
A Framework for Visual Data Mining of Structures

Hans-Jörg Schulz Thomas Nocke Heidrun Schumann

Department of Computer Science,
University of Rostock,

18051 Rostock, Germany,
Email: {hjschulz, nocke, schumann}@informatik.uni-rostock.de

Abstract

Visual data mining has been established to effectively
analyze large, complex numerical data sets. Espe-
cially, the extraction and visualization of inherent
structures such as hierarchies and networks has made
a significant leap forward. However, it is still a chal-
lenging task for users to explore explicitly given large
structures. In this paper, we approach this task by
tightly coupling visualization and graph-theoretical
methods. Therefore, we investigate if and how visu-
alization can benefit from common graph-theoretical
methods – mainly developed for the investigation of
social networks – and vice versa. To accomplish this
close integration, we introduce a design of a general
framework for visual data mining of complex struc-
tures. Especially, this design includes an appropriate
processing order of different mining and visualization
algorithms and their mining results. Furthermore, we
discuss some important implementation details of our
framework to ensure fast structure processing. Fi-
nally, we examine the applicability of the framework
for a large real-world data set.

1 Introduction

Visual data mining (VDM) has been proven to be
an effective method to explore large data sets. It
combines automated mining algorithms with visual-
ization techniques. A variety of powerful methods
and tools (e.g. the InfoVis (Fequete 2004) and the
Prefuse (Heer, Card & Landay 2005) Toolkit and
the systems Polaris (Stolte, Tang & Hanrahan 2002),
Spotfire (Ahlberg 1996) or Visage (Roth, Lucas,
Senn, Gomberg, Burks, Stroffolino, Kolojejchick &
Dunmire 1996)) have been developed in the last few
years. These tools combine linked views on the data
with a high amount of interactivity, enabling users to
switch quickly between automated and visual meth-
ods. Therefore, they integrate mining methods to ex-
plore numerical data from a variety of research areas,
for instance AI, statistics and KDD. These methods
can extract structures that are inherent in the data
(e.g. hierarchical clustering). Furthermore, a number
of visualization methods have been developed and in-
tegrated to visualize such abstract data as well as
structures, gathered by the VDM process or already
given with the data set. Examples for such structures
are web link graphs and chemical molecule bonds.
Another prominent example for such structures are

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at Twenty-Ninth Australasian Computer Science
Conference (ACSC2006), Hobart, Tasmania, Australia, Jan-
uary 2006. Conferences in Research and Practice in Informa-
tion Technology, Vol. 48. Vladimir Estivill-Castro and Gill
Dobbie, Ed. Reproduction for academic, not-for profit pur-
poses permitted provided this text is included.

social networks that apply methods to analyze social
structures, i.e. to identify central nodes that can be
understood as essential for the entire data set.

In this paper we want to discuss the question, if
and how calculation methods from graph theory can
be employed to essentially enrich VDM tools to ex-
plore structures. Our intention is to design a uniform
framework that integrates a variety of well-known
graph-theoretical and visualization methods for struc-
tures. For this purpose, dependencies of such meth-
ods have to be considered to design an appropriate
control flow.

Up to now, the integration of graph-theoretical
methods into VDM environments has not been in the
research focus. A main reason for this is the high
complexity of these algorithms that does not allow
an interactive linking and brushing in VDM environ-
ments. To achieve this goal, special effort needs to be
done.

Ankerst classifies current visual data mining ap-
proaches into three categories (Ankerst 2001). Meth-
ods in the first group apply visualization techniques
independent of data mining algorithms. The second
group uses visualization in order to represent patterns
and results from mining algorithms graphically. The
third category tightly integrates mining and visual-
ization algorithms in such a way that intermediate
steps of the mining algorithms can be visualized. In
our approach we focus at the second level, separating
the mining process into two parts:

1. execute time-consuming (automatic) algorithms
and store their results, and then

2. enable users to do an interactive exploration
of the structures in real-time, combining differ-
ent visualization and less time-consuming graph-
theoretical measures.

Although separating the time consuming execu-
tion of certain algorithms from the VDM process, per-
formance issues are still of high relevance. Thus, ef-
ficient data structures and access mechanisms - man-
aging both graphs and trees - are of high benefit for
the interactive VDM (see e.g. (Fequete 2004)). In
our framework implementation, we developed mecha-
nisms that allows efficient storage of both structures
and structural measures and algorithm results.

The paper is organized as follows: first we outline
the background of graph-theoretical algorithms, vi-
sualization methods for structures and inspiring ap-
plication areas (section 2). Afterwards, we discuss
graph-theoretical methods suited for VDM, which es-
pecially includes their interaction with visualization
techniques in section 3. Then, in section 4, we in-
troduce our framework for VDM of structures. This
includes the development of a general design and
the discussion of internal data structures and their
performance for different graph theoretical measures
and algorithms. Afterwards, we discuss challenges of

our approach and demonstrate its application to real-
world data sets in section 5. Finally, we conclude the
paper and discuss future work in section 6.

2 Background

On the one hand, in the last few years visual-
ization of large structures, especially of trees and
graphs, has been remarkably improved. Visualiza-
tion techniques enable users to interactively explore
complex structural relationships between the infor-
mation objects. Well-known examples for hierarchy
representations are (Lamping, Rao & Pirolli 1995),
(Robertson, Mackinlay & Card 1991), (Shneiderman
1992), (Granitzer, Kienreich, Sabol, Andrews &
Klieber 2004) and for networks examples are (Tollis,
Eades & di Battista 1999) and (Brandes & Corman
2002).

A major challenge in this context is an intu-
itive navigation through large data sets to quickly
find interesting patterns while preserving orientation.
Therefore, focus+context techniques on structures
have been developed (see e.g. (Gansner, Koren &
North 2004), (van Ham & van Wijk 2004)).

A further challenge is the amount of data to be
processed. Methods to explore and visualize huge
structures that do not even fit in memory have been
developed (e.g. (Abello, Finocchi & Korn 2001),
(Abello & van Ham 2004)). Here, to ensure inter-
active data exploration, mechanisms that decide to
precompute long-lasting algorithms needed to be de-
veloped.

On the other hand, there is a variety of auto-
matic methods introduced by graph theory to explore
structures. General work has been done to determine
the complexity of graph-theoretical algorithms and to
estimate their efficiency and effectivity for practical
data sets (e.g. (Valiente 2002)). Furthermore, these
methods have been applied and refined for practical
application fields, such as social sciences (e.g. to de-
tect community structures within social and biologi-
cal networks (Girvan & Newman 2002)) and biotech-
nology (e.g. the usage of generalized interval graphs
to solve the physical mapping problem that occurs
when sequencing fragments of DNA (Zhang 1994)).

Moreover, there are a few approaches to apply
graph-theoretical measures to parameterize visualiza-
tion and vice versa. For instance, van Ham and van
Wijk (van Ham & van Wijk 2004) use hierarchical
clustering on graphs and represent nodes in the fo-
cus in another hierarchy level than nodes in the con-
text. Other examples are (Abello & van Ham 2004),
(Frischman & Tal 2004) and (Gansner et al. 2004).

However, a systematic approach that integrates
measures and algorithms of graph theory with inter-
active visualization methods is still missing. In fact,
this can be very helpful to support VDM of struc-
tures, for instance to select and parameterize tree and
graph visualization by graph measures. Therefore,
nodes of high connectivity or of other specific values
of interest can be laid out into the focus. Moreover,
a tree visualization technique resp. a graph visualiza-
tion technique can be chosen to represent a structure
in dependency of its similarity to a tree. If there
are only a few edges to be deleted from a graph to
form a tree, a tree visualization technique can be a
good choice to visualize this graph, representing the
non-tree edges in another way (see figure 1 right and
(Fekete, Wang, Dang, Aris & Plaisant 2003)). If, on
the other hand, the graph is less similar to a tree,
tree visualization techniques are not appropriate (see
figure 1 left), and a default graph-drawing technique
is the better choice.

Figure 1: Networks represented by the tree visual-
ization technique MagicEyeView (Kreuseler & Schu-
mann 2002) with a large (left) and a small (right)
number of non-tree edges [images taken from (Voigt
2001)].

3 Algorithmic mining techniques for complex
structures

Even though the visualization is a powerful and im-
portant part within the concept of VDM, each visu-
alization technique has its limits on how much data
it can possibly display. This most critical problem
occurs rather often when analyzing real-world data,
but it can be overcome to some extent by appro-
priate information-hiding, brushing or focus+context
techniques embedded within the visualization used.
To parameterize those techniques, further informa-
tion about the given data set can be computed by a
thorough algorithmic pre-processing:

- irrelevant data, like statistical outliers that can
be hidden

- somehow ”important” data that needs to be em-
phasized

- bits of data that are very similar and can be clus-
tered

The field of graph theory already provides a wide vari-
ety of such mining techniques (i.e. finding maximum
cliques, shortest paths or calculating modular decom-
positions). Different domains, like the theory of so-
cial networks, the so-called web structure mining that
is used by search engines throughout the WWW or
the bio-chemical analysis of protein structures, supply
further methods for analyzing large amounts of struc-
tured data. Roughly, these methods can be divided
in three categories which can be subtle interrelated or
simply used one by one if needed:

- structural measures that capture important at-
tributes of the graph (the list in section 3.1 is
based upon an overview given in (Brandes &
Wagner 2003)),

- clustering algorithms to decompose large struc-
tures,

- methods for graph matching to identify and lo-
cate substructures of interest.

Additionally to these three categories, efficient ap-
proaches to automatically preselect well-fitting meth-
ods can help to maintain a comprehensive overview
about the huge number of applicable graph algo-
rithms (section 3.4).

3.1 Structural measures

Structural measures can be computed locally (sepa-
rately for each node) or globally (for an entire graph
or subgraph). Local measures of interest are i.e. the

following centrality measures, which can be under-
stood as an index of how ”important” a node is (The
examples after the formal description of each measure
refer to figure 2):

- The node degree, that returns the number of
incident edges for a node v (i.e. deg(c) = 3).

- The size of the k-neighborhood |Nk(v)|, that
equals the number of nodes within distance ≤ k
from a given node v (i.e. |N1(c)| = 3, |N2(c)| =
5, |N3(c)| = 6).

- The summed up lengths of all shortest paths from
a node v to every other node yield the closeness
of that node
(i.e. cls(c) = 1 + 1 + 1 + 2 + 2 + 3 = 10).

- The maximum length of all shortest paths from
a node v to every other node equals its eccen-
tricity
(i.e. ecc(c) = max(1, 1, 1, 2, 2, 3) = 3).

- The node betweenness centrality of a node
v, which is defined as the number of all shortest
paths that pass through v (i.e. for c: 4 from a
and b, 2 from d, e, f and g, that sums up to 16).

b

c

d

e

f

ga

Figure 2: An example graph G(V,E).

The following similarity measures on the other hand
can be used for graph clustering or within the lay-
out algorithm to position comparable nodes closer to-
gether:

- The connectivity of the nodes u and v is the
minimum number of edges that have to be re-
moved from the graph in order to separate both
nodes in a way that no path between them exists
(i.e. conn(a, b) = 2).

- The dependency of node u from node v returns
the number of shortest paths originating in u
and passing through v (i.e. dep(c, d) = 3 and
dep(d, c) = 2).

Since different concepts of centrality and similar-
ity stand behind those measures, their outcome of-
ten differs in many ways, as can be seen when
comparing connectivity (a symmetric measure, since
conn(u, v) = conn(v, u)) with dependency (usually
asymmetric, except for some graph classes like circles
or cliques). The user must be aware of these differ-
ences at all times and should choose the most suitable
and expressive measure to model his special goal of
analysis.

While these local measures are available only for
single nodes, the more general global measures give
an overall view of the structure. The simplest form
of a global measure is of course the average of a lo-
cal measures (i.e. the average node degree) that can
easily be computed. Other global measures are:

- The diameter diam(G) of a graph G(V, E),
which equals the largest eccentricity value, or the
radius, which equals the smallest eccentricity
value. (i.e. diam(G) = 4, rad(G) = ecc(d) = 2)

- The compactness or density of a graph that
provides information about how many of all pos-
sible edges are actually present. (i.e. G got 7 out
of 21 possible edges)

- A treelikeness-value can be computed to ob-
tain a measure for structural resemblance with
a tree (a graph without any induced circles).
Among many existent treelikeness measures, we
introduce an adaption of this term that is opti-
mized for the use within the visualization pro-
cess: a graph is called (p, k)-treelike, if it has
no more than k cross-edges and the fraction of
cross-edges with respect to all edges is less than
the percentage p.

Such global measures can be very useful for the de-
termination of an appropriate visualization method:
i.e. an underlying treelike structure with only a few
crossedges can be identified as such by its treelikeness-
value and hence laid out with a hybrid approach as
described in section 2. This approach generalizes the
ideas introduced in (Fekete et al. 2003), where a tree
visualization is extended in a similar way.

3.2 Graph clustering

Over the years different flavors of clustering have
been developed and evolved further. The cluster-
ing techniques that are most often used for the pur-
pose of VDM are the hierarchical clustering algo-
rithms. They do not only yield a clustering of a
desired granularity but also a way to explore the
data set via browsing the clustering’s dendrogram
(Herman, Marshall & Melançon 2000). Hierarchi-
cal clusterings can be computed either bottom-up by
combining similar elements (normalized-association-
method (Shi & Malik 1997), single- or average-
linkage-method,...) or top-down by separating el-
ements that differ (normalized-cut-method, edge-
betweenness-centrality-clustering,...). Hence for both
approaches, similarity or distance measures need to
be computed beforehand.

One way to circumvent this need is the use of
graph decompositions, which also results in a hi-
erarchical graph partition. They work directly on
the graph’s structure without any additional mea-
sures needed and can usually be computed in linear
time. Examples are: modular-decomposition, k-core-
decomposition (Batagelj, Mrvar & Zaveršnik 1999) or
decomposition through distance-k cliques (Edachery,
Sen & Brandenburg 1999).

3.3 Graph matching

The search for special structures within the data set
is a tedious task that is difficult to automate. Several
different kinds of graph matching can be used:

- The exact graph matching searches for a sub-
graph that is identical to a specified pattern
(Subgraph Isomorphism Problem)

- The inexact graph matching searches for a
subgraph that is as similar as possible to a spec-
ified pattern.

- The search for the largest given configuration,
i.e. the largest clique or the longest path.

- The detection of the most frequent subgraph of
given minimum size.

Since all of these matching problems are quite com-
plex from an algorithmic point of view, mostly heuris-
tic approaches are used to find approximate solutions
(Bunke 2000).

3.4 Semi-automated technique selection
through metadata

To achieve a certain mining goal, different algorithmic
methods can be applied. Usually some of them fit
a particular case better than others. To determine
suitable techniques, metadata describing the overall
structure can be used to derive helpful indications on
which method to employ.

An example would be the choice of fitting runtime-
efficient algorithms depending on the graph’s overall
structure. As already mentioned, many of the de-
scribed graph theoretical methods are painfully slow
due to their polynomial or even exponential runtime
complexity. An algorithm is usually considered to be
efficient on very large data sets, if its complexity is
subquadratic. The lack of efficient algorithms results
in intolerable high computation times and prevents
interactive techniques (time bottleneck). But in case
the data set fulfills certain structural constraints, ef-
ficient algorithms do exist for most of the above pre-
sented problems (graph matching, clustering, decom-
position, etc.) Since it is widely known that academic
worst-case-constructions occur rather seldom in real-
world-scenarios, some of the desired constraints are
virtually always fulfilled.

An example would be the sparseness of a graph,
which means that the number of edges is much less
than the possible number of edges within the graph.
Most graphs from different areas are sparse, e.g.:

- A biochemical molecule must be sparse, since ev-
ery atom can have only a small number of chem-
ical bonds.

- A social network is usually sparse, because a per-
son normally does not have some hundred ac-
quaintances.

- A large website rarely links from each hypertext
document to every other document, as well as
scientific papers do not cite every other paper in
their field and vice versa.

Therefore, algorithms can be optimized to take ad-
vantage of the sparseness and compute their re-
sults in less time. An example for such an op-
timized algorithm is the method to determine the
node-betweenness-centrality as described in (Brandes
2001). Another example is the k-core-clustering
(Batagelj et al. 1999) that decomposes the data set
within a linear timebound with respect to the number
of edges:

- In the worst case, the graph G(V, E) features all
of its possible edges |E| = |℘2(V)| = 1

2 · |V | ·
(|V | − 1) and has therefore a quadratic runtime
bound with respect to the number of nodes.

- In the average and more practical case, the graph
is usually sparse and contains only a small frac-
tion of its possible edges. So the runtime com-
plexity will be subquadratic (in terms of the size
of the node set) and thus acceptable.

Besides the already provided global structural
measures like density or treelikeness (see section 3.1),
other structural descriptors can be useful:

- Testing whether a directed graph is acyclic can
lead to very efficient algorithmic solutions to
many NP-complete graph problems that are hard
to solve on arbitrary graphs. This test runs in
linear time and tries to sort the data set topolog-
ically. If this succeeds, the resulting topological
ordering can be used as input for fast algorithms
that have been especially adapted for this case.

- Determining the data relationship (Bertin
1981) that gives an impression of how the overall
structure is organized: linear, circular, hierarchi-
cal, etc.

These descriptors can also be used to select and
parameterize an appropriate visualization technique
that can be especially suited to display exactly the
described kind of a structure. An example for this
method would be the graphs shown in figure 1: con-
trary to the right part of figure 1, the treelikeness-
value of the graph on the left side is obviously out of
the range and the MagicEyeView-technique actually
not applicable.

Additionally, certain graph classes can even be vi-
sualized in very special manners. For instance, if a
graph is detected to be an interval graph, it can be dis-
played as an intersection model consisting of intervals
on a straight line. To view a graph as such an inter-
section model is quite common in genetic engineering
and computational biology. Furthermore many algo-
rithmic problems can be efficiently solved on interval
graphs. Hence a set of detection-procedures for cer-
tain graph classes of interest could further yield useful
hints for the choice of a well-suited visualization and
speed up the mining process if tailor-made implemen-
tations for the detected graph class are provided.

4 A general framework for Visual Data Min-
ing in complex structures

4.1 Design criteria

Designing a visualization or VDM framework is a sen-
sible process. Many decisions made in early develop-
ment stages are complicated to redo. Furthermore,
a variety of backgrounds with varying data sets and
tasks require varying software architectures. In the
following, we list five main design criteria for a VDM
framework for structures:

- Generality

– Adaptability to different application
backgrounds (e.g. social networks, or-
ganic chemistry),

– Scalability to various users with varying
background knowledge,

– Modular design allowing to plug in any
kind of visualization techniques and mining
operators on structures

- Flexibility

– Flexible control mechanisms to select,
connect and parameterize measures, min-
ing algorithms and visualization techniques
on structures (e.g. using scripts, or interac-
tively using menus or data flow charts),

– Visual queries with a direct visual feed-
back,

– Support to derive additional data to
gain a deeper insight into data features (e.g.
by extracting relevant substructures)

- Usability

– Data abstraction to get easy access to dif-
ferent kinds of structure data sources inde-
pendent of their internal and external stor-
age format,

– Acceptable reply times of calculations
(approximation techniques might need to be
considered in case of unfavorable runtime
complexities or a low upper time bound
given by the user),

– Intuitive means of interacting with
even complex mining methods

- Efficiency
handle fairly large data sets and avoid screen,
storage space and temporal bottlenecks

– Memory Efficiency through smart data
structures as described in 4.3.

– Runtime Efficiency by decoupling the in-
teractive parts of the VDM-process from the
non-interactive ones as discussed in 4.2.

– Screen Efficiency to effectively apply the
whole screen space displaying large struc-
tures

- Task orientation
Can the user fulfill all tasks to gain the ex-
ploration target? This includes a variety of
paradigms, including the following:

– Focus+context
– Overview+detail
– Brushing
– History (especially Undo and Redo)
– Sorting and filtering
– Zooming.

However, it is not reasonable to design a VDM
framework that is applicable for all kinds of possi-
ble applications and tasks. Thus, we design a gen-
eral architecture for the VDM of structures that can
be easily extended by any measures and methods.
Therefore, in the following section, general modules
in the field of structure exploration and their process-
ing will be introduced in an abstract scheme. These
modules are containers for measures, visual and non-
visual mining methods as well as for units supporting
general tasks such as dynamic queries or history.

4.2 Conceptual foundation

In the following, we introduce our design of a VDM-
framework that consists of several different functional
modules:

- interfaces for user interaction before and after the
extensive mining operations,

- a preprocessing unit and a unit to compute struc-
tural descriptors,

- the algorithmic kernel that does the mining and
lays out the data for its graphical representation.

Thus it is possible to extract the complex algorithmic
kernel to do extensive calculations without the need
for user-input on different, eventually faster machines,
while the user interaction before and afterwards is
done within the framework itself. This is the only
way to efficiently process the needed graph theoretical
algorithms, since one cannot work around the funda-
mentals of complexity theory. A schematic overview
of the framework is depicted in figure 3, where the
several fragments are colored according to their func-
tion within the overall VDM-process. For its modular
design as required by the design criteria in section 4.1,
the fragments can be extended with different visual-
ization techniques and algorithmic modules, to realize
their function in detail. The fragments provide the
following functionality:

- During the initial interaction, the user speci-
fies additional properties of the structure that are
not explicitly included in the data set. Here the
user should also be able to roughly parametrize
upcoming algorithmic computations by setting
upper runtime bounds and the like.

Initial Interaction

Visuali−
zation

Clustering
&

Decom−
position

Result

Calculating
Descriptors

 Prepro−
cessing

Data−
base

Algorithmic Kernel

Substructure Extraction

Calculating Structural
Measures Interaction/

Post−
processing

Figure 3: Our general VDM-framework design.

- The preprocessing can be used for cleansing
and filtering the data.

- The calculation of descriptors tries to gather
enough metadata as discussed in section 3.4 en-
abling the user to determine fitting mining and
visualization techniques.

- The algorithmic kernel does the actual work
of calculating additional data, which is one of
the crucial features a VDM-framework must ful-
fill: computing measures (like those in section
3.1), extracting substructures, clustering or de-
composing the graph (see section 3.2) and finally
calculating a graphical layout for the resulting
data.

- The interaction on the gained graphical repre-
sentation is used for the actual visual exploration
of the data set. Here some post-processing can be
done to further manipulate and query the data
set interactively through the visualization and to
write back those changes to the data base.

For each of these computational steps, user defined
modules can be plugged into the framework and exe-
cuted in the given order. Usually, the VDM-process
based on this architecture starts off by determining
promising mining methods through analyzing the
automatically computed descriptors and taking the
user’s goals of analysis into account. Afterwards,
the chosen techniques will be employed upon the
data and their results will be stored for further
visual investigation later on. Depending on how
the results are structured, an appropriate visual-
ization technique is selected and used to generate
an interactive overview of the outcome that can be
graphically explored. As demanded by the design
criteria, a wide variety of navigational elements,
filtering and searching techniques can be provided
through a standardized user interface that applies
to all modules. Figure 4 shows a detailed view on
the framework with several representative modules
plugged-in to illustrate typical operations within the
different fragments. In detail, the modules shown
in figure 4 add the following functionalities to the
framework:

Modules for the initial interaction:
After starting-up the framework, these modules
provide a first possibility to augment the mining
process with additional information about the data,
the mining goals and any given constraint on the
mining process. For example by distinguishing
between undirected and directed graphs, the user

Text

Text

Digraph?

Context?

distance−k Clique Decomposition

k−Cores Decomposition

Edge Betweenness
Centrality Clustering

Average Linkage
Clustering

Single Linkage
Clustering

Centrality Measures:

Closeness,
Eccentricity,

Betweenness, etc.

Similiarity and
Distance Measures:

Connectivity,

Dependency, etc.

Global Structural Measures:

Density, Average Node Degree, etc.

Goals of
Analysis?12

3

6

9

Timeframe?

dag?

Shortest Path

Data Relationship?

(p,n) =...
tw(G) =...

Treelikeness?

Exact / Inexact
Graph Matching

Detecting Frequent
Subgraphs

Overview

Detail View

Content View

Navigation View

Database

X

Y

Z

Discovered Knowledge /
Resulting Image

?
?

? !
!

!

Selection / Visual Query

Overview
+

Detail

Zoom,
Pan and
Rotate

A

Focus+Context

Brushing

History: Undo / Redo

Yes No

Roll Back all
Changes?

Annotation
A

B

C

DE

Rearrangement

Data Scrubbing

?
?

?

Data Normalization

Data Selection

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

17

Figure 4: Our VDM-framework design with representative modules. Greyed out Modules have not yet been
implemented or their implementation has not yet been adapted to be used within the framework.

indirectly influences the choice of applicable algo-
rithms. Sometimes, this can also be deduced directly
from the context of the data set – i.e. link structures
in hypertext documents always form a digraph.
Additional information that affects the selection of
appropriate algorithms can contain upper runtime
limits to insure acceptable reply times or explicitly
stated goals of analysis (Nocke & Schumann 2004).
These modules directly fulfill the design criteria for
adaptability to different application backgrounds
and scalability to users with varying background
knowledge.

Modules for the preprocessing:
The modules presented in this fragment are respon-
sible for data cleansing from measuring errors such
as dangling ends in the set of edges. Furthermore,
in the preprocessing phase a data selection and edge
weight normalization can be performed etc. Trans-
formations like these allow to define a standardized,
abstract data format to work with, which is an
essential design criteria.

Modules for the processing of structural
measures:
In case of a digraph structure, this fragment could
test a graph for acyclicity, which might again trig-

ger additional goals of analysis and a selection of
especially optimized algorithms in the algorithmic
kernel. Furthermore all of the discussed measures in
section 3.1 can either be calculated here, or at least
be approximated if the exact calculation would be
too time consuming.

Modules for the algorithmic kernel:
The functionalities of most of the modules shown in
this fragment have already been addressed in section
3. Appropriate graph-algorithmic and visualization
modules are selected via the calculated measures
as described in 3.4. Since there usually does not
exist a single optimal graphical representation of
every aspect of the data, we propose a fourfold
approach in the style of the ideas on multiple views
in (Scharl 2002). The data set’s inherent structures
that have been computed beforehand are presented
in a navigational view, that makes them accessible
in a hierarchical manner. Once a region of interest
has been selected in the navigational view, the sub
structure associated with it will be shown in a content
view. Selecting a node, an edge or a substructure
within the content view will again trigger a detailed
graphical representation of those in the detail view.
To prevent loosing the orientation within the data set
while visually exploring it, a rather static overview

should be provided to aid at keeping the global
mental map of the structure. It is further possible
to use multiple instances of each view that utilize
different visualization techniques. This view-concept
ensures a simple and uniform way to explore the data
while using the available screen space most effectively.

Modules for the interaction and postpro-
cessing:
This fragment contains the usual interactions and
manipulations upon the visualized data set, which
enable the user to carry out common exploration
tasks as stated by the design criteria. This includes
interactive annotation to add supplementary com-
ments to the presented clusters and substructures
and a similar history concept to the one we have
developed and presented in (Kreuseler, Nocke &
Schumann 2004).

4.3 Implementation

The functional modules introduced in figure 4 have
been implemented in an interactive framework that
is based on C++ and the Qt-Library. White colored
modules are fully-integrated, and grey modules are
under development.

A major challenge developing this framework was
to implement an efficient storage concept for struc-
tures. In this context, a lot of different approaches
to store graphs have been discussed in literature. Be-
sides delegating storage issues to 3rd party products
like relational databases, in practice only three tech-
niques are widely used: adjacency matrices for
fairly small graphs, object-based data structures
for medium-sized graphs, that use objects for each
node and link them via pointers, and finally table-
based structures that contain the nodes and edges
along with their attributes in a simple linear order,
which is suited for large graphs. For its small mem-
ory overhead, most frameworks for processing large
graphs utilize the last approach. A popular exam-
ple is the Java-based implementation of such a lin-
ear storage for large graphs by the InfoVis ToolKit
(Fequete 2004) which extends the table-based ap-
proach with several additional features, like fields for
auxiliary metadata on each column and the abil-
ity of masking several nodes or edges within the list
by toggling certain selection-bits. Beside these, our
table-based data structure adds the following func-
tionality:

- Columns may contain permutations of the ta-
ble’s rows, i.e. a topological ordering or the se-
quence of a breadth-first-search. That allows to
store multiple orderings and eradicates the need
to shuffle around the table’s rows to sort them.

- Besides ordinary values, a cell of the table may
contain an entire list to efficiently store adja-
cency lists or even hypergraph structures
with a variable number of nodes per hyperedge
within the same data structure.

- Each column can exist as a placeholder only,
which will be filled in automatically when it is
used for the first time. This pushes file-reading
operations and computations as far back as pos-
sible and may save time and memory footprint
in an average use case.

To improve the speed of look-ups in huge lists, a sim-
ple caching layer is used which allows direct access
to the last couple of entries that where used. This
storage concept addresses mainly large and complex
structures that take up a lot of space in memory –
up to the point, where they just will not fit in there

anymore (memory bottleneck). It counters this case
through a layered set of predefined behaviors, from
which can be chosen automatically or interactively:

1. To push storage problems as far as possible, a
strong emphasize of the framework lies upon an
efficient storage of the data, that is painstaking
space-saving and still tries to maintain an accept-
able average access time. This is done by using
the before mentioned table-based approach that
can be augmented with supplementary data if
enough memory is available or if an algorithm
definitely needs it. Furthermore, the data set
can be split up in smaller subsets if the overall
structure has unconnected components that can
be computed separately.

2. In case the data still does not fit into the mem-
ory, unneeded attributes like edge weights or pre-
viously computed measures that are not vital to
run a specific algorithm, will not be loaded into
the memory unless the user explicitly says so
(placeholder columns).

3. If the memory’s sufficiency is of further concern,
all standard modules of the framework must be
exchangeable with external algorithms that are
especially optimized for this special case.

4. For those modules that do not provide a special
external version, a smart caching layer has to be
introduced to the frameworks I/O to minimize
memory swaps.

In most cases, the first layer that employs a de-
liberate usage of memory will be effective enough
to fit all data in. For larger data sets, the frame-
work has to utilize one of the latter layers until ev-
ery needed attribute can be accessed. Moreover, it
is imaginable to introduce additional intermediate
layers like certain garbage collection functionalities
or semi-external versions of frequently used modules
that make use of the situation where at least the
node set fits in the main memory. This would further
increase the chance to prevent the use of generally
slower external algorithms. Thus far, the first two
of the presented layers have been successfully imple-
mented.

4.4 Graphical user interface

Sometimes, when trying to visualize a set of data,
it turns out that the amount of data is just too
large to fit the output device, i.e. the data objects
that should be displayed outnumber the available pix-
els (screen bottleneck). To reduce the visual com-
plexity in order to circumvent this bottleneck, ad-
ditional time consuming clustering steps might thus
be needed. For the sole purpose of decreasing the
structural complexity through node-aggregation, we
propose the use of heuristics or graph decompositions
that have a linear runtime bound. Ideally this re-
duction produces a hierarchy that can be used to
filter the results interactively up to a desired level
of detail, like the mentioned k-core-clustering. Fig-
ure 5 presents yet another method to explore a po-
tentially overloaded and overdetailed graphical rep-
resentation. Since there is no visualization method,
that serves all demands equally well, different views
upon the data are generated as needed and function-
ally linked as described in section 4.2: The content
view is shown after the initial layout is calculated
by an appropriate visualization module (in depen-
dency of the treelikeness-value we use Fruchterman-
Reingold’s spring embedder method (Fruchterman &
Reingold 1991) for graphs and the MagicEyeView for

trees and treelike graphs) and provides several possi-
bilities of interaction: zoom, rotation, selection, filter-
ing, etc. The output can be interactively constrained
to only those nodes that have a certain centrality mea-
sure within the range defined by the sliders at the
right. An additional navigation view is based upon
the dendrogram of a hierarchical clustering. We used
a subsequent display of MagicEyeViews (Kreuseler
& Schumann 2002) to visualize the huge hierarchi-
cal structure of the dendrogram, where each selected
cluster can itself be a root-node within a newly gen-
erated subview. As an example for a detailed view,
figure 5 shows the distribution of the k-neighborhood
from section 3.1 for k = 1 . . . 5. By selecting a certain
neighborhood through this display, the content view
can be adapted to show it for exploratory analysis.

4.5 Summary

The proposed framework architecture has a modular,
extensible design. It has a general underlying data
structure, and thus, can handle various structures
from different backgrounds. Explicitly integrating
the application context and user goals makes it scal-
able to various users from different domains. It offers
both automatic and interactive mechanisms to con-
trol measures and techniques in the algorithmic ker-
nel, especially enabling users to specify queries visu-
ally (for instance to select substructures). It enables
users to specify, derive and apply additional data
(metadata) which can be used for the semi-automatic
selection of suitable algorithms, lead users through
the exploration process and increase the user knowl-
edge about the handled structures. Furthermore, the
architecture supports to handle large data sets by
smart data structures and by a control mechanism
for long-lasting resp. interactive processable calcula-
tions. Interactive visualization techniques have been
integrated, even applicable for large data sets. There-
fore, they apply focus+context, overview+detail and
brushing+linking paradigms and support interactive
sorting, filtering as well as navigational support.

5 Case study

We successfully applied our framework to a variety
of data sets. This included a web link graph of our
institute internet pages (51497 nodes, 425247 edges),
a citation network (509 nodes, 1551 edges) and peer-
to-peer-networks with a few hundred nodes. For this
paper, we demonstrate the usefulness of our frame-
work design and present interesting insights for the
medium sized Edinburgh Associative Thesaurus data
set (short EAT, see http://www.eat.rl.ac.uk). For the
following exemplary analysis, we present the explo-
ration process closely related to the flow of the design
chart from figure 4, giving details about the depicted
modules and the arrows interrelating them.

The EAT data set consists of an empirical set
of word associations (Kiss, Armstrong, Milroy &
Piper 1973). Therefore, a list of 8.210 very frequently
used English words (stimuli) has been compiled and
the associative responses from test persons were gath-
ered. Since the responses themselves are not neces-
sarily stimuli, we eliminated these dangling ends in
a data scrubbing preprocess (fig. 4, arrow 1). The
resulting graph contains of 8.210 nodes (the stimuli)
connected via 261.453 weighted edges.

Then, in an initial interaction step, context knowl-
edge about type and history of the data set leads to
the specification of the graph as a digraph (arrow 2).
Based on this knowledge, a variety of descriptors can
be calculated for the preprocessed digraph (arrows 3
and 4). This includes to calculate the treelikeliness

which is relevant for the later selection of an appro-
priate visualization (as described in section 3.1). The
actual (p, k)-treelikeness of the given data set results
to (3.1%, 253244), which means that 253244 edges
would have to be deleted in order to convert the net-
work into a tree — only 3.1% of all edges would re-
main to form the spanning tree.

Based on these calculations and specifications, we
started the main exploration phase in the algorith-
mic kernel (arrows 5, 6 and 7). First, important
global structural measures have been calculated. For
instance, to estimate the graph connectivity, we cal-
culated an average node degree of 31.85, which means
that each stimulus-word is associated with approxi-
mately 32 other stimuli-words. Based on this medium
average node degree and due to a low treelikeness
value we concluded that the EAT graph is a medium
connected network and not suited to be laid out with
a tree visualization technique. Hence, we chose a net-
work visualization as content view (arrow 8). There-
fore, to get a first overview of 8.210 nodes (arrow 7
and 9), we actually used a 3D-spring-embedder net-
work visualization technique (Fruchterman-Reingold
(Fruchterman & Reingold 1991)). This computation
lasted about an hour (on an Intel PentiumM 1.4GHz
machine with 512 MByte RAM), and thus, was exe-
cuted non-interactively within the algorithmic kernel.

Then, to get more details about certain nodes, the
user can zoom, pan and rotate the graph layout, as
well as select certain nodes (arrows 9 and 10). Fur-
thermore, to filter the crowded representation (ar-
row 9), we calculated the associative neighborhoods
of chosen words based on the structural measure 1-
neighborhood. Then, using the two sliders depicted
on the right side of figure 5, the user can fade out all
nodes that do not have a 1-neighborhood-size within
a certain range (arrows 8, 9 and 10). For instance, in
figure 5 we applied a 1-neighborhood-filter of 165 as
minimum and a value of 1106 neighbors as maximum.
Thus, the user can investigate a sparsely crowded
graph with the main associated stimuli, leaving out
all stimuli that are lesser associated. The maximum
value of 1106 belongs to the node of the word MAN,
which is the most associated word in this data set.
The next heavily associated words are GOOD and
SEX (ca. 870 associative links to other words).

Further, the user can get details-on-demand about
these selected nodes (fig. 4, arrows 9, 10 and 11),
displaying the k-neighborhood-diagram of a selected
node in a Detail View (arrows 8 and 9). This gave
us another interesting insight: most nodes lie within
a distance of 3 (see in the k-neighborhood-diagram
in fig. 5). This is a further proof for the observed
medium to high density of the graph and indicates
that there are no isolated substructures.

Then, to get a grip at this highly interrelated
graph, we clustered the graph hierarchically using
a k-core-decomposition. This computation lasted
a couple of minutes, and was also executed within
the algorithmic kernel. Using the resulting dendro-
gram, the user can explore the whole graph in an
overview+detail manner, focusing on certain hierar-
chy levels (fig. 4, arrows 8, 9 and 17). Therefore, in a
navigation view, certain levels of the hierarchy are dis-
played in a MagicEyeView (see fig. 5), and the user
can interactively focus on certain clusters and hierar-
chy leaves of interest, still keeping the context visible
(fig. 4, arrows 9 and 10). Furthermore, clusters of
interest can be selected in the MagicEyeView, to ex-
plore the subgraphs they induce within the content
view (arrows 9, 10 and 12). A brushing mechanism
displays these subgraphs. Examples for words that
have automatically been clustered together are:

- ITS, MUST HAVE, POSSESSIVE

Figure 5: An overview of the framework’s GUI: (1.) the content view showing a small part from a larger
data set, including a highlighted shortest path and a red colored, selected node; (2.) the navigational tree-
view [MagicEyeView (Kreuseler & Schumann 2002)] containing the browsable result of a hierarchical cluster
algorithm; (3.) the detailed view of the k-Neighborhood-distribution of the selected node from (1.) with its
1-Neighborhood being selected.

- CRUSHING, DESTRUCTIVE, DESTROYING

- ANTICIPATE, INSTRUCTIONS, AWAIT

Moreover, to establish interesting connections be-
tween two selected words, the user can interactively
select the words, and compute the shortest paths be-
tween them (arrows 9, 10 and 13). Then, this path
can be depicted and focused in the content view (see
fig. 5), showing a path between the words MIS-
TRUST and BEAUTIFULLY), keeping the rest of the
graph in the context applying alpha blending.

Summarizing, the user has a variety of possibili-
ties to interact with the provided modules. There-
fore, our framework delivers a variety of exploration
paths, to support various exploration contexts and
tasks. The user can refine the focus on the data
set and explore substructures (fig. 4, arrow 14), re-
fine exploration context (arrow 15), and then restart
the whole process. Thus, as an iterative process, the
framework supports alternative visual navigation and
mining paths to the desired result (arrow 16).

6 Conclusion and future work

In this paper, we investigated the tight integration of
methods from graph theory with visualization meth-
ods. Therefore, we introduced graph theoretical
methods and their applicability for a VDM of struc-
tures systematically. In particular, we described how
to apply these methods to design good visual rep-
resentations. Furthermore, we introduced a general,
modular and flexible design for a VDM framework for

structures, outlined its implementation details and
discussed its applicability based on a real-world ex-
ample.

We tested our framework with different data sets,
for instance a WWW-link-structure with 50.000+
web sites and approx. 425.000 links in between them.
The gained results where highly satisfying. Never-
theless, there are still challenges for future work. We
have to continue testing and evaluating the frame-
work’s usability and its scalability to even larger
structures. Additionally, more measures, algorithms
and visualization techniques need to be integrated.

Acknowledgements

The authors like to express their thanks to Prof. An-
dreas Brandstädt for helpful discussions as well as
Andreas Pohl and Clemens Nafe for testing, evalu-
ating and using the framework for their research on
peer-to-peer networks.

References

Abello, J., Finocchi, I. & Korn, J. (2001), Graph
Sketches, in ‘IEEE Symposium on Information
Visualization (InfoVis‘01), San Diego’, pp. 67–
72.

Abello, J. & van Ham, F. (2004), Matrix Zoom: A Vi-
sual Interface to Semi-external Graphs, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 183–190.

Ahlberg, C. (1996), ‘Spotfire: an information ex-
ploration environment’, SIGMOD Record (ACM
Special Interest Group on Management of Data)
25(4), 25–29.

Ankerst, M. (2001), Visual Data Mining with Pixel-
oriented Visualization Techniques, in ‘Proceed-
ings of ACM SIGKDD Workshop on Visual Data
Mining’01; San Francisco’.

Batagelj, V., Mrvar, A. & Zaveršnik, M. (1999),
Partitioning Approach to Visualization of large
Graphs, in ‘Proceedings of the 7th International
Graph Drawing Symposium’, number LNCS
1731, pp. 90–97.

Bertin, J. (1981), Graphics and Graphic Information-
Processing, Walter de Gruyter.

Brandes, U. (2001), ‘A Faster Algorithm for Between-
ness Centrality’, Journal of Mathematical Soci-
ology pp. 163–177.

Brandes, U. & Corman, S. (2002), Visual Unrolling of
Network Evolution and the Analysis of Dynamic
Discourse, in ‘IEEE Symposium on Information
Visualization (InfoVis‘02), Boston’, pp. 145–151.

Brandes, U. & Wagner, D. (2003), visone - Analysis
and Visualization of Social Networks, in ‘Graph
Drawing Software’, Springer, pp. 321–340.

Bunke, H. (2000), Graph matching: Theoretical foun-
dations, algorithms, and applications, in ‘Proc.
Vision Interface 2000, Montreal’, pp. 82–88.

Edachery, J., Sen, A. & Brandenburg, F. (1999),
Graph Clustering using Distance-k Cliques, in
‘Proceedings of the 7th International Graph
Drawing Symposium’, number LNCS 1731,
pp. 98–106.

Fekete, J.-D., Wang, D., Dang, N., Aris, A. &
Plaisant, C. (2003), Interactive Poster: Overlay-
ing Graph Links on Treemaps, in ‘IEEE Sympo-
sium on Information Visualization (InfoVis‘03),
Seattle’.

Fequete, J.-D. (2004), The InfoVis Toolkit, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 167–174.

Frischman, Y. & Tal, A. (2004), Dynamic Drawing
of Clustered Graphs, in ‘IEEE Symposium on
Information Visualization (InfoVis‘04), Austin’,
pp. 191–198.

Fruchterman, T. & Reingold, E. (1991), ‘Graph
drawing by force-directed placement’, Software
– Practice and Experience 21(11), 1129–1164.

Gansner, E., Koren, Y. & North, S. (2004), Topologi-
cal Fisheye Views for Visualizing Large Graphs,
in ‘IEEE Symposium on Information Visualiza-
tion (InfoVis‘04), Austin’, pp. 175–182.

Girvan, M. & Newman, M. (2002), ‘Community
structure in social and biological networks’,
PNAS 99(12), 7821–7826.

Granitzer, M., Kienreich, W., Sabol, V., Andrews,
K. & Klieber, W. (2004), Evaluating a Sys-
tem for Interactive Exploration of Large, Hier-
archically Structured Document Repositories, in
‘IEEE Symposium on Information Visualization
(InfoVis‘04), Austin’, pp. 127–133.

Heer, J., Card, S. K. & Landay, J. A. (2005), Prefuse:
a Toolkit for Interactive Information Visualiza-
tion, in ‘CHI 2005, Human Factors in Computing
Systems’.

Herman, I., Marshall, M. & Melançon, G. (2000), Au-
tomatic generation of interactive overview dia-
grams for the navigation of large graphs, Tech-
nical Report INS-0014, Reports of the Centre for
Mathematics and Computer Sciences.

Kiss, G., Armstrong, C., Milroy, R. & Piper, J.
(1973), An associative thesaurus of English and
its computer analysis, in ‘The Computer and Lit-
erary Studies’, Edinburgh University Press.

Kreuseler, M., Nocke, T. & Schumann, H. (2004), A
History Mechanism for Visual Data Mining, in
‘IEEE Symposium on Information Visualization
(InfoVis‘04), Austin’, pp. 49–56.

Kreuseler, M. & Schumann, H. (2002), ‘A Flexible
Approach for Visual Data Mining’, IEEE Trans-
actions on Visualization and Computer Graphics
8(1).

Lamping, J., Rao, R. & Pirolli, P. (1995), A fo-
cus+context technique based on hyperbolic ge-
ometry for viewing large hierarchies, in ‘ACM
Proceedings of Computer-Human Interaction
(CHI95); Denver, Colorado, USA’, pp. 401–408.

Nocke, T. & Schumann, H. (2004), Goals of Analysis
for Visualization and Visual Data Mining Tasks,
in ‘CODATA Workshop Information, Presenta-
tion and Design (March 2004), Prague’.

Robertson, G., Mackinlay, J. & Card, S. (1991), Cone
trees: Animated 3d visualization of hierarchical
information, in ‘ACM Proceedings of Computer-
Human Interaction (CHI‘91)’, pp. 189–194.

Roth, S. A., Lucas, P., Senn, J. A., Gomberg, C. C.,
Burks, M. B., Stroffolino, P. J., Kolojejchick,
J. A. & Dunmire, C. (1996), Visage: A User In-
terface Environment for Exploring Information,
in ‘IEEE Symposium on Information Visualiza-
tion (InfoVis‘96), San Francisco’, pp. 3–12.

Scharl, A. (2002), Adaptive Web Representation, in
‘Human Computer Interaction Development &
Management’, pp. 255–260.

Shi, J. & Malik, J. (1997), Normalized Cuts and Im-
age Segmentation, in ‘Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR’97)’, pp. 731–737.

Shneiderman, B. (1992), ‘Tree Visualization with
Treemaps: A 2D Space Filling Approach’, ACM
Transactions on Graphics 11(1), 92–99.

Stolte, C., Tang, D. & Hanrahan, P. (2002), ‘Polaris:
A system for query, analysis, and visualization
of multidimensional relational databases.’, IEEE
Trans. Vis. Comput. Graph. 8(1), 52–65.

Tollis, I., Eades, P. & di Battista, G. (1999), Graph
Drawing - Algorithms for the Visualization of
Graphs, Prentice Hall.

Valiente, G. (2002), Algorithms on Trees and Graphs,
Springer.

van Ham, F. & van Wijk, J. (2004), Interactive Vi-
sualization of Small World Graphs, in ‘IEEE
Symposium on Information Visualization (Info-
Vis‘04), Austin’, pp. 199–206.

Voigt, D. (2001), WWW-based Representation of
complex Information Structures (in German:
WWW-basierte Darstellung komplexer Informa-
tionsstrukturen), Master’s thesis, University of
Rostock, Department of Computer Science.

Zhang, P. (1994), Method of Mapping DNA Frag-
ments, United States Patent No. 5667970.

