
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 1

Point-Based Visualization for Large Hierarchies
Hans-Jörg Schulz, Steffen Hadlak, and Heidrun Schumann

(Invited Paper)

Abstract—Space-filling layout techniques for tree representations are frequently used when the available screen space is small or the
data set is large. In this paper, we propose an efficient approach to space-filling tree representations that uses mechanisms from the
point-based rendering paradigm. We present helpful interaction techniques and visual cues that tie in with our layout. Additionally, we
relate this new layout approach to common layout mechanisms and evaluate the new layout along the lines of a numerical evaluation
using the measures of the Ink-Paper-Ratio and overplotted%, and in a preliminary user study. The flexibility of the general approach
is illustrated by several enhancements of the basic layout, as well as its usage within the context of two software frameworks from
different application fields.

Index Terms—Tree visualization, space-filling layout, point-based rendering.

F

1 INTRODUCTION

E FFICIENCY in graph layout has long been understood
only in terms of runtime or computational efficiency [1].

Besides CPU time, other limited resources like the available
screen space have been only implicitly taken into account by
minimizing the area of the drawing as a desirable aesthetic
constraint. Yet, this has changed dramatically over the last
years, as the performance of consumer CPUs has exponentially
increased, as well as the size of the graphs/trees to be drawn
– whereas the available screen resolution has grown much
slower. Hence, the concept of space-efficiency receives more
and more attention these days, trying to make the most out of
the few pixels we have. Space-efficiency is closely related to
the space-filling property, which is a desirable condition for
space-efficient hierarchical layouts [2].

Space-filling layout techniques for rooted trees like the
Treemap [3] and its successors are in widespread use for
hierarchies with up to millions of items [4]. These implicit
layout techniques use nested shapes instead of nodes and links
to represent the hierarchical structure, and scale well above all
known node-link-representations. This is due to the fact that
they utilize the available screen space entirely by molding the
space itself into a representation of the given tree. This is done
either through subdivision by recursively carving the drawing
area out of the available space for each subtree, or through
packing by arranging the subspaces representing the subtrees
in the available space [5]. While this approach naturally yields
a space-filling tree visualization, it is not applicable to node-
link-representations. These rather see the tree with its nodes
and edges as the object that needs to be shaped to fit the
available space. Many node-link-techniques aim to optimize
the use of the available screen space by either packing the
nodes as tightly as possible to minimize the space used, or
by distributing the nodes as evenly as possible to make best
use of the available space. Both approaches prioritize space-

● The authors are with the Department of Computer Graphics,
University of Rostock, 18051 Rostock, Germany.
E-mail: {hjschulz,hadlak,schumann}@informatik.uni-rostock.de

0 1-9 10-49 50+

Fig. 1. Point-based visualization of the DMOZ hierarchy. It
contains 765,328 nodes of which are 585,217 leaves. The
node colors denote the number of websites in the corre-
sponding category. Dark patches indicate larger subtrees
in contrast to the lighter regions of smaller subtrees.
(dmoz.org snapshot from 01-JUN-2009)

efficiency over the depiction of a tree’s characteristic features.
Furthermore, tight packing as well as evenly distributing nodes
destroy the hierarchical impression that a tree visualization
should convey. As thus the parent-child relationship cannot be
discerned any more from the layout itself, the visualization
techniques must include edges.

In this paper, we present a more balanced approach that
allows users to distinguish between dense and sparse subtrees
while still making good use of the space. An example for this
is shown in Fig. 1. The depicted data set is the categorization

http://rdf.dmoz.org/rdf/archive/2009-01-06/


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 2

hierarchy of the Open Directory Project dmoz.org with more
than 750,000 nodes. This categorization is used throughout
the internet for classifying websites. This visualization has
been generated by combining the most space-efficient visual
representation of a node – a single point primitive – with
a sophisticated hierarchical placement scheme, consequently
adapted from the point-based rendering paradigm. The Point-
Based Tree Visualization technique based on this layout
scheme produces continuous areas for dense subtrees in a
space-filling manner and dissociates into a regular node-
link-appearance for sparse subtrees. It can be seen that our
technique still leaves parts of the screen space empty where
the tree is unbalanced or partially very narrow. This is exactly
what distinguishes it from the previous approaches, which
look more or less alike, because the tree is not allowed to
exhibit its characteristics, but instead is squeezed into or spread
out across the available space. Hence the whitespace is not
unused, but instead serves to communicate where imbalances
and sparser subtrees are. This is a very helpful property for
an overview visualization, as it enables users to grasp certain
tree characteristics at a glance.

Yet overall, nodes are always positioned in between existing
nodes in an attempt to avoid overlap, creating a space-filling
pattern according to the hierarchical point placement. Our
algorithm is runtime efficient (O(n logn)) and yields a space-
efficient layout – two important properties for an overview
that must be generated fast and potentially fit in a small
area alongside a detailed visualization in an overview+detail
combination.

This paper details our layout method, its ties to point-
based rendering, and some useful interaction techniques that
go along with our layout in Sec. 2. While the basic placement
of nodes remains the same as in our previously published
version [6], this extended version consequently follows up on
the idea of a space-filling overview technique and presents
a specifically adapted node coloring technique that allows for
easy comparison between subtrees of different sizes. Likewise,
the provided interaction techniques have been geared towards
the support of exploration tasks involving paths, subtrees,
and dense regions of the layout. In this extended version,
we clearly prove the space-filling property of our layout
by relating it to other space-filling layouts such as space-
filling curves and fractal layouts. A preliminary user study
and a numerical evaluation of our layout with respect to two
established visualization techniques for large hierarchies are
given in Sec. 3. To show how versatile the general approach
of a space-filling tessellation actually is, Sec. 4 introduces
a number of enhancements and modifications of the basic
layout and Sec. 5 briefly discusses our layout approach and
illustrates how it is used by two software platforms from
different application fields. Sec. 4 and Sec. 5 are also new
additions of this extended version.

2 A POINT-BASED TREE LAYOUT

When large hierarchies need to be displayed, visualization
designers look for techniques that make the best use of the
available screen space. This is where space-filling layout

techniques come into play. Yet, in the past, space-filling
techniques have often been set equal to implicit tree layouts. It
seemed that only implicit techniques with their 2-dimensional
graphics primitives were able to fully fill the available screen
space. Explicit techniques that aim to maximize screen space
utilization, usually call themselves “space-optimized” or
“space-efficient”. The layout presented here is a first attempt
to achieve an explicit space-filling layout in the sense of the
following definition:

Definition: A tree layout technique is called space-filling, iff

Ink-Paper-Ratio = ∣used pixels∣
∣available pixels∣ = 1

This condition formulates the usual understanding of the
term “space-filling”, namely that every available pixel is used.
The Ink-Paper-Ratio [7] is the quotient of Tufte’s Data Density
and Data-Ink-Ratio [8]:

Data Density =
∣nodes to display∣
∣available pixels∣

Data-Ink-Ratio =
∣nodes to display∣

∣used pixels∣

Note that the above condition is given for a layout technique
in general. A specific visualization for a concrete given tree
may leave some of the space empty, yet the general layout is
capable of utilizing each and every available pixel. We do not
consider a layout to be space-filling if an Ink-Paper-Ration of
1 is accomplished solely by

(a) massive overplotting due to using far too little space for
a too large hierarchy, or

(b) arbitrarily blowing up individual nodes to occupy re-
maining whitespace, just to utilize the full screen and
become space-filling.

2.1 Inspiration
The idea for the proposed layout method stems from the
area of point-based graphics [9]. By point-based methods,
triangular graphics primitives, of which 3-dimensional models
mostly consist, are replaced by point primitives. This makes
sense, as today’s high-resolution models consist of millions
of triangles and many of them cover only a relatively small
screen area and often share the same pixels. This results in
a computational overhead, which is usually not worth the
result. Especially so, as the same result can be computed
with less effort by using point primitives instead, which are
easier to render. By careful arrangement, even surfaces can
be represented using nothing but points. In order to obtain
a closed surface with a minimal number of points, the

√

5-
sampling [10] has been developed. The point-based rendering
paradigm does not only take advantage of the most space-
efficient graphics primitive – the point, but also incorporates
methods to place points in a space-filling fashion. Both aspects
are highly desirable for a visualization of large data sets. Even
though the point-based graphics originates from a different
context, we can utilize it for generating space-filling layouts
of trees.

http://www.dmoz.org/


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 3

2.2 Layout Technique
Arranging as many points as possible in pixel-based visual-
izations is a well-known approach to achieve space-efficiency.
However, hierarchical relationships cannot be represented by
explicitly drawn edges in such cases, because the edges would
occlude many pixels that actually represent nodes. A hierarchi-
cal placement strategy can solve this problem as edges would
no longer be needed to represent the parent-child relationship.
The parent of a node can be discerned just by its unambiguous
positioning, very much in the way implicit tree visualizations
are interpreted. The benefit is that the omission of edges results
in less visual clutter (locally very dense regions) and hence
more nodes being visible.

Interestingly, the
√

5-sampling mentioned above uses a
hierarchical sample scheme for positioning points at possibly
undersampled, blank spots around other points of a 3D surface.
At each step of this technique, the starting grid will be refined
by a rotation of approx. 27○ and a reduction of 1/

√

5 of
the distance between two adjacent grid points. Around every
undersampled point, four new points will be inserted at the
nearest position in the current grid. Fig. 2 as well as the video
accompanying this paper illustrate the steps of this algorithm.
They show nicely how the overall density increases with every
recursion step and how gaps are filled in between the points.

In Fig. 2, additional lines where included that are not
part of the original

√

5-sampling method. These lines (edges)
between the points (nodes) already hint at a possibility to
map a tree structure onto the resulting point positions. While
recursion level of the

√

5-sampling is originally adapted to
the surface properties, our technique uses it to adapt to tree
characteristics. This is done in the same recursive, step-wise
manner as the

√

5-sampling method itself, with the individual
steps corresponding to those shown in Fig. 2:

(a) (b)

(c) (d)

Fig. 2. Four recursion steps of the
√

5-sampling method.

(a) Starting with the root in the center of the screen, the
root’s first 4 children will be arranged around it.

(b) The next 4 children of the root and the first 4 children of
the previously laid out nodes are positioned by a rotation
and scaling according to the

√

5-sampling.
(c) Then, the same procedure is repeated to layout the next

4 children of the root node, the next 4 children of the
nodes laid out in step (a), and the first 4 children of the
nodes that have been added in step (b).

(d) This last step adds another 4 children around the root
node, as well as 4 children to all nodes from steps (a)-
(c).

This procedure is repeated until all nodes of the tree are
positioned. In case the number of children is not divisible by
4, positions are left unoccupied. More formally, the procedure
is stated in Alg. 1.

Algorithm 1 The basic layout algorithm.

1: θ ← arcsin(5−2
) ▷ rotation angle ≈ 27○

2: procedure LAYOUT(R,P,L,α)
▷ R = the (sub)tree’s root

▷ P = the position of the root
▷ L = distance between root and first 4 children

▷ α = directional angle of first child
3: if L ≥ 1 then
4: children[]← getChildren(R)

5: sort(children[])
6: for i← 1 to getSize(children[])) do
7: level← ⌊i/4⌋
8: position← (i−1) mod 4
9: L′← L/(5level/2

)

10: α
′
← α +θ ∗ level+π/2∗position

11: P′← (Px+L′ ∗cos(α
′
),Py+L′ ∗ sin(α

′
))

12: LAYOUT(children[i], P′, L′ ∗5−2, α
′
+θ )

13: end for
14: end if
15: drawPoint(P)
16: end procedure

The conditional clause in Line 3 of the algorithm is not
actually necessary, but it speeds up the layout by preventing
the algorithm from needless overplotting once it gets into
subpixel ranges. Another addition to the layout is Line 5, in
which the children are sorted – usually by the size of their
rooted subtrees. This ensures that the largest subtrees will be
positioned in the largest available drawing areas in order to use
space efficiently. The remainder of the algorithm is exactly the
procedure described above, with Lines 9 and 10 realizing the
scaling and rotation, Line 11 computing the actual coordinates
of the current child, and Line 12 making the recursive call to
layout the subtree rooted in this child node. The recursion
stops, if a node is a leaf or if the distance between parent
and child is less than 1 pixel. Because of the sorting step, the
layout runs in O(n logn) with n being the number of nodes in
the tree. The result of this basic layout algorithm is illustrated
in Fig. 3 for the DMOZ hierarchy.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 4

Fig. 3. A basic Point-based Layout of the DMOZ data set.

2.3 Coloring Techniques

Our technique uses color to facilitate the perception of struc-
ture and attributes associated with a tree’s nodes, as well as
to enhance comparability between subtrees of different sizes.
The latter addresses a fundamental issue of our basic layout:
not all siblings can be assigned the same space. This results
in subtrees being placed later on smaller drawing areas. Such
subtrees may appear more tightly packed and thus stand out.
This can be observed in the center of Fig. 3, where subtrees
seem to be heavily weighted and at least as important as the
ones mapped on the outer positions, but this is not the case.

As a solution to this issue, we propose to change the
lightness (in HSL color space) of the points, so that they
visually appear evenly distributed in case they are. This is
achieved by laying out all subtrees into a buffer of the same
size as the largest available drawing area for a subtree and
then to iteratively scale that buffer down by 1/

√

5. The scaling
is done in a content-aware manner, so that each pixel in the
resulting smaller buffer is set to the average lightness of the
buffer patch that it subsumes. This is done until the final layout
size for a subtree is reached. Conceptually, this process is
nothing else than a run of the basic layout algorithm without
Line 3 and then, after everything is laid out, a “backwards”
run of the same algorithm. In this second, bottom-up run, it
now collects all drawn and blank (white) pixels of a certain
layout step, locally aggregating their lightness values as well
as that of their parent and setting this aggregated value as
the new lightness of the parents. This is repeated, until the
desired smaller resolution is reached. As it can easily be seen
in Fig. 4a by comparing the blue outlined regions of a regular
tree, the basic layout exhibits the problem of subtrees having
different overall lightness for identical subtrees laid out in
areas of different size. Since the tree is regular, this problem
cannot be solved by sorting the subtrees according to their

weight. Yet, the result of the lightness adjustment by content-
aware scaling in Fig. 4b exhibits an even lightness distribution,
clearly communicating the high structural regularity of the
tree.

The perception of structure is important for analysis tasks
that regard the width (max. number of siblings) and the
depth of the hierarchy. Our layout indicates by design where
large subtrees are located by generating densely packed re-
gions/spots. This allows for informed guesses about balancing
issues of the hierarchy, but not about whether a subtree of
notable width or depth is the cause of a dense region. In order
to clarify this, we use color coding of a subtree’s depth or
width, so that the cause of a dense region becomes apparent.
Fig. 4c shows such an encoding of the tree’s depth into colors
for the DMOZ data set with shallow subtrees (depth ≤ 8)
colored green and deeper ones colored blue. From the color
coding it can now be seen that, except for a few dense spots
that contain deep subtrees, the cause for the accumulation of
nodes are mostly shallow subtrees, which therefore must be
rather wide.

When the focus of exploration lies on numerical node
attributes, a similar color coding can be used analogously, as
shown in Fig. 4d. However, when using colors in addition to
the lightness adjustment, some constraints on the color should

(a) (b)

0 1-4 4-8 9+

(c)
0 1-9 10-49 50+

(d)

Fig. 4. A synthetic, regular tree with uniform width of
16 and a depth of 6 is rendered once with the basic
Point-based Layout (a) and with the lightness adjusted
layout using content-aware scaling (b). In (c) the DMOZ
hierarchy is color coded by subtree depth and in (d) by
the number of websites.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 5

be applied. In order to avoid interference with the lightness
adjustment, it is necessary to use colors of equal lightness –
preferably with a lightness value of 50%. In our experience
we found it to be more effective to use a discrete color scale
with no more than 5 different colors. In the colored layouts of
the DMOZ data set – e.g., in Fig. 4c and 4d, we use 4 colors
for the depth and also for the number of categorized websites.
The colors and the steps in the color scale can be interactively
changed to highlight a user specified attribute range with a
certain color. In summary, the coloring is expressive, but it
is also constrained by a number of aspects: one can use it
either to communicate structural properties or numerical node
attributes, and the utilized color scale should be discrete with
colors of equal lightness.

2.4 3-dimensional Extension

Besides color, it is possible to employ the third dimension as
another layout parameter to encode numerical data values. A
3D extension can be used to display values more prominently
and continuously in the form of bars or peaks rendered on
top of the 2-dimensional layout. In this case, a numerical
node attribute is mapped onto the height of these bars, so
that high values stand out not only in terms of the coloring
but also topologically. Negative values are rendered below
the 2D layout, likewise achieving a good visual distinction
for low values. An orthogonal projection is used for this 3D
rendering to lessen distortion and to enhance the comparability
between different peaks. Overall, this shifts the focus of the
visualization towards the node attributes and displays the
hierarchical structure merely as contextual information. It can
be seen in Fig. 5 for the DMOZ data set that the 2-dimensional
silhouette of the hierarchically arranged regions is mostly
occluded by the 3-dimensional bars. This balance between
showing attributes and structure can interactively be changed
by simply tilting the representation more into an orthogonal
view from above/below to see the structure or into a sideways
view to compare attributes.

Fig. 5. An example of the 3D extension for the number of
websites in the DMOZ data set. As in this case negative
values cannot occur, the bottom of this visualization does
not show any peaks.

2.5 Interaction Techniques
The technique as described so far communicates an overall
impression of a tree’s characteristics. Additionally, a basic
set of interaction techniques is provided to engage the user
and to allow for further drill-down exploration from the initial
overview and thus to confirm first impressions gained from it.
Each of the interaction techniques listed in the following is
shown in Fig. 6.

Picking a certain node and by that also the part of the
hierarchy that forms the entire subtree rooted in this node is
difficult because of the size of the point and the density of
the layout. To aid in picking, a hovering effect is introduced
that does not only show the label of the node currently under
the mouse cursor, but also outlines the region of this node’s
subtree. Once the desired node/subtree is found, a mouse
click directly selects the node.

Filtering nodes is suitable to quickly select a subset of
nodes by specifying a desired interval of attribute values for
the remaining nodes. Range sliders can be used to specify
width or depth ranges of interest and it is also possible to
use different filters in conjunction. Filtering also works with
numerical node attributes, e.g., the number of websites in the
DMOZ example. Hence, it can be used to specify nodes of
interest using structure and attributes, likewise.

Brushing a certain region of the visualization is another
possibility of selecting nodes. A resizable, rectangular brush
is provided that extends to a cuboid for the 3D version of the
layout. This allows users to select attribute values that lie in
close proximity to one another, but do not necessarily belong
to the same subtree.

Zooming, including rotational zooming (schematically
depicted in Fig. 6d-g) and geometrical zooming, is important
for a more in-depth exploration of the overview. Zooming is
especially useful to visually clarify that nodes on the same
level do not necessarily occupy the same amount of space.
Hence, an enlargement of smaller regions is an essential
interaction.

2.6 Visual Cues
Additional visual cues are necessary, to enrich the visualization
with elements otherwise not shown, as they are not part of
the basic layout: edges, paths, subtrees, and dense, potentially
overplotted regions of the layout.

Edges. Omitting the edges in the representation is necessary,
as they would occlude the tightly placed points. Yet, edges are
also necessary to connect otherwise loosely placed points and
thus to relate them to the overall hierarchy. This is especially
important, as the Point-based Layout is not layered in the sense
of classical tree layouts which position nodes of the same
depth on the same layer. We propose to draw only unobtrusive
edges and leaves out the rest. An edge is considered unobtru-
sive, if it does not cross any region of high density, which



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 6

(a) Picking (b) Filtering (c) Brushing

(d) (e) (f) (g)

Fig. 6. Basic interaction techniques: (a) Picking the node/subtree “deutsch” in the DMOZ hierarchy. (b) Filtering all
nodes that have more than 10 websites and that lie deeper than 7 levels below the root. (c) Brushing the region around
the highest attribute values from Fig. 5. (d) Scheme for the rotational zoom of subtrees. (e)-(g) The rotational zoom is
applied to enlarge the subtree “adult”.

is indicated by an average lightness below a given threshold.
Hence, edges may run only across sparsely populated regions
to avoid obscuring too much information. The threshold can
be interactively raised or lowered, resulting in fewer or more
edges being shown, respectively. The placement of edges is
done top-down from the root to its children and so forth. If for
any node the edge to its parent is not drawn, for it would cross
a denser, darker region, the top-down traversal is skipped for
the entire subtree below it. This prevents solitary edges from
being drawn, because they tend to disturb the orderly layout
and falsely suggest the existence of unconnected components.
The result for the DMOZ data set is shown in Fig. 7a.

Paths. Besides edges, the display of entire paths may be
needed for an exploration task. Paths can be overlaid on the
layout on demand for selected nodes. In a 3D representation,
the overlaid path is shown as a series of poles and a semi-
transparent “wall” connecting them. The height of the poles
are scaled to a numerical attribute – in this case to the number
of categorized websites of the corresponding subtree. This can
be seen in Fig. 7, where the 2D and 3D versions are shown.
Since one subtree is part of another, bigger one, the portion
of the pole that is made up by the value of the picked node
is colored in light blue instead of gray. This way, one can
get an impression of how the individual subtrees contribute
to the overall values. In the example from Fig. 7, the “USA”
subtree has some 600,000+ websites categorized in it. From

the visualization it can be seen that this is quite a large
portion of the overall number of about 4.6 million categorized
websites.

Subtrees. Each subtree is laid out in a fractal shaped region.
It is an intrinsic feature of the layout that these regions are
packed tightly beside one another but do not overlap in order
to fulfill the space-filling property. Yet, while this maximizes
the use of the available drawing area, it also crams the points
in the visualization and makes it sometimes less obvious to
see where a subtree’s boundaries are. On the other hand,
drawing all of the boundaries would occlude most of the
placed pixels. Hence, a more balanced approach is needed
that emphasizes only some, preferably the most important
subtrees. As the layout is tuned to visually bring out denser
subtrees by compact point placement balanced by lightness
adjustments, the average lightness value of a subtree is used
to determine if a subtree should be drawn with or without
boundaries: the larger a subtree is, the darker it appears and
the more it sticks out, hence the more reasonable it is to
draw its boundary to clearly distinguish it from its neighbors.
Additionally, for each drawn boundary a label is placed that
identifies the bounded subtree by its root’s name. To ensure
fast and non-overlapping labels, the particle-based labeling
algorithm from [11] is used. It integrates quite naturally with
the layout, as each positioned point can likewise be considered
as a particle not to be occluded by the labels. Very light and



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 7

(a)

(b)

Fig. 7. Overlaying the path from the subtree “USA” to the
root node in 2D and 3D.

barely recognizable points due to the lightness adaptation are
excluded from the list of particles and thus are available to be
allocated by labels. The lightness threshold can interactively
be changed to make boundaries and labels appear for more or
fewer subtrees. An example is given for the DMOZ data set
in Fig. 1.

Dense Regions in the Layout. Despite all efforts to
lessen overplotting (by a space-efficient arrangement) and its
effects (by lightness adaptation), the layout cannot prevent
overplotting from happening. Yet, where overplotting occurs,
it should be communicated to the user, hinting at regions of
the layout in which further exploration may be needed. This is
addressed by providing a GraphSplat [12] as a linked view to
indicate regions of overplotting in a heatmap-like visualization.
This is a common concept when visualizing a large number
of items [4], where cluttering artifacts and overplotting occur
often and obscure the view on the actual number of data
items. Here, the GraphSplat allows zooming and panning and
is directly linked to the Point-based Layout. It can be used to
scale a dense region of the layout to the size of the available
screen space. Since zooming-in results in a sparser layout, the
lightness values of the now zoomed-in regions are recomputed
and more adaptive edges can be drawn as there are fewer
points that could possibly be occluded. An example is shown
in Fig. 8, where a dense region of the original layout is
identified in the GraphSplat visualization and then zoomed-
in to view details of this region.

These techniques are independent of one another and can
easily be used in combination. This allows for different

(a) (b)

Fig. 8. GraphSplat of the Point-based Layout from Fig. 1
with a dense region being selected (a) and then zoomed-
in the linked hierarchy visualization (b).

paths of exploration, while the first overall impression of the
hierarchy can be directly derived from the initial Point-based
Layout. After this introduction of the fundamental visualiza-
tion technique, the following section evaluates our layout with
respect to two other known space-filling techniques.

3 EVALUATION

After having described our layout approach, this section as-
sesses if and how well the layout indeed fills the 2-dimensional
drawing space and still remains readable. To this end, we relate
our layout to others and evaluates it. This is done in three steps:

1) prove the space-filling property by showing the equiva-
lence to established space-filling layout approaches,

2) compare the space utilization of our and two other
layouts quantitatively through numerical measures, and

3) evaluate the readability qualitatively through a prelimi-
nary user study.

3.1 Relate to Established Space-filling Layout Ap-
proaches

To prove the space-filling property of our basic node placement
strategy, four established space-filling approaches are given
and it is shown for each case, how they can be applied to
achieve the very same node positioning as generated by our
Point-based Layout method.

The embedding approach: Since the Point-based Lay-
out uses a fixed template of node positions and assigns them
to the nodes of the tree, it is by design an instance of the
embedding approach. This approach scatters possible node
positions evenly across the available space, effectively creating
the fixed template, and then computes a mapping of the
hierarchy nodes to these positions – e.g., with an algorithm
like [13]. Since the positioning of nodes is independent of
the actual hierarchy, it is sufficient to compute it once, but
use it many times: the hierarchy to be visualized just needs
to be embedded in the precomputed layout template. An even
distribution of node positions is guaranteed by the layout, as it
places nodes always in between already existing ones as seen
in Fig. 2.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 8

The implicit approach: In the fixed template of the
Point-based Layout, the distance between a node on level l
and its children on level l+1 is at most 5−l/2

× initial grid size.
Hence, the outwards growth of the occupied area for each
subtree soon falls below pixel size and thus stops. This yields
boundaries emerging implicitly as the result of the reduced
growth with each level. The emerging areas form an implicit,
nested Treemap-style pattern [3]: on each level, the parent area
is divided into five subareas of the same shape – the outer
four are used for the first four children of the parent node, the
center area is further subdivided using the same mechanism
recursively. If the layout would use the areas of the subtrees
instead of point primitives in their centers to represent nodes,
the layout in its implicit form would be space-filling. Yet,
the Point-based Layout itself does not define or use areas or
shapes.

The space-filling curve approach: A space-filling layout
can also be generated by placing nodes along a self-similar,
space-filling curve [14], [15]. Such a curve can be interpreted
as a fixed layout template and the linear node placement along
the curve as an embedding by enumerating the nodes of the
tree. The most common enumeration strategy is in-order DFS,
which places the root of a (sub-)tree as the median in the center
of the list of its children to preserve locality. An example of a
space-filling curve that spans our layout is given in Fig. 9. By
enumerating and mapping the nodes onto the curve, the same
placement as in the basic algorithm could be achieved. The
fact that such a curve can be established for the Point-based
Layout is strong evidence that it is indeed space-filling.

(a) (b)

(c) (d)

Fig. 9. A slight modification of the Z-curve that yields the
layout in Fig. 2.

The fractal approach: The final proof for the space-
filling property can be given by computing the fractal di-
mension of the layout. Fractals are often used for degree-
constrained tree representations. Through constant refinement

with each level, these fractal layouts generate eventually a
closed shape, thus being space-filling – depending on the
characteristics of the tree [16]. In the Point-based Layout, the
self-similarity is apparent. It can even be generated using a
bracketed Lindenmayer rewriting system with the following
configuration:

variables: P – draw point
l – forward

√

5 steps
L – forward 5 steps

constants: ⊕ – turn 90○

⊗ – turn 27○

start: P
rules: P → [⊗P[lP]⊕[lP]⊕[lP]⊕[lP]]

l → L
L → lllll

This configuration generates exactly the layout scheme
shown in Fig. 2. Because of this high regularity, it is
easy to compute the Hausdorff-dimension D of the layout,
which proves that the Point-based Layout fills indeed the 2-
dimensional space:

D =
log(parts per subdivision)

log(1/scaling factor) =
log(5)

log(
√

5)
= 2

Note: There are indeed five parts per subdivision – one in
the center and four around it.

3.2 Numerical Comparison of Space Utilization
The following numerical evaluation ranks the Point-based
Layout with regard to screen space utilization and overplotting.
These two aspects mainly determine the quality of a space-
filling layout, and both can easily be quantified using different
measures. For that purpose, we use the Ink-Paper-Ratio (see
Sec. 2) to quantify screen utilization, as well as overplotted%
(see [17]) to measure overplotting:

overplotted% = 100×
∣overplotted pixels∣

∣used pixels∣

The comparison is done against two concrete existing node-
link layouts for large hierarchies – the Space-Optimized Tree
layout [18] and the RINGS layout [19]. Like our layout, both
layouts show traits of the different space-filling approaches,
i.e., of the implicit approach as sibling subtrees are placed in
non-overlapping areas that are nested within the drawing area
of the parent.

To allow a comparison, we fixed the node size to 1 pixel and
used a quadratic screen space of 600×600. The comparison
was done for an artificial test set of hierarchies and for the
DMOZ hierarchy from Fig. 1. As an optimal space-filling
layout could place at most 360,000 nodes on a 600 × 600
screen-space, we constructed three different full trees with
nearly as many nodes. These trees are fully balanced, so that
each non-leaf node has the same number of children. The
chosen width-depth-combinations are listed in Table 1. The
computed measures for the different layouts and trees are
shown in Fig. 10. The DMOZ data set is harder to compare
to these three cases, as its size of 765,328 nodes exceeds by
far the number of available pixels. Hence it violates condition



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 9

TABLE 1
Sizes of the three evaluated trees.

test case depth width # of nodes # of leaves thereof

A 6 8 299,593 262,144
B 7 6 335,923 279,936
C 9 4 349,525 262,144

(a) of the space-filling definition which explicitly ruled out a
too small drawing area. Yet, as the conditions in real world
scenarios are usually far from perfect, we nevertheless found
the numerical study of this case worthwhile.

Ink-Paper-Ratio: The Ink-Paper-Ratio shows the uti-
lization of the available screen space. A higher value means
more efficient use of space and is thus preferable. First of all,
it is noteworthy that all three techniques behave differently
with respect to increasing depth and decreasing width. While
the Ink-Paper-Ratio is steadily rising for the Space-Optimized
Tree layouts, it stays about the same for our Point-based
Layout technique. This seems right, as the Point-based Layout
is the one that is the most fixed, whereas the Space-Optimized
Layout has complete freedom to place its nodes and even
RINGS is flexible in the regard of how many children to
place at each level. The RINGS layout would perform more
similarly to our layout, if it were not for a special case in the
RINGS layout for trees with exactly 6 children. In this case,
the sixth subtree is allowed to occupy the entire middle of
the layout, which leads to the better ratio. Furthermore, the
diagram in Fig. 10 shows that the Ink-Paper-Ratios are still
below 50% for all of the test cases, while the theoretically
possible optima are at ca. 73% for A and C, and ca. 77% for
B. It is not surprising that the Space-Optimized Tree layout
achieved the best utilization for all of the trees as it is the one
with the most adaptable of the three layouts examined. Yet,
its adaptability, which tries to distribute the nodes evenly and
thus to maximize the use of screen space, leads to the effect
that some characteristics of the tree are evened out, which
makes it hardly possible to relate the density of one subtree to
another. This is where techniques like the Point-based Layout
or RINGS have their strengths. Here, tree characteristics are
preserved through the layout process at the expense of a
lower screen utilization, resulting in blank spaces that are
not occupied. That the Ink-Paper-Ratios of RINGS are below
the ones of the Point-based Layout is mostly due to RINGS’
circular approach, which leaves a lot of whitespace by design.
This is not necessarily a drawback, as it allows to clearly
distinguish the individual subtrees from each other, whereas
the Point-based and the Space-Optimized approach achieve a
tighter packing and thus a better Ink-Paper-Ratio, but at the
expense of the subtrees’ distinguishability. As for the DMOZ
data set, the Ink-Paper-Ratio behaves similarly as for the test
cases. Only RINGS shows a comparatively low value here, as
its utilization of the screen is upper-bounded by its circular
layout: once the circular areas are more or less filled, no more
pixels can be used for the layout. This is different, e.g., for
our Point-based Layout which places new pixels always in
between existing ones, potentially using left over space until

A AB BC C

Fig. 10. The Ink-Paper-Ratios and overplotted%-values
for the three trees from Table 1.

the procedure falls below sub-pixel resolution.
overplotted%: The overplotted% values give the relative

amount of overplotted pixels, which is in this case equivalent
to visual clutter. Hence, a lower value means less clutter and
is therefore desirable. It can be observed in the diagrams
that the overplotted% values of our Point-based Layout and
the RINGS layout are both rising with increasing depth and
decreasing width. Both show also an increase from about
50% to about 80%. This jump occurs earlier for RINGS
than for the Point-based Layout approach. Interestingly, the
overplotted% values for the Space-Optimized Tree layout are
even slightly falling with increasing depth and decreasing
width. We believe that this is due to the fact that this technique
is very much influenced by tree width, because it partitions the
available space according to the number of children. When
the number of children is large, it produces many narrow
partitions, which make the layout even harder at the next
level. Here again, like in the Ink-Paper-Ratio diagram, our
Point-based Layout technique is sandwiched in between the
other two techniques. The only exception is test case A,
where the Point-based Layout performed slightly better than
the Space-Optimized layout. It has to be mentioned that the
overplotted% values are related to the Ink-Paper-Ratio, since
the use of more pixels lessens the effect of overplotting. For
the DMOZ dataset, the comparison of the actual layouts hints
at some interesting properties. For example, while RINGS has
its advantage definitely on the aesthetic side, clutter tends
to occur frequently already at higher levels of the hierarchy.
This can be observed from the uniformly large font in the
GraphSplat in Fig. 11b, where the hierarchy level is mapped
onto the font size. The varying font sizes in the GraphSplats in
Fig. 11a and Fig. 11c show a much more diverse occurrence
of cluttering artifacts for the Space-Optimized and the Point-
based Layout. Yet, while the Space-Optimized layout tries
to minimize clutter by prioritizing space utilization above
everything else, its algorithm actually produces more clutter
than even RINGS. This can be seen in Fig. 11a and is due to
the already mentioned very narrow areas that are allocated in
case of a wide subtree. This also produces the alignment of
the dense regions that can be observed in the GraphSplat, for
instance above and below the red region labeled “Business”.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 10

(a) Space-Optimized Layout

(b) RINGS Layout

(c) Point-based Layout

Fig. 11. The Space-Optimized Layout, the RINGS Layout,
and the Point-based Layout with their respective Graph-
Splats showing the DMOZ hierarchy from Fig. 1.

There, the midpoints of these narrow areas, which are used as
roots for the individual subtrees, are all located side by side.
Of course, the Point-based Layout cannot prevent clutter from
occurring either. But its algorithm distributes it nicely and it
is less likely to accumulate in one region.

3.3 Preliminary User Study
Aside from numerical measures, it is of course also impor-
tant to evaluate the readability of the three layouts by user
testing. We have conducted a preliminary user study with
eight participants (6 non-experts, 2 visualization experts) from
our interdisciplinary graduate school. We showed them three
layouts (Point-based, Space-optimized, and RINGS) of the
DMOZ data set, with the number of websites being color
coded on the nodes. The user study started with a brief
introduction about how the visualizations work and what the
DMOZ hierarchy represents. Afterwards, the participants were

asked to complete the following three tasks for each layout
regarding the subtrees on the first hierarchy level:

1) identify the most unbalanced subtree
2) identify the largest subtree (in terms of number of nodes)
3) identify the subtree with the most nodes having high

attribute values

Note that the tasks are far from simple, as they implicitly
formulate a comparison between all subtrees of the first level
and then ask to identify exactly one subtree that exhibits a
required characteristic most. The following lists noteworthy
observations from this preliminary user study. They give
already some insight into which layout is best suited for which
tasks and how perception is hampered in some cases:

● The Point-based Layout performed much better than the
Space-Optimized Tree layout at task 1. This is only
natural as the rather even distribution of nodes hinders the
perception of imbalances in the Space-Optimized layout,
whereas the Point-based Layout shows them.

● The Point-based Layout performed much worse than the
Space-Optimized Tree layout at task 2. We assume this is,
because the Space-Optimized layout scales the areas of
the subtrees according to the relative subtree sizes, which
the Point-based Layout does not.

● The Point-based Layout performed about equally good as
RINGS for tasks 1 and 2. It appears that wider subtrees
can be determined and judged quite easily in both layouts,
whereas the perception of depth is somewhat challenging
in both, but actually harder in RINGS. This is due to
the quite fast diminishing of drawing areas for subtrees
in RINGS in comparison to the Point-based Layout. Yet
a few levels deeper down, the Point-based Layout runs
into the same problem, which is another argument to also
provide the ability to color code depth as described in
Sec. 2.3.

● The Point-based Layout performed much better in task 3
than any of the other layouts. This has different reasons:
for the Space-Optimized Tree layout it turned out to be
the edges that occluded too much of the visualization.
And for RINGS, the reason is again the quickly dimin-
ishing drawing areas, which prevent the attribute values
of lower level categories to show up. Yet, the space-
efficient distribution and the use of adaptive edges in the
Point-based Layout seemed to give just the right balance
between structural and node attribute information.

While these preliminary results are far from being statis-
tically conclusive, they already indicate that the Point-based
Layout is a good choice except for tasks involving subtree size.
This is basically the price for the fixed, fractal layout. The
numerical evaluation showed that except for special cases like
the one with 6 children, the layout is placed well in between
the Space-Optimized Tree layout (which puts a little more
emphasis on space utilization) and RINGS (which puts more
emphasis on discernability of the tree structure by leaving
more whitespace). The feedback from the preliminary user
study shows that this may be just the right balance between
both aspects.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 11

To ensure a fair comparison, all three layouts have been used
in their basic forms without further adaptations or refinements.
Enhancements of the Point-based Layout that are specifically
adapted to a given screen space would almost certainly have
lead to a better performance of the layout especially in
terms of screen utilization. Multiple such parametrizations and
modifications can be applied to further adapt and enhance
the layout. Some of these parametrizations are detailed in the
following part.

4 ENHANCEMENTS AND MODIFICATIONS

We will focus in this section on examples of layout modifi-
cations to adapt to hierarchies of certain proportions and to
adapt to a given, possibly irregular drawing area.

4.1 Adapting to Trees of Different Width

As discussed in Sec. 2.2, the fixed positioning of the
√

5-
layout draws the subtrees of a node at different sizes. This is
an inherent layout property that may become disadvantageous
if the tree is very wide on average. If the average branching
factor of the tree is around 4, this is not a problem. But
if the tree is much wider, many subtrees are crammed into
the smaller regions around the root node, resulting in a
visualization that is inappropriate. One possible solution to this
problem would be a generalization of our layout. This can be
achieved by using different sampling factors than

√

5. Because

(a)
√

9-Layout (b)
√

13-Layout

(c)
√

25-Layout without and with rotation

Fig. 12. Four alternative layout methods applied to the
DMOZ data set from Fig 1. As a side note: variant (c)
is actually the Sierpinski-carpet, which has only recently
been recognized as a space-filling tree visualization [2].

other factors tile the screen space into more subregions, they
produce better results for wide trees. Possible variants of this
are shown in Fig. 12 using the DMOZ data set as an example.
It can be seen that a

√

x-layout leaves x− 1 regions for the
first x−1 subtrees, and keeps the one remaining region in the
center for further subdivision. Fig. 12 illustrates nicely that
the DMOZ hierarchy is not wide enough on average to make
good use of the 24 resulting regions on each level of both

√

25-
layouts. Hence, it leaves a lot of the regions empty. Indeed,
it can be shown just by calculating the number of pixels used
that the

√

9- and the
√

13-layout of the DMOZ data set utilize
about twice as many pixels as the two

√

25-layouts.

4.2 Adapting to Different Drawing Areas
In the previous section, the layout got altered but continued
to be a static layout whose appearance is determined purely
by the scaling factor. In order to make better use of a given
drawing area, this can be changed to a more dynamic ap-
proach. The main idea is to alter the first layout level by adding
more regions through different tessellation mechanisms. The
following levels are then laid out inside these regions, as usual.
This principle approach is used for rectangular as well as
irregular shaped drawing areas.

As current window-based GUI frameworks usually offer
rectangular drawing areas, the most natural extension of our
layout tries to make better use of these. For a square screen
space, a simple layout modification can be used that increases
the screen utilization from 60% to about 80%: four additional
children of the root are laid out in the first step, the whole
layout is scaled down by about 85%, and rotated 45○. Due to

(a) (b)

(c)

Fig. 13. Layout adjustment with additional 4 (b) and 10 (c)
children laid out in the first step. The children added with
respect to the original layout (a) are highlighted in blue.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 12

(a) Computing a center (b) Computing a tessellation (c) Mapping the tree

Fig. 14. The 3 steps of generating a Point-based Layout for irregular shapes: finding a position for the root node,
computing an approximate tessellation, and finally mapping the tree onto the tessellation. The colors in the resulting
layout indicate different subtrees, making them discernable from each other.

the interleaving structure, the four children’s subtrees integrate
seamlessly with the overall layout. Fig. 13b shows the four
additional children highlighted with blue borders alongside the
original layout in Fig. 13a. In case the available screen space
is rectangular and not square, it is easily possible to apply the
very same idea by adding even more subtrees on the first level,
as it can be seen in Fig. 13c.

If the available space is of irregular shape, as it is the case
for regions of a map, it becomes more intricate to find a
good arrangement of subtrees on the first level. The proposed
procedure for the mapping of a tree onto an arbitrary genus-0
shape is illustrated in Fig. 14 and detailed below:

1. Computing a Center: The search for a central posi-
tion for the root node is not a trivial problem as an irregular
shape does not possess an obvious and easy to find center. The
naive approach of computing the barycenter is problematic for
concave regions, as the barycenter may be located outside
of the region itself. Other options are the geodesic center,
which can be computed directly in O(n logn) [20], or the
skeleton point with maximum importance, for instance as it
is derived by the algorithm presented in [21]. As an added
benefit, the computation of the skeleton yields information
about the canonical axis of the shape [22], which can be used
in the next step to derive an appropriate orientation for the
tessellation procedure.

2. Computing a Tessellation: Once the position for the
root node is determined, the area around it can be tessellated
with subregions that will later be distributed among the nodes
of the first level of the hierarchy – very much in the same
spirit as it was done for rectangular regions. As a heuristic,
we use the canonical axis of a shape to orientate and align
the region around the root node. Then the first four areas
are trivially placed around the root node, so that they fit just
inside the inscribed circle. The next areas are then placed
beside the first areas: we start in a greedy manner with the
largest possible area and proceed recursively to fill in gaps and
smaller areas step by step. Fig. 14b shows how these additional
subregions are also oriented along the canonical axis. It can
further be seen that the areas do neither fill every tiny bit of
the shape, nor do they strictly stay inside it. That is why we

call this tessellation only an approximate one. This relaxation
is made possible by an adaptive mapping in the next step.
The adaptive mapping locally corrects the case where areas
are lying partially outside of the shape. As long as the part
lying outside is not too big, the layout benefits from it by
generating potentially larger areas. A good rule of thumb is
that at least 60% of the area lie inside of the shape. If needed,
the larger areas can afterwards still be divided in smaller ones,
if there are a lot of nodes on the first level of the tree.

3. Mapping the Tree: In this last step, the children of the
root are assigned to the regions computed by the tessellation.
Hereby, it is important to assign only to regions whose center
can be connected to the root’s position by a straight line that
lies entirely within the overall shape and does not cross any
neighboring shapes. This can be noticed for the top-left region
in Fig. 14b, which is not allocated in Fig. 14c. If there are more
children than regions, larger regions can be split further into
subregions. If there are fewer children than regions, multiple
smaller, adjacent regions can be merged into a larger one,
gaining more space to layout lower level children. Then, the
children of the root can be mapped onto the regions in the
usual manner, placing the largest subtrees on the larger areas
and the smaller ones on the smaller areas. Within the areas
themselves, the basic layout algorithm Alg. 1 is used. In the
case that an area overlaps the shape, for each newly computed
node position P′ in Line 11 of Alg. 1 it is tested if it lies
inside or outside of the shape. If P′ lies outside, this position is
skipped and the next available position is computed and tested
until a position inside the shape is found. This effectively
corrects the case of areas lying partially outside of the shape,
which was introduced by the approximate tessellation in the
second step.

The specific scenario of the shapes being static regions on
a map allows us to precompute step 1 and 2 as they are
independent of the actual tree. Yet, this scenario brings with it
another challenge: with the layout filling the regions up to their
boundaries, neighboring regions often appear as if merged and
are hard to discern from one another. In this case, the skeleton
can be used to generate a slightly smaller shape and to layout
the tree inside this shape instead – effectively introducing a



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 13

narrow border for each region. This is used for an application
in the next section, which shows such a map with hierarchies
filled in region by region in Fig. 16.

5 DISCUSSION AND APPLICATIONS

The Point-based Layout tries to push screen utilization as far
as possible while at the same time trying to still reflect the
inherent properties of the hierarchy. The evaluation makes
clear that this is a thin line to walk: the transition between a
well discernable, but less space-efficient layout (e.g., RINGS)
and a less discernable, but highly space-efficient layout (e.g.,
Space-Optimized Tree layout) is quite fluent and the optimal
balance in between is hard to pinpoint. With our layout, we
argue to have found a good combination of both worlds by
trading in a few aesthetic layout constraints (e.g., no edge
crossings and equal space for siblings). What we have gained
by that is a number of unique features that distinguish our
point-based tree visualization from other space-filling node-
link tree visualizations:

● The node placement creates very dense layouts and runs
efficiently in O(n logn) for an unsorted tree, and in O(n)
for a sorted one. This is the same as for prominent
implicit layouts, e.g., the Squarified Treemap [23]. Our
layout is a good fit for showing a large number of nodes
in limited screen space and layout time.

● Structural properties like the tree’s balancing can be
easily recognized just from the distribution of the nodes
– e.g., dense patches vs. sparsely scattered.

● The fixed layout template and the deterministic mapping
of the tree onto the template lead to a very stable
visualization, which is helpful for comparison tasks and
for keeping users’ orientation during interaction.

● Different adaptations of the fixed layout template with
respect to the fundamental node placement (different
tilings resulting from different scaling factors) or to the
arrangement of the template tiles (additional children, tes-
sellation) can be used to tailor the visualization according
to the hierarchy and drawing area.

Fig. 15. The JAMES II framework [24] showing a Point-
based Layout of a hierarchical model with 300,000 nodes.

Fig. 16. The LandVis application showing the Point-
based Layout of the ICD disease categories in each
administrative district of Mecklenburg-Vorpommern. Dis-
ease occurrences are color coded from green (less than
100 occurrences) to red (more than 2000 occurrences).

First implementations of our layout have been included in
two application systems. The basic layout algorithms is used
in the JAva-based Multipurpose Environment for Simulation
II (JAMES II), an extendable simulation framework [24]. It is
one of the first to support hierarchical model structures as they
occur in multi-level models [25]. For validating and debugging
purposes, these hierarchical models need to be visualized. As
these hierarchies are large (from around a few 100,000 up to
a million nodes) and very regular, the Point-based Layout is a
perfect fit: irregularities (possible bugs in the model) stick out
and are easy to perceive. Additionally, filtering by width can
be used to identify sub-models that have an unusually large
or small number of components, which in turn may hint at
a faulty model composition. Fig. 15 shows the integration of
the Point-based Layout in the JAMES II framework depicting
a MultiLevel-DEVS model with 6 hierarchy levels and about
300,000 nodes. Upon inspection of this model, the developer
can identify and zoom in on irregularities, select the nodes in
question and investigate the problem in adjoined views.

The layout adaptation for irregular drawing areas is used
in the LandVis system, which is a framework for the visual-
ization of human health data [26]. The health data contains
information about how many occurrences of diseases have
been registered in a certain area during a specific period of
time. This application context contains inherently hierarchical
structures to be visualized on the map: the ICD code hierarchy
of diseases and the hierarchy of the time domain (years,
months, weeks, days). It differs from previous approaches
that have only visualized hierarchies that were generated by
decomposing the data in an OLAP-like fashion [27]. The
Point-based Layout is applied for both hierarchies contained in
this data set: it is either used to show the presence or absence
of individual diseases or even entire disease classes by laying
out the ICD code hierarchy for the diseases occurring in each
region. Or, it is used to show the presence or absence of a
certain disease in certain weeks or months using the time
hierarchy. Fig. 16 shows the adaptive Point-based Layout in

http://www.jamesii.org


IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 0, NO. 0, MONTH YEAR 14

the administrative districts of the German state Mecklenburg-
Vorpommern. The tree inside each region shows the ICD
hierarchy with the number of occurrences as color coded
attribute. Red spots in the tree indicate a high number of
occurrences and may thus trigger an in-depth analysis, e.g., by
brushing the attribute values and exploring them in a different
view.

The layout still undergoes frequent improvements and en-
hancements. Currently, we are working on an extension of
the point-based visualization for time-varying hierarchies and
support for progressive refinement along the lines of [28]. For
the future, we plan to investigate an adaptation for hexagonal
and triangular tilings of the plane, as well as an improved
tessellation method for concave shapes using ideas from the
flow map layout [29].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and
suggestions, as well as the participants of the user study for
their time. Also, we would like to acknowledge Christian
Tominski for his valuable input during the different stages
of this paper. This work was supported by the DFG Graduate
School dIEM oSiRiS – www.diemosiris.de.

REFERENCES

[1] G. di Battista, P. Eades, R. Tamassia, and I. Tollis, Graph Drawing -
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[2] M. J. McGuffin and J.-M. Robert, “Quantifying the space-efficiency
of 2D graphical representations of trees,” Information Visualization, to
appear.

[3] B. Johnson and B. Shneiderman, “Tree-maps: a space-filling approach
to the visualization of hierarchical information structures,” in Proc. of
IEEE Vis, 1991, pp. 284–291.

[4] J.-D. Fekete and C. Plaisant, “Interactive information visualization of a
million items,” in Proc. of IEEE InfoVis, 2002, pp. 117–124.

[5] H.-J. Schulz, S. Hadlak, and H. Schumann, “The design space of implicit
hierarchy visualization: A survey,” IEEE TVCG, to appear.

[6] ——, “Point-based tree representation: A new approach for large hier-
archies,” in Proc. of IEEE PacificVis, 2009, pp. 81–88.

[7] A. U. Frank and S. Timpf, “Multiple representations for cartographic
objects in a multi-scale tree – an intelligent graphical zoom,” Computers
and Graphics, vol. 18, no. 6, pp. 823–829, 1994.

[8] E. R. Tufte, The Visual Display of Quantitative Information, 2nd ed.
Graphics Press, 2001.

[9] M. Gross and H. Pfister, Eds., Point-Based Graphics. Morgan Kauf-
mann Publishers, 2007.

[10] M. Stamminger and G. Drettakis, “Interactive sampling and rendering
for complex and procedural geometry,” in Proc. of EG Workshop on
Rendering Techniques, 2001, pp. 151–162.

[11] M. Luboschik, H. Schumann, and H. Cords, “Particle-based labeling:
Fast point-feature labeling without obscuring other visual features,”
IEEE TVCG, vol. 14, no. 6, pp. 1237–1244, November-December 2008.

[12] R. van Liere and W. de Leeuw, “Graphsplatting: Visualizing graphs as
continuous fields,” IEEE TVCG, vol. 9, no. 2, pp. 206–212, 2003.

[13] P. Bose, M. McAllister, and J. Snoeyink, “Optimal algorithms to embed
trees in a point set,” Journal of Graph Algorithms and Applications,
vol. 1, no. 2, pp. 1–15, 1997.

[14] A. Sandberg, “Hilbert tree of life,” Nov. 2007. [Online].
Available: http://www.flickr.com/photos/arenamontanus/1916189332/in/
set-72157594326128194/

[15] C. Muelder and K.-L. Ma, “Rapid graph layout using space filling
curves,” IEEE TVCG, vol. 14, no. 6, pp. 1301–1308, 2008.

[16] H. Koike and H. Yoshihara, “Fractal approaches for visualizing huge
hierarchies,” in Proc. of IEEE Visual Languages, 1993, pp. 55–60.

[17] G. Ellis and A. Dix, “The plot, the clutter, the sampling and its lens:
Occlusion measures for automatic clutter reduction,” in Proc. of AVI,
2006, pp. 266–269.

[18] Q. V. Nguyen and M. L. Huang, “Space-optimized tree: A connec-
tion+enclosure approach for the visualization of large hierarchies,”
Information Visualization, vol. 2, no. 1, pp. 3–15, 2003.

[19] S. T. Teoh and K.-L. Ma, “RINGS: A technique for visualizing large
hierarchies,” in Proc. of Graph Drawing, 2002, pp. 268–275.

[20] R. Pollack, M. Sharir, and G. Rote, “Computing the geodesic center of
a simple polygon,” Discrete and Computational Geometry, vol. 4, pp.
611–626, 1989.

[21] A. Telea and J. J. van Wijk, “An augmented fast marching method for
computing skeletons and centerlines,” in Proc. of VisSym, 2002, pp.
251–260.

[22] A. Sirjani and G. R. Cross, “On representation of a shape’s skeleton,”
Pattern Recognition Letters, vol. 12, no. 3, pp. 149–154, 1991.

[23] M. Bruls, K. Huizing, and J. van Wijk, “Squarified treemaps,” in Proc.
of VisSym, 2000, pp. 33–42.

[24] J. Himmelspach and M. Röhl, “JAMES II – experiences and interpre-
tations,” in Multi-Agent Systems: Simulation and Applications, A. M.
Uhrmacher and D. Weyns, Eds. Taylor and Francis, 2009.

[25] A. M. Uhrmacher, R. Ewald, M. John, C. Maus, M. Jeschke, and
S. Biermann, “Combining micro and macro-modeling in DEVS for
computational biology,” in Proc. of IEEE WSC, 2007, pp. 871–880.

[26] C. Tominski, P. Schulze-Wollgast, and H. Schumann, “Visual methods
for analyzing human health data,” in Encyclopedia of Healthcare Infor-
mation Systems, N. Wickramasinghe and E. Geisler, Eds. Information
Science Reference, 2008, pp. 1357–1364.

[27] J. Wood and J. Dykes, “Spatially ordered treemaps,” IEEE Transactions
on Visualization and Computer Graphics, vol. 14, no. 6, pp. 1348–1355,
2008.

[28] R. Rosenbaum and B. Hamann, “Progressive presentation of large
hierarchies using treemaps,” in Proc. of International Symposium on
Visual Computing, 2009, pp. 71–80.

[29] D. Phan, L. Xiao, R. Yeh, and P. Hanrahan, “Flow map layout,” in Proc.
of IEEE InfoVis, 2005, pp. 219–224.

Hans-Jörg Schulz received his diploma (MCS)
from the University of Rostock in 2004. Currently,
he is a PhD candidate in the interdisciplinary
graduate school “dIEM oSiRiS” at the University
of Rostock. There, he is involved in developing
graph visualizations for biomedical and bioinfor-
matics applications. His main interests concern
the visualization of special graph classes, like
bipartite or interval graphs, as well as graph
representations aside regular node-link-layouts.

Steffen Hadlak received his diploma (MCS)
from the University of Rostock in 2009. Currently,
he is a PhD candidate in the interdisciplinary
graduate school “dIEM oSiRiS” at the University
of Rostock. There, he is working on multi-level vi-
sualization of dynamic graphs for biomedical and
bioinformatics applications. His interests include
GPU-based rendering as well as its application
to 3D Information Visualization.

Heidrun Schumann graduated at the University
of Rostock (1977 Master degree, 1981 PhD,
1989 Habilitation). Since 1992 she is heading
the Computer Graphics Research Group at the
Institute for Computer Science at the University
of Rostock. Her research profile covers Informa-
tion Visualization, Visual Analytics, and Render-
ing. Her current research projects, supported by
research institutions and industry, include devel-
opment of scalable frameworks for information
visualization and adaptive visual interfaces.

www.diemosiris.de
http://www.flickr.com/photos/arenamontanus/1916189332/in/set-72157594326128194/
http://www.flickr.com/photos/arenamontanus/1916189332/in/set-72157594326128194/

	Introduction
	A Point-Based Tree Layout
	Inspiration
	Layout Technique
	Coloring Techniques
	3-dimensional Extension
	Interaction Techniques
	Visual Cues

	Evaluation
	Relate to Established Space-filling Layout Approaches
	Numerical Comparison of Space Utilization
	Preliminary User Study

	Enhancements and Modifications
	Adapting to Trees of Different Width
	Adapting to Different Drawing Areas

	Discussion and Applications
	References
	Biographies
	Hans-Jörg Schulz
	Steffen Hadlak
	Heidrun Schumann


