MCV and computa-
tional notebooks, a central model of the visualization is viewed and
edited using different actors. While in MCV, these actors are views,
in toolchaining they are full visualization tools. Second, similar to
proprietary file formats, a model of the visualization pipeline can
be made persistent for future editing, albeit in toolchaining more
than one tool can load the model.

2.2. Authoring a Visualization in multiple Tools

Next, we present how a visualization can be authored by multiple
tools. Splitting the visualization authoring process across tools is
rather intuitive, since the process of developing a visualization is
often conceptualized as a multi-step process, for example with the
visualization pipeline model [CMS99] or the data state reference
model [CR98]. Hence, the transformations between steps of these
models are split among multiple tools, with each tool being spe-
cialized to the particular transformation for which it is used. Here,
we distinguish between two general strategies of modifying a visu-
alization in multiple tools: consecutively and in parallel.

2.2.1. Consecutive Usage of Visualization Tools

In this first category, tools are executed consecutively and isolated
from each other.

Coupling visualization tools through exchange formats is a com-
mon solution for tools that are developed independently from
each other. Tools that fall under this category share information
by passing datasets through comma-separated values (CSV), or
files in JavaScript object notation (JSON) [BOH11,SH14,MNV16,
SRHH16, MEC∗17, RLB19]. They often also allow for generating
vector graphics or bitmaps [SRHH16,SMWH17] to modify visual-
ization details with graphic editing tools such as Inkscape [Poj19],
Illustrator [Ado19] or GIMP [Tea19] (see Figure 1). In contrast to
the parallel approach, usually no mediating instance is needed as
information is shared through either the file system by storing data
in a file, the memory by copy-and-pasting data or by accessing data
from a remote server. One example is the visualization authoring
tool Charticulator [RLB19], which can import data from CSV and
TSV files, and produces a visualization for that data in publishing
formats such as bitmap, vector graphics, HTML snippets or as tem-
plates for Microsoft Power BI.

A limitation of coupling tools in this way was identified by
Bigelow et al. as the “challenge of iteration” [BDFM17], in that it is
not possible to use other visualization authoring tools to iteratively
refine these results. Thus, the authors present an approach, in which

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://www.npmjs.com/package/revize


Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

Raw Data Data Tables

Visual 
Mappings

Data 
Transformation

View 
Transformation

Visual Structures Views

RDBMS CSV SVG PNG

KNIME D Illustrator

�

� 3

Figure 1: A visualization scenario with consecutive combination of
tools: Using a dedicated exchange format (1) between two stages
of the visualization pipeline, a specific visualization tool (2) is ap-
plied. Output formats do not describe the operations that are ap-
plied to the input data in each tool (Visualization pipeline adapted
from [CMS99]).

a core model captures changes to a visualization from multiple con-
nected tools and derives a common merged version [BDFM17].
While each tool can only represent parts of the full model, a diff-
mechanism computes the partial models for each tool. That way,
tools with very different feature sets can be used iteratively, for ex-
ample Adobe Illustrator and D3.

Another way of exchanging visualizations between tools are vi-
sualizations defined in visualization grammars. These use a com-
mon set of rules that resemble natural language rather than imper-
ative code as presented in the Grammar of Graphics by Wilkin-
son [Wil05]. Wilkinson’s work has been adapted in different vi-
sualization grammars, such as ggplot2 [Wic10], Brunel [IBM19],
Vega [SRHH16], and Vega-Lite [SMWH17]. Through the declara-
tive approach, the structure of a visualization can be shared across
tools by distributing the description used to generate it, rather than
its rendered graphic representation. Yet, to our knowledge no vi-
sualization framework currently allows importing such declarative
visualization descriptions for further modification.

In our toolchaining approach, we build on Bigelow’s solu-
tion through the merits of declarative visualization grammars.
Bigelow’s core model covers aspects of the visualization pipeline
based on a set of supported tools. Whenever a new tool is added to
the core model, this feature set is extended to incorporate the novel-
ties for that tool. In our toolchaining solution, we use a full model
of the visualization pipeline (i.e. a visualization grammar) as our
exchange format. In that sense, the model exchanged between tools
is already “complete” and does not change per added tool. Never-
theless, Bigelow’s solution can potentially incorporate tool-specific
features that are not part of the visualization pipeline, for instance
the arrangement of toolbars in the workspace of a specific tool.

2.2.2. Parallel Usage of Visualization Tools

In the second approach to visualization toolchains, tools are run
in parallel to each other, with shared access to a model of a vi-
sualization. This approach usually requires a mediating layer that
manages the access to the model and that propagates changes to all
tools [SRN∗19].

One example for this approach is the Obvious toolkit
[FHBW11], which enables using multiple visualization toolkits in
one project. Obvious achieves this by providing a meta-model for

toolkits, allowing developers to combine instantiations of this meta-
model from any supported framework.

Our toolchaining approach conceptually resembles Obvious’
meta-model approach. In both cases, an abstract model of the vi-
sualization pipeline is used to combine feature sets. For toolchain-
ing however, we propose using a declarative description rather than
imperative code.

Rogowitz and Matasci presented an approach to visualization
toolchains [RM11], in which metadata about changes is propagated
between two tools. For this purpose, each tool implements a dedi-
cated interface for one or more other tools in the process. Whenever
changes are made in one tool, metadata describing the changes is
propagated through the network of tools.

ManyVis allows integrating multiple visualization tools in a sin-
gle application view by providing a communication layer for co-
ordinating process management, window management, user input,
and any communication between applications [RSD∗13]. This al-
lows users to create custom interfaces from a selection of tools.

Our approach to visualization toolchaining also supports such
parallel use of tools. To achieve this, the visualization model can
be distributed between any number of visualization tools. Neverthe-
less, this requires an external communication layer that distributes
this model between tools (see Section 8).

3. The Challenges of Tool-Interoperability in Visualization

In this section, we present conceptual considerations on authoring
visualizations across toolchains through declarative visualization
grammars. We do so by motivating three requirements for a library
that aims to provide such toolchain support.

The library allows importing and exporting a full model of
the visualization pipeline (R1). As outlined in Section 2, some
approaches exist for combining multiple tools to work jointly on
one visualization. Yet, current visualization toolchains generally in-
volve a particular set of tools that is used in a specific order.

One problem with this are “asymmetric” interfaces, in that each
tool imports and exports information about different parts of the
visualization pipeline. In turn, it is usually impossible to combine
multiple tools for the same purpose without additional support, as
the data exported by one tool does not contain the information that
the other needs. A visualization exported from Lyra in SVG can-
not be edited further in Charticulator, since the format describes
the geometry but contains no information about the data that is rep-
resented. Since every tool comes with its own benefits and draw-
backs, users are forced to make tradeoffs when deciding on a visu-
alization toolchain. This hinders users’ flexibility when authoring a
visualization.

To solve this, a full model of the visualization pipeline must be
available to every tool in the toolchain. That way, each tool can
modify the specific parts of the visualization and express them in
that model (see Figure 2). Furthermore, using a full model of the vi-
sualization pipeline addresses information-theoretic problems dis-
cussed by Chen et al. [CJ10]. This is because information that is
usually lost when using “partial” exchange formats can always be
recovered when the full pipeline is available.

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

Data Transformation Visual Mappings View Transformation

Raw Data Views

Toolchain Exchange Format

Figure 2: Illustration of our toolchain approach using a common
exchange format: Given an input dataset, the visualization pipeline
is modeled in the exchange format. Each tool in a toolchain can
thus express its modifications to the pipeline by authoring the ex-
changed file. Each tool can render a preview based on the ex-
changed file.

The library allows for iterative use of visualization tools (R2).
The second challenge for visualization toolchains is the “challenge
of iteration” [BDFM17], which we have discussed in Section 2. Re-
fining a visualization with another tool is hindered, if for instance
the link between a visual mark and its underlying data item cannot
be retrieved from a bitmap image. To solve this, the exchange for-
mat used by the toolchain library should model all aspects of the
visualization pipeline, thus making any feature of the visualization
available to any tool at any point in time.

The library supports both parallel and consecutive use of vi-
sualization tools (R3). As discussed in Section 2, there are gen-
erally two approaches to combining multiple visualization tools –
consecutive and parallel – with each having its own merits. Us-
ing multiple tools through a mediating communication layer allows
utilizing a variety of features at the same time. In case of the con-
secutive use of tools, no such mediating layer needs to be main-
tained, allowing for independent development of tools. Therefore,
a toolchaining library should facilitate both usage scenarios.

4. ReVize: A Library for Toolchains in Visualization

In this section we present implementation details on ReVize, our
library for visualization toolchains utilizing a declarative visualiza-
tion grammar. First, we present design decisions for the library,
then briefly introduce the component architecture, and then de-
scribe details about its import and export functionalities.

4.1. Design Decisions

Here, we discuss how we implemented the design requirements
from Section 3 in ReVize.

Realizing R1, we chose declarative visualization grammars as an
exchange format between tools. Visualization grammars model the
visualization pipeline through structural descriptions using a com-
mon set of rules (see Section 2). Specifically, we decided to use
Vega-Lite as exchange format for ReVize. Other alternatives for
visualization grammars were Vega, ggplot2 and Brunel. As Vega-
Lite is JSON-based, parsing and distributing the visualization de-
scription is significantly more convenient than it is in the case of
Brunel and ggplot2. At the same time, visualization tools that are
not based on web technologies in the future can still become part of
a toolchain, since JSON is not restricted to JavaScript (see for ex-
ample the Python-based Altair [VGH∗18]). While Vega offers more

freedom in what can be expressed (R2), Vega-Lite’s concise struc-
ture and use of defaults reduced the implementation complexity
of ReVize significantly. However, this conciseness also introduces
limitations into ReVize, which we will discuss later in Section 7.

We address R2 in two ways in our design decisions: First, we
designed ReVize around two main components, the SpecParser
class providing the parseSpec() function and the SpecCom-
piler class providing the compileSpec() function. These are
functionally inverse, in that one produces view objects from spec-
ifications and the other produces specifications from view objects.
As a result, unlike the solution of Bigelo et al. discussed previ-
ously, no core model needs to be maintained, as all modifications
to the shared visualization are expressed through specifications in
the declarative grammar.

The fact that visualization grammars are used as an exchange
format also ensures that R3 is fulfilled: Since a complete model
of the shared visualization is exchanged between tools, rather than
meta information, ReVize can be utilized both in consecutive and
parallel settings. While parallel use requires an additional schedul-
ing mediator between tools, ReVize itself does not prevent this use
case.

4.2. Implementation

Here we briefly present implementation details about ReVize. A
common problem hindering tool interoperability is that tools are
developed for different platforms, i.e. programming languages and
application programming interfaces (APIs) [GAEk∗16]. State of
the art visualization tools are currently based on web-technologies.
To promote tool interoperability with current visualization tools,
we implemented ReVize to provide a uniform API for visualiza-
tion tools using TypeScript and additionally compiling the sources
to JavaScript. Therefore, ReVize can be included as a library in an
existing project as package from npm or linked to directly from
within an HTML file.

4.3. Parsing a Vega-Lite View Composition

Vega-Lite specifications contain views, which define a mapping be-
tween data and visual marks. These views can be either atomic,
meaning that they directly encode the relation to the data or they
can be composite, in which case they define an arrangement of one
or more sub-views. These arrangements can be vertical or horizon-
tal concatenations of views (aligning multiple views next to each
other), overlaying (placing views on top of each other), faceting
(representing value subsets of the data in separate plots) and rep-
etition (representing multiple dimensions of the data in separate
plots).

A difficulty of using Vega-Lite as an exchange format between
tools is its growing syntactical complexity. While it is more concise
than its superset Vega, the set of abstractions that are part of Vega-
Lite is constantly growing. Thus, it makes sense to centralize the
development efforts into a toolchaining library.

Additionally, directly editing partial views from a Vega-Lite
specification is also non-trivial. This is due to dependencies that

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

ReVise View

CompositeView

AtomicView

RepeatView FacetView

ConcatView OverlayView

GraphNode

DatasetNode

InlineDatasetNode URLDatasetNode

NamedDatasetNode

TransformNode

SpecParser

SpecCompiler

Figure 3: Architectural diagram of ReVize’s main components.

some view composition operators introduce into the visual map-
ping of a child view. Views on deeper levels of the hierarchy inherit
general specification configurations such as the width and height
of the view space of the higher levels, unless they provide a new
configuration, in which case higher-level values are overwritten.
Furthermore, child views potentially inherit visual encodings and
configurations from their parent, which can easily be overlooked.
This makes it impossible to edit a child view independently from
its parent. It is desirable for visualization toolchaining, to hide such
constraints from the user of an API.

ReVize provides two components that serve as interface to Vega-
Lite: The SpecParser and the SpecCompiler classes, the former
for importing Vega-Lite specifications and the latter for export-
ing them. The compiler component produces Vega-Lite specifica-
tions for any given view object recursively from its child views in a
straightforward manner. The parser takes care of disassembling the
complex view hierarchy mentioned above, recursively traversing
Vega-Lite specifications and creating view objects for each view
type it encounters, while storing the parent-child relationships in
the respective properties of that object. An overview of ReVize’s
architecture is depicted in Figure 3. Listing 1 shows pseudocode
for the view decomposition algorithm of ReVize, with Listing 2
illustrating the process of inferring visual encodings from a repeat-
ing view composition. The full implementation can be found in the
Github project of ReVize.

function parseSpec(vegaLiteSpec)
configuration <- getConfig(vegaLiteSpec)
datasets <- getAllDatasets(vegaLiteSpec)

view <- getView(vegaLiteSpec)

view.datasets <- datasets
view.configuration <- configuration
return view

Listing 1: Pseudocode for the parseSpec function of ReVize.
The view composition is traversed recursively in the getView
function.

4.3.1. Parsing the Data Transformation Pipeline

Vega-Lite offers different ways to represent data in a specification:
As an inline dataset, for which values are stored directly in the spec-
ification, via a URL from which values are retrieved, or as a named
dataset that references an object containing entries of the other two
types. While parsing the view hierarchy, ReVize looks for these

three types of data and stores references to DatasetNodes in the
respective instance of the view class.

In addition to data sources, Vega-Lite offers some basic data
transformation operators, which are stored separately from the data.
If ReVize encounters a transformation entry, it creates a Trans-
formationNode for each encountered operator and links them in
a transformation pipeline. Instead of referencing a DatasetNode
in the respective view instance, the TransformationNode is used.
This allows ReVize to express data transformation graphs via Vega-
Lite’s linear transformation lists.

function getRepeatView(vegaLiteSpec)
repeatedSpec <- vegaLiteSpec.spec
repeatedFields <- repeatedSpec.repeat
repeatedEncodings <-
getRepeatedEncodings(repeatedSpec)

parentView <- new RepeatView()
childView <- getView(repeatedSpec)

for (encoding in repeatedEncoding)
childView.encoding = repeatedFields.rand()

parentView.childViews += childView
return parentView

Listing 2: Pseudocode for the decomposition of a Vega-Lite
specification that uses a repeating view composition. Visual
mappings that reference a “repeat” entry are overwritten for
the child view with a direct reference to a field of the dataset.

4.4. Using ReVize to enable existing Tools with Toolchain
Support

ReVize can be used either as a module from npm or as a bundled
JavaScript library from GitHub. To extend an existing visualization
tool with toolchain capabilities, generally two components need to
be instantiated: SpecParser and SpecCompiler. Toolchains support
is then added through their respective interface functions pars-
eSpec() and compileSpec(). The returned view element of
the former gives access to the view composition and the individual
configurations of each view in the visualization specification pro-
vided as a parameter. The latter returns a visualization specification
representing a view object that was passed as a parameter.

In addition to the functions provided by ReVize, it is usually
necessary to extend the user interface of a tool with widgets that
provide ways of importing and exporting a specification. For con-
secutive toolchains, a text field into which specifications are pasted
from the clipboard is often sufficient. Another option is to imple-
ment a file input that loads a JSON file from local storage. Export-
ing the visualization specification in turn can be achieved through a
text element from which the specification can be copied into the
clipboard, or even by reusing the import text field. For parallel
toolchains, a connection to the mediating instance needs to be im-
plemented, for example as web socket or REST interface. Export-
ing a specification in turn can be implemented as another operation
on the respective interface. We want to emphasize that ReVize does

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

not prescribe using either parallel or consecutive toolchains, but can
be adapted to both scenarios.

Examples for adding toolchain support to existing tools are pre-
sented in the following section.

5. Case Study: Extending Visualization Tools with Toolchain
Support using ReVize

Using ReVize, we added visualization toolchain support to three
existing visualization tools: The data analytics tool KNIME, the
color scale manager ColorBrewer, and the visual analysis editor
VisFlow. In case of the latter two tools, we have forked the cur-
rent release of each project from GitHub and published a toolchain-
enabled fork respectively under open-source licenses again. In case
of KNIME, we have created a workflow for toolchain support that
can be imported into any instance of that tool.

For VisFlow and ColorBrewer, we used the npm version of Re-
Vize and imported specific components of ReVize into the appli-
cation, whereas for KNIME, we used requireJS to download the
bundled version. In each tool, we began by extending the graphical
user interface with two components: a text widget into which we
could copy and paste a specification and a DOM element in which
to render the visualization. For KNIME, the text widget was the
input field of a textual dataflow variable, for VisFlow and Color-
Brewer we added HTML textarea elements. In all three cases, the
specification is rendered by the Vega-Embed module, which also
automatically adds an export interface to Vega-Lite and Vega to the
view.

The Vega-Lite specifications where parsed using JavaScript’s
JSON.parse function. If no error was thrown by that function,
the resulting object was passed to the parseSpec function of a
SpecParser object.

In the next step, the visual encodings are presented to the user.
For this, each tool provides a way to select a view from the Vega-
Lite specification. After selecting a view, the visual encodings of
that view can be modified. In ColorBrewer and VisFlow, widgets
for each color-related visual variable were provided. In KNIME,
encodings were set through workspace variables.

A modified view object was then passed to a SpecCompiler in-
stance, which generated a Vega-Lite specification. This specifica-
tion was then rendered in a DOM element using Vega-Embed. In
the following, more detail is given on the specific implementations.

5.1. KNIME

KNIME [DTK∗09] is a dataflow-driven analytics platform, provid-
ing a graphical interface in which many standard data analytics op-
erators can be combined into a data processing pipeline. KNIME
provides a few standard visualization techniques and allows for
some basic customization. Nevertheless, this selection is limited
to standard charts types and the resulting visualizations cannot be
authored further outside KNIME. We have created a workflow that
allows importing arbitrary Vega-Lite specifications and rendering
them in a web view, using KNIME’s generic JavaScript node. The
resulting visualizations including data pre-processed by the KN-
IME operators can be exported as Vega-Lite specifications.

�

�

�
Figure 4: Screenshot of a KNIME workflow that supports
toolchaining: (1) A data analytics pipeline is applied to a dataset
read from a CSV file. (2) The encodings of the visualization can be
configured through FlowVariables. (3) A generic JavaScript node
uses ReVize to apply the configuration to the visualization specifi-
cation and induces the dataset.

For this purpose, the Vega-Lite specification and its configura-
tion are passed to the generic JavaScript node as FlowVariables.
Using ReVize, the visual encodings are set and the dataflow is
passed to the root view of the specification. A screenshot of the
grammar-based dataflow is depicted in Figure 4. The toolchain-
enabled workflow can be downloaded from https://vis-au.
github.io/toolchaining/knime.

5.2. ColorBrewer

ColorBrewer [HB03] is a frequently-used reference website for
color schemes, offering perceptually optimized schemes for ordi-
nal, nominal, and quantitative data. After selecting a color scheme,
ColorBrewer renders a preset cut-out of a geographic map using

�
�

�

Figure 5: Screenshot of the toolchain-enabled ColorBrewer: Visu-
alization specifications are pasted into the textarea in the left side-
bar (1). Configurations to the color mapping are made using the
widgets below (2), the visualization is rendered in the main view on
the right (3).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://vis-au.github.io/toolchaining/knime
https://vis-au.github.io/toolchaining/knime


Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

� �

Figure 6: Screenshot of ReVisualize, a visualization authoring tool
built on ReVize: The view hierarchy of an imported declarative
specification is shown as atomic (1) and composite (2) views that
allow exporting partial views into visualization specifications.

the colors of that scheme. It is however not possible to directly rep-
resent a color scheme on another visualization.

Using ReVize, we have added the option to import Vega-Lite
specifications into ColorBrewer to directly apply color encodings
to custom visualizations. For this reason, we have extended the
graphical interface of ColorBrewer with basic widgets, while re-
taining most of the layout of the original tool. After pasting a spec-
ification in a text area widget, the bottom of the interface allows for
picking a view from the specification, a field of the data and visual
variable to which the color is to be mapped (“fill”, “stroke”, and
“color”). Then, when selecting a color scheme, the visualization is
rendered accordingly in the panel on the right side of the screen and
the visualization specification in the text area is updated.

A screenshot of the user interface of the modified ColorBrewer
is depicted in Figure 5. Our toolchain-enabled fork of the Color-
Brewer project is published on Github https://github.com/
vis-au/colorbrewer.

5.3. VisFlow

VisFlow [YS17] is a dataflow editor that allows editing a
dataflow through multiple coordinated views. Selecting visual
marks through brushing in one view of the dataflow serves as a
filter, propagating only the contained data items to downstream
nodes. While VisFlow offers a variety of standard visualization
techniques, it is not possible to use customized techniques and edit-
ing the created dataflow (or visualizations) outside of VisFlow is
not possible.

Using ReVize, we have added a new node type to VisFlow, which

�

�

Figure 7: Screenshot of ReData, a dataflow tool built on ReVize:
The dataflow of the specification is displayed as nodes in a graph
(2), changes are immediately reflected in the preview (1).

allows importing visualization specifications into the dataflow ed-
itor. In the panel on the right side of the workbench, visualization
specifications can be pasted into a text field. Underneath the text
field, encodings between a visual variable and a field of the data
can be made using a drop-down menu, which is populated with all
fields of the incoming data stream.

The new node behaves similar to other visualization nodes in
VisFlow, in that it can filter the incoming dataflow if the visual-
ization specification defines a brush selection. The rendered visual-
ization is updated whenever the incoming dataflow changes. In the
workbench, the new node offers a preview of the imported visual-
ization, which updates whenever changes are made to the encod-
ing or the input dataflow. After importing, the configuration panel
presents the view hierarchy from the specification, allowing us to
specify a mapping from data to any visual variable. Similar to other
nodes in VisFlow, any visualization allows for defining a data se-
lection on the visual marks through a brush interaction, which is
then propagated to downstream nodes.

If no dataflow is connected to the new node type, it propagates
the data that is described in the visualization specification. Thus,
the new node can serve as both data source and a data viewer.

A screenshot of a dataflow using the toolchain node in VisFlow
is depicted in Figure 8. Our toolchain-enabled fork of the Vis-
Flow project is published on Github https://github.com/
vis-au/visflow.

5.4. Using ReVize as Framework for new Visualization Tools

In addition to extending visualization tools with toolchaining, we
have built two novel visualization tools that make toolchaining a
central design aspect: The view composition tool ReVisualize and
the data transformation editor ReData. ReVisualize allows import-
ing a visualization defined in Vega-Lite to edit the individual sub-
views present in the specification. These sub-views can also be indi-
vidually exported as Vega-Lite specifications again or reassembled
in new view compositions.

ReData renders the data transformation pipelines found in an im-
ported Vega-Lite specification for parametrization. Operators can
be added or removed from the transformation. A view of the vi-
sualization using this pipeline is updated alongside this modifica-
tion and can be exported into Vega-Lite, once a satisfying state is
reached.

Screenshots of the user interfaces are depicted in Figure 6 and
Figure 7. Both tools are published under open-source licenses
on Github (see https://github.com/vis-au/revis and
https://github.com/vis-au/redata).

6. Case Study: Authoring a Visualization with a Toolchain

Reconsider the toolchain scenario presented in Section 1, in which
it was not possible to use multiple visualization authoring tools to
modify a shared visualization and required reiterating work even if
one went back and changed something. In the previous section, we
described toolchain support for three of the tools mentioned in the
scenario. Repeating the same workflow with the extended tools, the

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://github.com/vis-au/colorbrewer
https://github.com/vis-au/colorbrewer
https://github.com/vis-au/visflow
https://github.com/vis-au/visflow
https://github.com/vis-au/revis
https://github.com/vis-au/redata


Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

�

�

�

Figure 8: Screenshot of the toolchain-enabled VisFlow workbench: Using the new node from the toolbar on the left (1), any visualization
specification can be pasted into the text field in the configuration panel on the right (2). Visualizations rendered from a specification that
define a selection in the specification can filter the dataflow similar to other VisFlow nodes (3).

benefits of visualization toolchains based on a declarative grammar
become evident.

Since all tools can import the same visualization format, there
is no longer an inherent order in which tools need to be executed.
Therefore, one can easily modify the dataflow of the resulting im-
age in KNIME, maintaining the remaining aspects of the visual-
ization pipeline. Our approach thus solves the iteration problem
[BDFM17] for those tools.

At the same time, we can incorporate authoring tools to modify
the visualization specification – for example, using the Vega text
editor [Lab19]. This allows users to utilize different user interfaces
and feature sets when authoring the same visualization rather than
forcing them to make a tradeoff by choosing a single tool. In the
future, we plan to add toolchaining to other visualization authoring
tools to leverage the library’s potential (see Section 8).

7. Discussion

In this section, we reflect on the use of a declarative visualiza-
tion grammar as exchange format for visualization toolchains and
present lessons learned from using ReVize in our case study.

Visualization toolchaining based on a declarative visualiza-
tion grammar distinguishes between two roles: The passively ex-
changed description of a visualization pipeline and the tools that
actively modify it. This resembles design philosophies in other
fields in computer science, such as tools and materials in soft-
ware design [RZ95], instrumental interaction in user experience
design [BL00], or standard input and output pipes in Unix. Sim-
ilar to these philosophies, visualization tools in a toolchain could
become multi-purpose instruments, rather than being restricted to a
specific workflow. As a result, our approach promotes personalized
visualization toolchains consisting of these individual instruments.

There are also drawbacks to using a visualization grammar for

visualization toolchains. For instance, the visualization grammar
used as exchange format influences which visualization features are
easier to adapt and which are more complex. Vega-Lite for exam-
ple allows directly including data transformation operations in the
specification, whereas Brunel can reference complex visualization
techniques such as the treemap as a single keyword. Expressing
these features in respective other tools is difficult. A more expres-
sive grammar such as Reactive Vega allows for creating customized
visualizations and tweak every aspect of the view, but at the same
time providing an interface to the grammar is naturally more in-
volved. Thus, the applicability of visualization toolchains based on
a common exchange format heavily depends on which visualiza-
tion grammar is used.

Another drawback of using a standard exchange format across
toolchains is that this standard might be interpreted differently by
different tools. Tools may for example implement only the most
common parts of a standard or implement different versions of the
same standard. ReVize functions as an adapter and thus reduces
some of these issues by providing an interface to one feature set of
one specific version of the Vega-Lite grammar. But that grammar
is actively developed and may be updated in the future to new ver-
sions that introduce breaking changes. This is a general problem
when an exchange format is implemented by different developers.

While visualization grammars model the visualization that is
modified by a tool, they do not model meta-information about the
creation of the model, such as provenance information. In contrast
to the grammar-based approach, proprietary file formats that are
accessed by the same tool type [YS17, RLB19] can represent such
specific meta information.

As discussed in Section 4, we were able to follow a default pro-
cedure of adding toolchain support to existing visualization tools.
We benefited from the fact that these days many visualization tools
are based on web technologies and their source code is often pub-

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.



Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

lished. This made the procedure similar in tools that were built in
standard JavaScript (ColorBrewer), or that were built in Typescript
using Vue (VisFlow). In case of KNIME, we benefited from the
generic JavaScript node’s freedom of running arbitrary JavaScript
code. This indicates that ReVize’s interface is generalizable to fit
different modern environments.

A challenge we faced during the implementation is that Vega-
Lite, while generally a concise grammar, in some cases offers mul-
tiple ways of expressing a constraint for a visualization. As an ex-
ample, consider the “data” property, which in the grammar can ei-
ther reference remote values or provide these values inline. The
“data” property can however also reference a named entry in the
top-level “dataset” property. This complexity is often overlooked
at first when one uses Vega-Lite, but underlines the usefulness of
a library like ReVize that resolves these ambiguities transparently
and without the user having to worry about them.

Our approach of using a declarative visualization grammar as ex-
change model between visualization tools is similar to Bigelow et
al.’s bridge model, in that the exchange format captures every part
of the visualization pipeline, while each tool in the toolchain only
accesses those parts that it contributes to. However, since in our
approach a model of the visualization pipeline is the exchanged ar-
tifact, it is not necessary to adapt the core model for every tool that
is used in a toolchain. Nevertheless, this assumes that the grammar
used as an exchange format can fully describe every aspect of the
visualization pipeline. At the same time by exchanging a declara-
tive model, every tool along the pipeline can render an image of
the resulting visualization, providing immediate feedback to user
changes from preprocessing to final color adjustments.

One benefit from using a visualization grammar as toolchain ex-
change format that we did not initially consider is that it supports
diff-based versioning tools such as git. Since the visualization is
expressed as descriptive text, changes made to the specification are
detected by diff tools and are at the same time human-readable. In
collaborative settings, one can therefore interpret what other users
have added to the shared visualization.

8. Open Challenges for Visualization Toolchains

In Section 2, we have presented two interaction types to using mul-
tiple visualization tools in concert to author a visualization. While
our current implementation of toolchains describes the consecutive
scenario, future work could revolve around how tools can be used in
parallel. ReVize does not prevent this use case; parallel workflows
merely require a mediating scheduler that orchestrates access to
the shared visualization model. Different frameworks and technolo-
gies could be used for such mediation – e.g., Webstrates [KEB∗15],
which in combination with ReVize would even lend itself to facili-
tate distributed, collaborative visualization authoring.

A central server component would also enable us to incorporate a
shared versioning mechanism that would provide provenance over
the creation of a visualization. While visualization versions are not
specifically captured in the Vega-Lite grammar (even though there
are potential workarounds through the “description” property), they
could nevertheless be shared with tools as metadata along with the

visualization model. This versioning could make use of the men-
tioned ability to use line-based diffs between Vega-Lite specifica-
tions.

Another issue with the consecutive scenario lies in the additional
workload placed on the user. First, it requires to manually copy
and paste a visualization description between tools. Additionally,
the user is required to keep track of which tool currently holds the
latest version of a visualization. Both could be resolved through a
centralized distribution approach.

While our use case demonstrates the versatility of visualization
toolchains based on declarative grammars, more visualization au-
thoring tools need to be extended with ReVize to showcase the
full potential of the approach. Future implementations could in-
clude one of the different open-source web-based visualization
tools available, for example RAWGraphs [MEC∗17], Charticula-
tor [RLB19] or Lyra [SH14].

Parallel toolchains naturally present new research questions for
collaborative scenarios. The challenge will lie in allowing users
from different professional backgrounds to modify each other’s
work at any point and with any toolchain-enabled visualization tool
they happen to be comfortable with.

Other open challenges revolve around expressive limitations of
Vega-Lite. In order to overcome the discussed restrictions of the
grammar, future expansions on visualization toolchains could re-
volve around using Vega [SRHH16] as an exchange format. While
providing more customizability in details of a visualization, Vega-
Lite tools could still integrate into the toolchain, due to unidirec-
tional compilation from Vega-Lite to Vega specifications.

9. Conclusion

We have introduced the concept of visualization toolchains, the
combined use of multiple tools in concert to author one visualiza-
tion through a declarative visualization grammar as a shared model.
Based on a literature review of the state of the art in consecutive and
parallel use of different tools, we have presented a set of functional
requirements for a library that allows importing and exporting a
declarative visualization grammar. As an implementation of our
concept, we have presented ReVize, a library for extending web-
based visualization tools with toolchain support through Vega-Lite.
To demonstrate the applicability of ReVize, we have integrated it
into three well-known visualization tools: KNIME, ColorBrewer,
and VisFlow. In a case study, we have demonstrated the useful-
ness of visualization toolchains and discussed limitations of our
approach.

Acknowledgements

The authors would like to thank Jo Vermeulen, Henrik Korsgaard,
and the anonymous reviewers for their valuable input to this paper.
The idea for this paper originated in part from the UniVA research
project funded by the German Research Foundation (DFG).

References
[Ado19] ADOBE: Adobe illustrator, 2019. URL: https://www.
adobe.com/products/illustrator.html. 2

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html


Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

[BDFM17] BIGELOW A., DRUCKER S., FISHER D., MEYER M.: Iter-
ating between Tools to Create and Edit Visualizations. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (2017), 481–490.
doi:10.1109/TVCG.2016.2598609. 2, 3, 4, 8

[BL00] BEAUDOUIN-LAFON M.: Instrumental Interaction: An Interac-
tion Model for Designing. In Proc. of CHI’00 (2000), ACM, pp. 446–
453. doi:10.1145/332040.332473. 8

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3 Data-Driven
Documents. IEEE Transactions on Visualization and Computer Graph-
ics 17, 12 (2011), 2301–2309. doi:10.1109/TVCG.2011.185. 2

[CH18] CONLEN M., HEER J.: Idyll: A Markup Language for Author-
ing and Publishing Interactive Articles on the Web. In Proceedings
of the 31st Annual ACM Symposium on User Interface Software and
Technology (2018), ACM, pp. 977–989. doi:10.1145/3242587.
3242600. 2

[CJ10] CHEN M., JÄNICKE H.: An information-theoretic framework for
visualization. IEEE Transactions on Visualization and Computer Graph-
ics 16, 6 (2010), 1206–1215. doi:10.1109/TVCG.2010.132. 3

[CMS99] CARD S. K., MACKINLAY J. D., SHNEIDERMAN B.: Read-
ings in Information Visualization: Using Vision To Think. Academic
Press, 1999. 1, 2, 3

[CR98] CHI E. H.-H., RIEDL J. T.: Operator interaction framework for
visualization systems. In Proceedings of the IEEE Symposium on In-
formation Visualization (1998), pp. 63–70. doi:10.1109/INFVIS.
1998.729560. 2

[DTK∗09] DILL F., THIEL K., KÖTTER T., GABRIEL T. R., CEBRON
N., MEINL T., OHL P., BERTHOLD M. R., WISWEDEL B.: KNIME -
the Konstanz information miner. ACM SIGKDD Explorations Newsletter
11, 1 (2009), 26. doi:10.1145/1656274.1656280. 6

[FHBW11] FEKETE J. D., HÉMERY P. L., BAUDEL T., WOOD J.: Ob-
vious: A meta-toolkit to encapsulate information visualization toolkits -
One toolkit to bind them all. In VAST 2011 - IEEE Conference on Visual
Analytics Science and Technology 2011, Proceedings (2011), pp. 91–
100. doi:10.1109/VAST.2011.6102446. 3

[GAEk∗16] GÜRDÜR D., ASPLUND F., EL-KHOURY J., LOIRET F.,
TÖRNGREN M.: Visual Analytics Towards Tool Interoperability – A
Position Paper. In Proceedings of the 11th Joint Conference on Com-
puter Vision, Imaging and Computer Graphics Theory and Applications
- Volume 2: IVAPP, (VISIGRAPP 2016) (2016), SciTePress, pp. 139–145.
doi:10.5220/0005751401390145. 4

[GBTS13] GRAMMEL L., BENNETT C., TORY M., STOREY M.-A. D.:
A Survey of Visualization Construction User Interfaces. In Euro-
Vis’13 Short Paper Proceedings (2013), pp. 1–5. doi:10.2312/PE.
EuroVisShort.EuroVisShort2013.019-023. 1

[HB03] HARROWER M., BREWER C. A.: ColorBrewer.org: An online
tool for selecting colour schemes for maps. Cartographic Journal 40, 1
(2003), 27–37. doi:10.1179/000870403235002042. 1, 6

[IBM19] IBM: Brunel visualization, Sept. 2019. URL:
https://dataplatform.cloud.ibm.com/docs/content/
wsj/analyze-data/brunel-visualization.html. 3

[JE12] JAVED W., ELMQVIST N.: Exploring the design space of compos-
ite visualization. IEEE Pacific Visualization Symposium 2012, PacificVis
2012 - Proceedings (2012), 1–8. doi:10.1109/PacificVis.
2012.6183556. 2

[Jup19] JUPYTER P.: Jupyter lab, 2019. URL: https://github.
com/jupyterlab/jupyterlab. 2

[KEB∗15] KLOKMOSE C. N., EAGAN J. R., BAADER S., MACKAY W.,
BEAUDOUIN-LAFON M.: Webstrates: Shareable dynamic media. In
Proc. of the ACM Symposium on User Interface Software and Technology
(2015), ACM, pp. 280–290. doi:10.1145/2807442.2807446. 9

[Kir19] KIRK A.: Resources, Sept. 2019. URL: https://www.
visualisingdata.com/resources/. 1

[KRkP∗16] KLUYVER T., RAGAN-KELLEY B., PÉREZ F., GRANGER
B., BUSSONNIER M., FREDERIC J., KELLEY K., HAMRICK J.,
GROUT J., CORLAY S., IVANOV P., AVILA D., ABDALLA S., WILL-
ING C.: Jupyter Notebooks – a publishing format for reproducible
computational workflows. Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas (2016), 87–90. doi:10.3233/
978-1-61499-649-1-87. 1

[Lab19] LAB U. I. D.: Vega editor, 2019. URL: https://vega.
github.io/editor. 8

[MEC∗17] MAURI M., ELLI T., CAVIGLIA G., UBOLDI G., AZZI M.:
RAWGraphs: A Visualisation Platform to Create Open Outputs. In Pro-
ceedings of the 12th Biannual Conference on Italian SIGCHI Chapter
(2017), pp. 28:1–28:5. doi:10.1145/3125571.3125585. 2, 9

[MMWC18] MEI H., MA Y., WEI Y., CHEN W.: The design space
of construction tools for information visualization: A survey. Jour-
nal of Visual Languages and Computing 44 (2018), 120–132. doi:
10.1016/j.jvlc.2017.10.001. 1

[MNV16] MÉNDEZ G. G., NACENTA M. A., VANDENHESTE S.:
iVoLVER: Interactive Visual Language for Visualization Extraction and
Reconstruction. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (2016), ACM, pp. 4073–4085. doi:
10.1145/2858036.2858435. 2

[NS07] NORTH C., SHNEIDERMAN B.: Snap-Together Visualization: A
User Interface for Coordinating Visualizations via Relational Schemata.
The Craft of Information Visualization (2007), 341–348. doi:10.
1016/b978-155860915-0/50043-3. 2

[Obs19] OBSERVABLE I.: Observable, 2019. URL: https://
observablehq.com/. 2

[Poj19] POJECT T. I.: Inkscape, 2019. URL: https://inkscape.
org/. 2

[RLB19] REN D., LEE B., BREHMER M.: Charticulator: Interactive
Construction of Bespoke Chart Layouts. IEEE Transactions on Vi-
sualization and Computer Graphics 25, 1 (2019), 789–799. doi:
10.1109/TVCG.2018.2865158. 2, 8, 9

[RM11] ROGOWITZ B. E., MATASCI N.: Metadata Mapper: a web ser-
vice for mapping data between independent visual analysis components,
guided by perceptual rules. Human Vision and Electronic Imaging XVI
7865 (2011), 78650I. doi:10.1117/12.881734. 3

[Rob07] ROBERTS J. C.: State of the art: Coordinated multiple views
in exploratory visualization. In Proc. of the Conf. on Coordinated and
Multiple Views in Exploratory Visualization (CMV 2007) (2007), pp. 61–
71. doi:10.1109/CMV.2007.20. 2

[RSD∗13] RUNGTA A., SUMMA B., DEMIR D., BREMER P. T., PAS-
CUCCI V.: ManyVis: Multiple Applications in an Integrated Visualiza-
tion Environment. IEEE Transactions on Visualization and Computer
Graphics 19, 12 (2013), 2878–2885. doi:10.1109/TVCG.2013.
174. 3

[RZ95] RIEHLE D., ZÜLLIGHOVEN H.: A pattern language for tool con-
struction and integration based on the tools and materials metaphor. In
Pattern languages of program design, Coplian J. O., Schmindt D. C.,
(Eds.). Addison Wesley Professional, 1995, pp. 9–42. 8

[SH14] SATYANARAYAN A., HEER J.: Lyra: An interactive visualization
design environment. Computer Graphics Forum 33, 3 (2014), 351–360.
doi:10.1111/cgf.12391. 1, 2, 9

[SLR∗20] SATYANARAYAN A., LEE B., REN D., HEER J., STASKO J.,
THOMPSON J., BREHMER M., LIU Z.: Critical reflections on visualiza-
tion authoring systems. IEEE Transactions on Visualization and Com-
puter Graphics 26, 1 (2020), 461–471. doi:10.1109/TVCG.2019.
2934281. 1

[SMWH17] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-Lite: A Grammar of Interactive Graphics. IEEE Trans-
actions on Visualization and Computer Graphics 23, 1 (2017), 341–350.
doi:10.1109/TVCG.2016.2599030. 2, 3

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://doi.org/10.1109/TVCG.2016.2598609
https://doi.org/10.1145/332040.332473
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1145/3242587.3242600
https://doi.org/10.1109/TVCG.2010.132
https://doi.org/10.1109/INFVIS.1998.729560
https://doi.org/10.1109/INFVIS.1998.729560
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1109/VAST.2011.6102446
https://doi.org/10.5220/0005751401390145
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
https://doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
https://doi.org/10.1179/000870403235002042
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/brunel-visualization.html
https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/brunel-visualization.html
https://doi.org/10.1109/PacificVis.2012.6183556
https://doi.org/10.1109/PacificVis.2012.6183556
https://github.com/jupyterlab/jupyterlab
https://github.com/jupyterlab/jupyterlab
https://doi.org/10.1145/2807442.2807446
https://www.visualisingdata.com/resources/
https://www.visualisingdata.com/resources/
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://vega.github.io/editor
https://vega.github.io/editor
https://doi.org/10.1145/3125571.3125585
https://doi.org/10.1016/j.jvlc.2017.10.001
https://doi.org/10.1016/j.jvlc.2017.10.001
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1145/2858036.2858435
https://doi.org/10.1016/b978-155860915-0/50043-3
https://doi.org/10.1016/b978-155860915-0/50043-3
https://observablehq.com/
https://observablehq.com/
https://inkscape.org/
https://inkscape.org/
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1109/TVCG.2018.2865158
https://doi.org/10.1117/12.881734
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/TVCG.2013.174
https://doi.org/10.1109/TVCG.2013.174
https://doi.org/10.1111/cgf.12391
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2019.2934281
https://doi.org/10.1109/TVCG.2016.2599030


Marius Hogräfer, Hans-Jörg Schulz / ReVize: A Library for Visualization Toolchaining with Vega-Lite

[SRHH16] SATYANARAYAN A., RUSSELL R., HOFFSWELL J., HEER
J.: Reactive Vega: A Streaming Dataflow Architecture for Declarative
Interactive Visualization. IEEE Transactions on Visualization and Com-
puter Graphics 22, 1 (2016), 659–668. doi:10.1109/TVCG.2015.
2467091. 2, 3, 9

[SRN∗19] SCHULZ H.-J., RÖHLIG M., NONNEMANN L., AEHNELT
M., DIENER H., URBAN B., SCHUMANN H.: Lightweight Coor-
dination of Multiple Independent Visual Analytics Tools. In Pro-
ceedings of the 14th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applications - Vol-
ume 3: IVAPP (2019), SciTePress, pp. 106–117. doi:10.5220/
0007571101060117. 3

[Tea19] TEAM T. G.: Gimp, 2019. URL: https://www.gimp.
org/. 2

[TIC09] TOBIASZ M., ISENBERG P., CARPENDALE S.: Lark: Coordi-
nating co-located collaboration with information visualization. IEEE
Transactions on Visualization and Computer Graphics 15, 6 (2009),
1065–1072. doi:10.1109/TVCG.2009.162. 2

[VGH∗18] VANDERPLAS J., GRANGER B., HEER J., MORITZ D.,
WONGSUPHASAWAT K., SATYANARAYAN A., LEES E., TIMOFEEV
I., WELSH B., SIEVERT S.: Altair: Interactive Statistical Visualiza-
tions for Python. Journal of Open Source Software 3, 32 (2018), 1057.
doi:10.21105/joss.01057. 4

[Wea04] WEAVER C.: Building Highly-Coordinated Visualizations in
Improvise. IEEE Symposium on Information Visualization (2004), 159–
166. doi:10.1109/INFVIS.2004.12. 2

[Wic10] WICKHAM H.: A Layered grammar of graphics. Journal of
Computational and Graphical Statistics 19, 1 (2010), 3–28. doi:10.
1198/jcgs.2009.07098. 3

[Wil05] WILKINSON L.: The Grammar of Graphics, 2nd ed. Springer,
2005. doi:10.1007/0-387-28695-0. 3

[WQM∗17] WONGSUPHASAWAT K., QU Z., MORITZ D., CHANG R.,
OUK F., ANAND A., MACKINLAY J., HOWE B., HEER J.: Voyager
2: Augmenting Visual Analysis with Partial View Specifications. In
Proceedings of the 2017 CHI Conference on Human Factors in Com-
puting Systems - CHI ’17 (2017), pp. 2648–2659. doi:10.1145/
3025453.3025768. 1

[YS17] YU B., SILVA C. T.: VisFlow - Web-based Visualization Frame-
work for Tabular Data with a Subset Flow Model. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (2017), 251–260.
doi:10.1109/TVCG.2016.2598497. 2, 7, 8

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.5220/0007571101060117
https://doi.org/10.5220/0007571101060117
https://www.gimp.org/
https://www.gimp.org/
https://doi.org/10.1109/TVCG.2009.162
https://doi.org/10.21105/joss.01057
https://doi.org/10.1109/INFVIS.2004.12
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1198/jcgs.2009.07098
https://doi.org/10.1007/0-387-28695-0
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1145/3025453.3025768
https://doi.org/10.1109/TVCG.2016.2598497

