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Abstract In many domains, it becomes more and
more common that an analysis spans various interlinked
data sources that we collectively term data landscape.
Yet for the selection of appropriate data sources from
the wide range of available ones, current approaches and
systems rarely offer more support than a File-Open-
dialog. This paper presents a visualization approach
that aims to give a stable and meaningful overview
of a data landscape to ease finding and selecting data
sources that may be useful in a subsequent visual
analysis. As such, it serves as a visual starting point
from which to bootstrap a visual analysis by finding
and selecting the data sources relevant to a question
at hand. This approach is exemplified by applying it
to a current snapshot of the data landscape from the
CKAN-LOD data hub consisting of 216 data sources
with 613 links between them.

Keywords Linked Open Data, LOD Cloud, Multi-
modal Data Visualization

1 Introduction

Data sources are increasingly interlinked as it becomes
more frequent that datasets are no longer self-contained,
but reference other data sources via common identifiers.
As a result, a typical visual analysis is rarely confined
to a single data source, but spans across multiple such
interlinked data sources to yield meaningful and reliable
insights. This is sometimes termed multimodal data vi-
sualization [23] or cross-media analysis [37, p.128]. Ex-
amples for such analyses can be found in various fields,
such as biomedicine [31], cancer research [24], and man-
ufacturing [1]. These examples have in common that
they each assume a rather small, hand-curated set of
no more than a dozen data sources that are appropriate
for the visual analysis to be conducted. Usually, this
set forms a mere subset out of the large number of all
available data sources, which we term data landscape in
the spirit of similar terms for multi-dataset scenarios,
such as information landscape [27] or data meadow [15].
We consider such a data landscape to be heterogeneous,

if the individual data sources are of diverse type and
structure, so that the landscape connects, for example,
textual, numerical, and pictorial data sources.

If the focus of an analysis shifts, it may necessitate the
incorporation of different or additional data sources from
the data landscape than the ones that were originally se-
lected. Such a flexible (re-)selection of data sources is an
integral, if not the most important step of a visual anal-
ysis, as a poor choice of data to base an analysis on can
render the entire analysis pointless. In contrast to this
observation stands the fact that this step is hardly ever
considered and most visual analysis approaches assume
the data as given. Most approaches or systems support
the analyst at this early stage with a mere dialog for
loading the data. The few, more advanced methods are
either based on statistics or authoring: the former use
similarity metrics to find data sources related to given
data [8], whereas the latter require a domain expert to
preselect suitable data sources to pursue a given analysis
goal [35]. Meta data of the data sources and dependen-
cies between them are in both cases rarely communi-
cated or used.

This paper presents a visualization method for giving
a meaningful graphical overview of large data landscapes
with potentially hundreds of different data sources to
allow for an informed choice of a subset on which to
pursue a subsequent visual analysis. The challenge of
creating such an overview is that the necessary layout
quality for serving as a useful visual index in which all
the available data sources are meaningfully placed in a
stable deterministic way and well separated is hard to
achieve. The reason for this lies in the fact that the com-
mon graph visualization algorithms are tuned towards
slightly different drawing aesthetics than those needed
in this case. As a result of this, current visualizations
of data landscapes are either manually designed or do
not scale well beyond a few dozen datasets, as the brief
overview of the related work in Section 2 shows. To over-
come this challenge, we propose a carefully constructed
layout concept that employs a step-wise refinement using
approaches from network visualization and graph layout
in Section 3. We exemplify our layout concept in Sec-
tion 4 with a data landscape that was derived from the
Linking Open Data (LOD) repository of the Compre-
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(a) Linking Open Data Cloud [10]
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(b) Linked Open Data Graph [36]

Figure 1. Overview visualizations of the CKAN-LOD landscape. (a) depicts a manually created diagram with different domains
being color-coded. According to the authors, it was incrementally crafted using the diagramming tool OmniGraffle. (b) shows an
automatically laid out diagram in which the colors signify user ratings of the data sources. It was created using the Fruchterman-

Reingold layout algorithm [18].

hensive Knowledge Archive Network (CKAN) contain-
ing 216 data sources and 613 interconnections between
them. Finally, Section 5 concludes this paper by outlin-
ing ideas for future work.

2 Related Work

In principal, visualization across multiple data sources
can occur on three levels of granularity: the item level
of individual data records, the table level of different
classes of data items, and the landscape level of entire
databases. For the first two levels, with which this paper
is not concerned, the reader is pointed to [9] and [11],
respectively, for examples of their visualization. They
both have in common that they make use of a given
structure underlying and connecting the heterogeneous
data for traversing it, querying it, and visualizing it. On
the item level, this structure is in many cases given as an
RDF graph. Whereas on the table level, the database
schema is utilized as a natural structure that underlies
the ensemble of tables.

On the landscape level, only a few visualizations
have yet taken on the challenge of representing multi-
ple datasets. This may be due to the fact that the ad-
vent of large data hubs and the growing Linked Open
Data movement [39, ch.11] calling for visualizations on
this level are rather recent developments. Such data
hubs collect (links to) data sources and make meta data
about them available. Notable examples are the CKA N-
LOD repository (http://datahub.io), the Socrata So-
cial Data Platform (http://opendata.socrata.com),
and the U.S. Open Government Initiative Data.gov
(http://www.data.gov). Together, they collect hun-
dreds of data sources from a variety of domains and thus
provide a common interface and a standardized entry
point to them. Similar to the other two levels, a data
landscape is usually assumed to exhibit an underlying
structure — in this case an interlinkage between individ-
ual data sources as it is induced by foreign key relations
between contained items. These links can be weighted

by the number of individual foreign key references they
subsume, and they can be orientated by the direction of
these references. This structure is commonly used to em-
ploy graph-based drawing techniques for the landscape’s
visualization. In practice, two different such techniques
are used: manual layouts in which the user positions all
nodes interactively to produce a final static visualization
and automatic layouts in which the positions are com-
puted to yield a dynamically updating representation
without the need for user input.

Manual layouts, such as the one given by [34] for the
bioinformatics domain or the CKAN-LOD Cloud [10]
shown in Figure la, tend to be very readable with a
thoughtful node positioning that places data sources
from the same domain close to each other. As static
overviews of a data landscape, they are much less an
interactive exploratory tool than a visual index of the
data sources in which a click on a node redirects a
web browser to the corresponding data source for fur-
ther inspection. This index-like notion is underlined by
the efforts to produce a meaningful relative node place-
ment that aids in quickly (re-)finding data sources as
one would desire it from an index. Furthermore, they
are carefully arranged in a way so that no two nodes
overlap each other, thus enabling a user to select them
unambiguously. Their drawback is their inability to au-
tomatically adapt either to a change in the underlying
data landscape, or to a change in the user’s interest that
may require a grouping by a different criteria than the
domain. In both cases, the designer of the visualiza-
tion has to redo the visualization and manually make
the desired changes.

Automatic layouts, such as the one utilized by [24]
in their Data-View-Integrator or the LOD Graph [36]
shown in Figure 1b, do not suffer from this drawback.
They gain their flexibility through the use of a force-
based graph layout, but by using these layouts, they
trade in the meaningful and well-separated placement
that an index-like visualization requires. While this
still works for small data landscapes with only a hand-
ful of data sources, as one can see in [24], the visual
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clutter increases for larger data landscapes. At some
point, the amount of overplotting makes it impossible
to single out individual data sources and click on them
— in particular, if they are positioned in the center of
the “hairball” that the force-directed layout creates. In
addition, due to their non-deterministic nature, simple
force-based algorithms cannot be used to produce sta-
ble layouts, nor can they convey any semantic relation
between the data sources, such as by placing them close
to each other. While solutions or “work-arounds” ex-
ist to alleviate these problems — i.e., by using pinning
weights to increase stability [17] and additional forces
to model semantic relations, such as belonging to differ-
ent domains/clusters [14] — these are so far not used in
the existing data landscape visualizations.

With their respective pros and cons, these two strate-
gies of visualizing data landscapes denote two endpoints
of the same design spectrum: one being tedious to man-
ually construct, but extremely well-suited to serve as a
map of the data landscape and as a gateway to it, while
the other one is easily constructed automatically, but
ill-suited to perform the desired look-up task if the data
landscape gets realistically large. It is thus the aim of
this paper to find a compromise between the two that
does no longer require manual layout work, but never-
theless serves well as the visual index of data sources
that is needed. The method to achieve this is detailed
in the next section.

3 A Visualization Method for
Data Landscapes

The reason for the inadequacy of the existing auto-
mated approaches is the fact that the used force-directed
layout algorithms are designed to optimize different aes-
thetic criteria than those needed for a stable visual in-
dex. For example, a meaningful placement is very hard
to achieve when the node positions are used as the degree
of freedom which the layout alters in order to achieve
other aesthetic criteria. Among these criteria are total
edge length minimization and crossing-number reduc-
tion [4], which are certainly desirable, but not at the
cost of rendering the entire layout unsuitable for the
task at hand. This is in line with recent results, which
have shown that a layout that compromises between var-
ious aesthetics produces much better overall drawings
that those that aim to achieve a few aesthetics to the
fullest at the expense of all others [21]. Hence, the fol-
lowing section will shortly state and prioritize the layout
constraints for index-like overview visualizations of data
landscapes, before the concrete layout method is derived
from them.

3.1 Defining the Layout Constraints

The most essential constraints imposed by the
requirements of a visual index are in order of decreasing
importance:

I. Stability: An essential aspect of the layout is that
the same input will always result in the same output
and that small changes in the input will only result in
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small changes in the output. Otherwise, the analyst
would be presented with a different placement in each
visualization session, even though the shown data
landscape changed not at all or only a little.

II. No Node-Edge Overlap: As the main purpose
of the layout will be to select individual nodes, it is
important that the edges do not occlude them. While
the edges are a fundamental part of the network,
they provide only complementary information for
the selection of data sources and cannot be selected
themselves. Hence, edge-edge-overlap (edge crossings)
can be tolerated, yet node-edge-overlap cannot.

IIT. No Node-Node Overlap: A similar argument
can be made for the case of overlapping nodes. Since
they must be selectable on an individual basis, their
separation is essential to the layout.

IV. Meaningfulness: In contrast to a standard
network drawing that aims at a meaningful relative
positioning of nodes, the sought overview should
produce a meaningful absolute positioning to aid the
look-up of nodes. This implies that a change in position
between visualization sessions bears meaning as well,
for example, indicating that a data source’s properties
changed, such as its user ratings or the date of its last
update.

The order of these constraints is logical as, for
example, a well-separated meaningful node placement
is useless if it is completely cluttered with overdrawn
edges, which make it impossible to select any node at
all. This implies that a less important constraint may
be violated and not be achieved fully in order to fulfill
a more important constraint. It can be observed that
the manually generated data landscape visualizations
adhere to them. For example, the LOD cloud shown in
Figure 1a fulfills them in the following ways:

I. Stability is achieved through an incremental layout,
which takes the last LOD cloud diagram as a starting
point for including newly added data sources [10].
This way, repositioning is limited and the same data
source can be found in similar positions across different
versions of the diagram.

II. No Node-Edge Overlap is simply achieved by
drawing the nodes on top of the edges. While it fulfills
the criterion, it also hampers the attribution of edges
to their incident nodes.

ITI. No Node-Node Overlap is achieved as a result
of the manual positioning process, which aims “to form
a beautiful and fluffy cloud” [10] that carefully avoids
such overlap.

IV. Meaningfulness lies in this example not so much
in the absolute position of a node, but rather in the
relative position with respect to its neighboring nodes
belonging to the same application domain. This is
additionally highlighted by the color-coding of the
different domains (cp. Figure 1a).
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This shows that manually generated landscape visu-
alizations come already pretty close to what we want to
achieve with our proposed layout in an automated way.
Therefore, these constraints directly influence our layout
approach, as it is outlined in the next section.

3.2 Deriving our 3-Step Layout Approach

On the one hand, to the best of our knowledge, there
exists no monolithic layout algorithm that fulfills the
above layout constraints. On the other hand, we refrain
from building a custom layout algorithm, as it would
require additional implementation work to be used and
it would reinvent the wheel in many aspects for which
already decent solutions exist — e.g., for node overlap re-
moval. As a compromise between these two strategies,
we propose a modular step-wise layout concept that uti-
lizes existing approaches and implementations for each
step. This step-wise solution can be seen as a meta-
algorithm, which does not specify in detail, which con-
crete method to use, but what kind of methods to use
in which order. Our meta-algorithm employs one lay-
out step per layout constraint, adapting the placement
of nodes and edges so that the constraints are met.

Looking at the four layout constraints, it can be noted
that Constraint I does not concern the layout result
as much as it concerns the layout process as a whole.
It is not something that can simply be imposed as an
additional refinement step on an already existing layout
as, for example, the third constraint can be achieved
by performing a node overlap removal step. Hence, we
consider the constraint of stability as a global one that
must be fulfilled by all individual layout steps in order
to be valid for the entire layout process.

This leaves three actual layout steps to be carried
out — one for ensuring each of the three remaining con-
straints. Since later layout steps potentially overwrite
or adjust the outcome of earlier layout steps, we pursue
the constraints from the least important to the most im-
portant one. This will, for example, sacrifice or reduce
the meaningfulness of the node placement if this helps to
remove node overlap in a later step. The three steps of
our meta-algorithm are given in the following together
with some concrete algorithmic suggestions for carrying
them out.

Meaningful Node Placement (Constraint IV).
This is the initial step that performs the placement of the
nodes according to two selected numerical meta data of
the data sources in a Cartesian coordinate system, sim-
ilar to the GraphDice technique [5] or to the Semantic
Substrates [33]. For example, the nodes can be placed
on the X-axis according to the size of a data source and
on the Y-axis according to the time of their last update.
This way, all large and recently updated data sources
will be placed at the top-right of the layout, whereas
smaller and older data sources are placed towards its
bottom-left. It is obvious that such a mapping of the
nodes onto the X/Y-plane is deterministic. Depending
on what is important for the analysis at hand, different
meta data can be used. For instance, the time of the
last update may be useful in financial or clinical scenar-
ios where it is important to always work with the most
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recent data available. Whereas the number of incoming
edges (number of other data sources referring to a data
source) could be used together with the average user
rating as an indicator of the trustworthiness of a data
source, if a scenario depends on such a notion.

Node Overlap Removal (Constraint III). As the
initial step places nodes with the same meta data on
the same X/Y-position, the resulting overlap has to be
removed in order to permit their individual selection.
Unfortunately, many common node overlap removal ap-
proaches are either not deterministic (e.g., force-directed
adjustments, such as [25]) or they interfere too strongly
with the meaningful placement (e.g., [26]). Ideally, over-
lapping nodes are distributed in the vacant vicinity of
where the overlap occurs. Suitable approaches are, for
example, based on stress majorization, such as the Fast
Node Overlap Removal [12, 13]. As a result of this step,
all nodes have their distinct drawing space and a mini-
mum distance to each other, while still being in the prox-
imity of their original position and thus remain quick to
locate. With this step, the nodes are separated and the
edges can be routed through the gaps the node overlap
removal created between them.

Edge Routing (Constraint IT). In contrast to many
established network layout methods, the node placement
is in our case not driven by connectivity, i.e., nodes that
are connected are not necessarily placed close to each
other. Hence, it is important to show the edges in or-
der to make the connections between the data sources
explicit. This raises the problem of edges overplotting
the nodes, which could be circumvented by following the
idea of the LOD Cloud and drawing them underneath
the nodes. Yet, this makes it hard to attribute edges
to a particular pair of nodes if they cross underneath
a number of them. This effect is not as visible in Fig-
ure la, because the data sources are grouped by their
domain. Since intradomain cross-references are much
likelier than interdomain relations, edges in this diagram
are in general rather short and thus less prone to cross
a lot of nodes. Since this does not hold true for ev-
ery node placement strategy, we are required to route
around the nodes. This problem can traditionally be re-
duced to finding shortest paths in the visibility graph of
the layout. A reasonably fast algorithm building on this
reduction is given in [28], yielding an almost Flow Map-
like edge routing [29]. Furthermore, it is also possible to
show edges only on demand for nodes of interest, if the
density of the data landscape calls for it.

As these three steps of the meta-algorithm merely de-
fine the intention and the constraints of the operation
to be performed, they do not require a particular fixed
technique to carry them out. Instead, depending on the
application case, different techniques than the ones sug-
gested in the above description can be plugged into these
steps. For example, if more than two meta data shall
be mapped to the X/Y-plane, Multidimensional Scaling
(MDS) [38, 7] can be used. Whereas, if interactivity is
needed, a more scalable heuristic for node overlap re-
moval, such as PRISM [16], can be applied. The follow-
ing section will exemplify the utilization of our layout
method for the CKAN-LOD.
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Figure 2. Overview visualization of the CKAN-LOD landscape with 216 data sources and 613 links, laid out by their user rating
(y-axis) and size (x-axis). In both examples, a pharmaceutical database is selected (black) and their related data sources are highlighted

(green).

4 Applying our Method to the
CKAN-LOD Landscape

This paper uses the CKAN-LOD repository as an ex-
ample data landscape, as it is not only freely available,
but also because it is the one which is probably the best
publicized and researched data landscape. The structure
of this landscape has been previously described in [6]
and [20, ch.3], and thoughtfully been analyzed in [30].
It is particularly well suited to exemplify our visualiza-
tion approach, as it is up to date the only data landscape
for which manual and automated layout solutions exist
(cp. Figure 1).

We implemented our layout approach using the al-
gorithms mentioned in the previous section to perform
the individual steps. It is realized as a Java software
that retrieves and parses the CKAN-LOD repository and
generates an SVG diagram with added JavaScript inter-
activity. This way, the layout can be computed offline
(e.g., in regular intervals as a cron job on the server)
and its result is then published online at a fixed URL
upon its completion. We found this to be a more useful
setup than a client-side layout, as parsing the reposi-
tory and generating the layout requires a few minutes,
which a user may not be willing to wait. The layout time
of a few minutes also reflects the compromise we made
between the existing fast but cluttered automatic force-
based layouts and the time-consuming but tidy manual
layout generation.

The result can be seen in Figure 2 that depicts the
subset of the CKAN-LOD landscape, for which the used
numerical meta data average rating and number of items
were available. To yield an uncluttered view of the data
landscape, we display links only on demand for selected
data sources (black). Their directionality is signified by
an arrowhead that is placed at the far end of each edge

by the related data source (green). If the arrowhead
points away from the selected data source towards the
related one, it indicates that the selected data source ref-
erences the related one. If it points towards the selected
data source, the selected data source is referenced by the
related one. If no arrowhead is shown, the dependency
is bidirectional.

In the case at hand, an analyst seeks a pharmaceu-
tical data source, which is known to be a challenging
endeavor in the field of health care and life sciences [32].
Currently, mainly list-based approaches are used to get
an overview of various pharmaceutical data sources [22].
The analyst starts with an obvious candidate, the well-
known DailyMed database shown in Figure 2a. Its
neighborhood of dependent data sources looks promis-
ing, as it links out to databases with further information
about diseases (Diseasome), clinical trials (LinkedCT),
Traditional Chinese Medicine (TCMGeneDIT), and side
effects (SIDER), which will ease investigations in any
of these particular aspects. A double-click on the data
source opens up the DailyMed webpage where the ana-
lyst discovers a serious drawback to this particular data
source: it provides its data mainly in the form of En-
glish text that is hard to parse automatically (see [3])
and to distill into visualizations. Hence, she seeks for
an alternative and finds it in the neighborhood of the
DailyMed database: the DrugBank shown in Fig. 2b.
Not only does the DrugBank provide its information in a
more structured manner, but it also links to all the same
databases plus some important additional ones, such as
PubMed for publications, the Bio2RDF Pfam database
of protein families, and the KEGG compound database.
Its apparent higher appeal is furthermore reflected in its
higher average user rating, which puts it more towards
the top of the landscape.

To confirm that the higher average user rating does
not reflect mere subjective experiences, the analyst can
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Figure 3. Visualizations of the same data sources as in Figure
connections (x-axis).

switch to a different layout of the data landscape, which
positions the data sources by user rating and the number
of incoming connections. The number of incoming con-
nections reflects how many other data sources rely on a
given data source and thus acts as a proxy for its general
dependability and credibility. The result of this switch
is shown in Figure 3 and the analyst can see from it at
a first glance that both data sources — DailyMed and
DrugBank — are placed at the same horizontal position
and are thus equal with respect to incoming connections.
A closer look reveals that actually both data sources are
linked to by the very same set of seven related data
sources.

As a result, the analyst was able to identify a more
suitable data source from the overview visualization and
to confirm by changing the layout that a switch from
DailyMed to DrugBank will not make any subsequent
pharmaceutical analysis less reliable.

5 Conclusion and Future Work

The proposed overview visualization for data land-
scapes provides a valuable method for selecting data
sources for their subsequent visual analysis. It achieves
this by not simply running a standard algorithm, but
by fulfilling a thoughtfully prioritized list of aesthetic
constraints that are targeted directly towards the task
of looking up data sources. As a result, it yields a vi-
sual index of data sources that could only be produced
manually before.

In future work, we aim to explore two directions. The
first is based on the observation that our visualization
method is only as powerful as the available numerical
meta data for the meaningful positioning of the data
sources in the visual index. The more of these meta
data can be provided, the more ways of mapping out the
data landscape are possible and thus the better it can

A Graph-based Overview Visualization for Data Landscapes
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2, but now laid out by their user rating (y-axis) and incoming

be tailored to the needs of the analyst. Additional meta
data can either be retrieved from dedicated providers,
such as the LODStats project [2], or be derived using
services, such as GeolIP lookups to fetch the lat/lon-
coordinates of the database locations. The latter would
for example allow us to map the data sources onto a
world map and thus tie the abstract geography of the
data landscape to the physical geography of the globe.
The second direction to explore is to provide a more
seamless navigation experience when switching between
the overview visualization of the landscape that serves
as a substitute for the File-Open-dialog and the actual
visualization of a selected data source. For example,
it is conceivable to allow for zooming into regions of the
landscape visualization and as the zoomed-in nodes have
more screen space available, they are substituted by por-
tals in which they are visualized in more detail, similar to
the approach proposed by [19]. This way, the user would
not have to leave the visualization to switch to a different
dataset, but simply zoom-out to the topmost overview
of the entire data landscape and then zoom back into
a different dataset. This would effectively tie these two
levels of visualization closer together — something that
would be unthinkable with a mere File-Open-dialog.
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