
A Formal and Foundational Approach to Program Verification for Safety

and Security

Amin Timany

Aarhus University,

Aarhus, Denmark

Sep 20–22, 2022,

Summer School on Security Testing and Verification,

Leuven, Belgium

These slides: https://cs.au.dk/~timany/talks/leuvenss22

https://cs.au.dk/~timany/talks/leuvenss22
https://cs.au.dk/~timany/talks/leuvenss22

1

Introduction

It is important to make sure that critical software systems are safe and secure

Our approach: formal proof of safety and security properties of programs and PL’s

We use mathematical tools:

— Define the semantics (meaning) of programs, e.g., operational semantics

— State theorems about programs and PL’s in terms of their semantics, e.g., safety,
functional correctness, type safety, etc.

— Prove these properties using different tools and techniques

This is very similar to what other engineers do

— They build a mathematical model of the building/structure they are planning

— Analyze the model to make sure it is resilient against, e.g., earthquakes

2

Introduction

Program logics are important tools

— Based on mathematical logic

— Provide a formal framework for stating and proving properties of programs

— In this course: an overview of the Iris program logic and its applications

3

Programs’ semantics

In order to determine whether a program is correct/safe/secure we need to understand its meaning

(semantics).
1

We use small-step operational semantics:

— A mathematical relation→ describing individual steps of computation.

— We write→∗ for zero or more steps of computation

Formally, this is the reflexive transitive closure of→

Example:

2 + 3→ 5

(2 + 3 + 7) ∗ 2→∗ 24; in details: (2 + 3 + 7) ∗ 2→ (5 + 7) ∗ 2→ 12 ∗ 2→ 24

1
What we present here is slightly simplified. Semantics needs to also take into account the state of the machine, e.g.,

contents of memory.

4

Programs’ semantics

We distinguish a class of expressions called values:

— These are values we expect as the end result of computations

— Examples: numerals (2, 3, etc.), booleans, memory locations (references/pointers), functions,

etc.

— Non-examples: 2 + 3, “a” - 3, 4 “a”, ℓ [10], ! ℓ etc.

In this formalism we characterize errors (program crashing) as stuck programs:

— These are programs that are neither values nor can they take any step of computation

— Examples: “a” - 3 (treating a string as a number), 4 “a” (treating a number as a function), etc.

— How about ℓ [10] and ! ℓ? Are these programs stuck?

It depends on the contents of the memory.

These programs could result in memory violations.

4

Programs’ semantics

We distinguish a class of expressions called values:

— These are values we expect as the end result of computations

— Examples: numerals (2, 3, etc.), booleans, memory locations (references/pointers), functions,

etc.

— Non-examples: 2 + 3, “a” - 3, 4 “a”, ℓ [10], ! ℓ etc.

In this formalism we characterize errors (program crashing) as stuck programs:

— These are programs that are neither values nor can they take any step of computation

— Examples: “a” - 3 (treating a string as a number), 4 “a” (treating a number as a function), etc.

— How about ℓ [10] and ! ℓ? Are these programs stuck?

It depends on the contents of the memory.

These programs could result in memory violations.

5

Some Interesting Properties

Safety: program does not crash

Safe(e) ≜ ∀e′. e→∗ e′ ⇒ Val(e′) ∨ ∃e′′. e′ → e′′

— Example: Safe(letrec f x = f x in f 4)
— Counterexample: ¬Safe(if “a” then 2 else 3)

Functional Correctness: safe, and upon termination postcondition holds

Correct𝜙 (e) ≜ Safe(e) ∧ ∀v. Val(v) ∧ e→∗ v ⇒ 𝜙 (v)

— Example: CorrectisEven(3 + 5)
Type safety: well-typed programs are safe

5

Some Interesting Properties

Safety: program does not crash

Safe(e) ≜ ∀e′. e→∗ e′ ⇒ Val(e′) ∨ ∃e′′. e′ → e′′

— Example: Safe(letrec f x = f x in f 4)
— Counterexample: ¬Safe(if “a” then 2 else 3)

Functional Correctness: safe, and upon termination postcondition holds

Correct𝜙 (e) ≜ Safe(e) ∧ ∀v. Val(v) ∧ e→∗ v ⇒ 𝜙 (v)

— Example: CorrectisEven(3 + 5)

Type safety: well-typed programs are safe

5

Some Interesting Properties

Safety: program does not crash

Safe(e) ≜ ∀e′. e→∗ e′ ⇒ Val(e′) ∨ ∃e′′. e′ → e′′

— Example: Safe(letrec f x = f x in f 4)
— Counterexample: ¬Safe(if “a” then 2 else 3)

Functional Correctness: safe, and upon termination postcondition holds

Correct𝜙 (e) ≜ Safe(e) ∧ ∀v. Val(v) ∧ e→∗ v ⇒ 𝜙 (v)

— Example: CorrectisEven(3 + 5)
Type safety: well-typed programs are safe

6

Is safety interesting?

Does safety, i.e., programs not crashing, have security implications?

Yes, many security vulnerabilities arise as safety (memory) violations, e.g., the infamous

Heardbleed bug.

An aside: there are other interesting properties that our methodology supports but are not covered

in this course, e.g., non-interference.

7

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number l

— The other side sends the first l characters of m back to signal that it is alive

A simplified version of implementation:

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

This is a memory violation and would have been

caught had the program been verified.

7

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number l

— The other side sends the first l characters of m back to signal that it is alive

A simplified version of implementation:

void answer__heartbeat(SSL *req, unsigned int l){
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

This is a memory violation and would have been

caught had the program been verified.

7

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number l

— The other side sends the first l characters of m back to signal that it is alive

A simplified version of implementation:

void answer__heartbeat(SSL *req, unsigned int l){
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

This is a memory violation and would have been

caught had the program been verified.

7

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number l

— The other side sends the first l characters of m back to signal that it is alive

A simplified version of implementation:

void answer__heartbeat(SSL *req, unsigned int l){
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

This is a memory violation and would have been

caught had the program been verified.

7

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number l

— The other side sends the first l characters of m back to signal that it is alive

A simplified version of implementation:

void answer__heartbeat(SSL *req, unsigned int l){
if(l > req->length){return;}
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

The fix

This is a memory violation and would have been

caught had the program been verified.

8

Challenges

We defined safety as a desirable property to prove about programs.

Question: How do we reason about safety of large programs based on a detailed

operational semantics?

— There are many details, especially when we consider concurrent and distributed systems

A foundational approach, i.e., based on first principles, in a proof assistant (Coq)

9

The Proof Assistant Coq

A proof assistant based on the Calculus of Inductive Constructions

— Coq is itself a programming language:

— Curry-Howard correspondence (types are theorems, programs are proofs)

— It has an interesting meta-theory called type theory

— Proofs written and checked against foundational mathematical principles:

— Coq only understands functions and the concept of induction

An example:

— Commutativity of addition for natural numbers

— Proof automation can help but still this demonstrates the level

of formality

Inductive day :=
| Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday.

About day.

About Friday.

Definition next_day (d : day) : day :=
 match d with
 | Monday => Tuesday
 | Tuesday => Wednesday
 | Wednesday => Thursday
 | Thursday => Friday
 | Friday => Saturday
 | Saturday => Sunday
 | Sunday => Monday
 end.

Eval compute in next_day Tuesday.
Eval compute in next_day (next_day Tuesday).

Theorem next_day_monday : next_day Monday = Tuesday.
Proof.
 reflexivity.
Qed.

Definition previous_day (d : day) : day :=
 match d with
 | Monday => Sunday
 | Tuesday => Monday
 | Wednesday => Tuesday
 | Thursday => Wednesday
 | Friday => Thursday
 | Saturday => Friday
 | Sunday => Saturday
 end.

Theorem previous_next_day : forall d, previous_day (next_day d) =
d.
Proof.
 intros d; destruct d; reflexivity.
Qed.

Fixpoint plus (n m : nat) : nat :=
match n with
| O => m
| S x => S (plus x m)
end.

Theorem S_plus_one n : S n = plus n 1.
Proof.
 induction n as [|x IHx].
 - simpl. reflexivity.
 - simpl. rewrite IHx. reflexivity.
Qed.

Print "+".

Theorem add_com n m : n + m = m + n.
Proof.
 revert m.
 induction n as [|n IHn].
 - intros m.
 simpl.
 induction m as [|m IHm].
 + simpl. trivial.
 + simpl. rewrite <- IHm. reflexivity.
 - intros m.
 induction m as [|m IHm].
 + simpl.
 rewrite IHn. simpl. reflexivity.
 + simpl.
 rewrite IHn.
 simpl.
 rewrite <- IHm.
 simpl.
 rewrite IHn.
 reflexivity.
Qed.

Theorem add_com' n m : n + m = m + n.
Proof.
 revert m.
 induction n; induction m; auto.
 simpl; rewrite IHn; simpl; rewrite <- IHm; simpl; auto.
Qed.

Require Import Coq.micromega.Lia.

Theorem add_com'' n m : n + m = m + n.
Proof. lia. Qed.

Theorem thm : forall x y, x < y -> (x + y) - 2 * x < 2 * y.
Proof. lia. Qed.

Index

This page has been generated by coqdoc

05/04/2021, 15.51
Page 1 of 1

Proof assistants are the highest standard of rigor for mathematical proofs

10

The Proof Assistant Coq

We use Coq to reason about state-of-the-art programs and programming languages:

— We define the precise mathematical model (operational semantics) of program execution

— The level of details in these models necessitates the use of proof assistants and program logics

— We define program logics (the Iris framework) for these programs

— Use these to prove correctness of programs

11

Challenges

Question: How do we reason about safety of a large programs based on a detailed

operational semantics at this level of detail in Coq?

— Coq solves the problem of mathematical rigor

— Still, proofs in Coq are not easier than those on paper; they are in fact more detailed and

longer ...

— How do we manage the complexity of proofs?

Abstraction and Modularity

12

Abstraction and Modularity

Abstraction and modularity are important related concepts whereby we mean:

— Abstract reasoning: hiding details not relevant to the core of the problem at hand, e.g.
— individual steps of computation

— scheduler (in case of concurrency)

— the contents of the (entire) memory

— networking layer (in case of distributed systems)

— Modular reasoning: composing of proofs of separate modules to prove correctness of

composed modules, e.g.
— modular specs for libraries, e.g., abstract specs for ADT’s like stacks
— reasoning about different threads in isolation

— only considering a module’s memory footprint, i.e., parts the module might touch

— reasoning about different nodes in the network in isolation

Modularity is also important for robust safety as we will see.

Abstraction and modularity are things that a program logic gives us.

13

What is Iris?

A Framework for Higher-order Concurrent Separation Logics

Coq

Iris Base Logic Operational Semantics

Program Logic

Program Correctness→ : Built on top of

safety/functional correctness→ : Iris’s adequacy theorem

Custom Program Logic

: User-defined

Used e.g. in reasoning about:

– a Haskell-style ST monad (POPL’18)

– termination insensitive non-interference (POPL’21)

– termination sensitive non-interference (S&P’21)

13

What is Iris?

A Framework for Higher-order Concurrent Separation Logics

Coq

Iris Base Logic Operational Semantics

Program Logic

Program Correctness→ : Built on top of

safety/functional correctness→ : Iris’s adequacy theorem

Custom Program Logic

: User-defined

Used e.g. in reasoning about:

– a Haskell-style ST monad (POPL’18)

– termination insensitive non-interference (POPL’21)

– termination sensitive non-interference (S&P’21)

13

What is Iris?

A Framework for Higher-order Concurrent Separation Logics

Coq

Iris Base Logic Operational Semantics

Program Logic

Program Correctness→ : Built on top of

safety/functional correctness→ : Iris’s adequacy theorem

Custom Program Logic

: User-defined

Used e.g. in reasoning about:

– a Haskell-style ST monad (POPL’18)

– termination insensitive non-interference (POPL’21)

– termination sensitive non-interference (S&P’21)

14

Versatility of Iris

Iris has been used in many projects:

— Reasoning about session types

— Reasoning about capability machines (hardware language)

— Reasoning about non-interference (a security property)

— Reasoning about distributed systems

— Proving properties of gradual typing systems

— Reasoning about algebraic effect handlers

— Reasoning principles for weak memory

— Proving properties of DOT (core of Scala)

— Proving properties of the Rust programming language

— etc.

This versatility is due to Iris’s expressivity.

15

Iris Base Logic

A logic with features designed for defining program logics:

P ::= True | False | P ∨ P | P ∧ P | P → P | ∀x . P | ∃x . P | (higher-order logic)

P ∗ P | (separation logic)

a 𝛾 | |⇛P | (user-defined resources)

⊲ P | 𝜇r .P | (step indexing)

P (invariants)

Base logic inference rules:

Löb-ind

⊲ P ⊢ P
⊢ P

⊲-intro

P ⊢ ⊲ P

⊲-mono

P ⊢ Q
⊲ P ⊢ ⊲Q

∗-true
P ∗ True ⊣⊢ P

∗-elim-L
P ∗ Q ⊢ P

∗-elim-R
P ∗ Q ⊢ Q

∗-mono
P1 ⊢ P2 Q1 ⊢ Q2

P1 ∗ Q1 ⊢ P2 ∗ Q2

∗-comm
P ∗ Q ⊢ Q ∗ P

∗-assoc
(P ∗ Q) ∗ R ⊢ P ∗ (Q ∗ R)

∧-intro
P ⊢ Q P ⊢ R

P ⊢ Q ∧ R

⊢-refl
P ⊢ P

⊢-trans
P ⊢ Q Q ⊢ R

P ⊢ R

⊢-true
P ⊢ True

⊢-falso
False ⊢ P

∧-true
P ∧ True ⊣⊢ P

∧-elim-L
P ∧ Q ⊢ P

∧-elim-R
P ∧ Q ⊢ Q

∧-mono
P1 ⊢ P2 Q1 ⊢ Q2

P1 ∧ Q1 ⊢ P2 ∧ Q2

∧-comm
P ∧ Q ⊢ Q ∧ P

∧-assoc
(P ∧ Q) ∧ R ⊢ P ∧ (Q ∧ R)

∨-intro-L
P ⊢ Q

P ⊢ Q ∨ R

∨-intro-R
P ⊢ R

P ⊢ Q ∧ R

∨-false
P ∨ False ⊣⊢ P

∨-elim
P ⊢ R Q ⊢ R

P ∨ Q ⊢ R

∨-mono
P1 ⊢ P2 Q1 ⊢ Q2

P1 ∨ Q1 ⊢ P2 ∨ Q2

∨-comm
P ∨ Q ⊢ Q ∨ P

∨-assoc
(P ∨ Q) ∨ R ⊢ P ∨ (Q ∨ R)

16

Program Logic

A Hoare-style logic:

{P} e {x . Q}
precondition

program

binder for return value

postcondition

Examples: {n ≥ 0} fact n {x . x = n!} {True} letrec f x = f x in f 4 {x . False}

Theorem (Adequacy)

If we prove
⊢ {True} e {x . 𝜙 (x)}

in Iris for a suitable 𝜙 , then Correct𝜙 (e)

Proof rules for reasoning about programs:

Hoare-Frame

{P} e {x . Q}
{P ∗ R} e {x . Q ∗ R}

Hoare-Bind

{P} e {x . Q} ∀v. {Q[v/x]}K [v] {x . R}
{P}K [e] {x . R}

Hoare-Conseqence

{P} e {x . Q} P ′ ⊢ P ∀v. Q[v/x] ⊢ Q′ [v/x]
{P ′} e {x . Q′}

Hoare-rec

⊲ {P} e[(rec f x = e)/f] [v/x] {x . Q}
{P} (rec f x = e) v {x . Q}

Hoare-if-true

{P} e1 {x . Q}
{P} if true then e1 else e2 {x . Q}

Hoare-if-false

{P} e2 {x . Q}
{P} if false then e1 else e2 {x . Q}

Hoare-alloc

{True} ref(v) {x . ∃ℓ . x = ℓ ∗ ℓ ↦→ v}
Hoare-load

{ℓ ↦→ v} ! ℓ {x . x = v ∗ ℓ ↦→ v}
Hoare-store

{ℓ ↦→ v} ℓ ← w {x . x = () ∗ ℓ ↦→ w}
Hoare-faa

{ℓ ↦→ n} faa ℓ m {x . ℓ ↦→ (n +m)}

Hoare-par

{P1} e1 {x . Q1} {P2} e2 {x . Q2}
{P1 ∗ P2} e1∥e2 {x . ∃v1, v2. x = (v1, v2) ∗ Q1 [v1/x] ∗ Q2 [v2/x]}

Hoare-inv-alloc

{P ∗ R } e {x . Q}
{P ∗ R} e {x . Q}

Hoare-inv-open

{P ∗ R} e {x . Q ∗ R} e is atomic

{P ∗ R } e {x . Q}

16

Program Logic

A Hoare-style logic:

{P} e {x . Q}
precondition

program

binder for return value

postcondition

Examples: {n ≥ 0} fact n {x . x = n!} {True} letrec f x = f x in f 4 {x . False}

Theorem (Adequacy)

If we prove
⊢ {True} e {x . 𝜙 (x)}

in Iris for a suitable 𝜙 , then Correct𝜙 (e)

Proof rules for reasoning about programs:

Hoare-Frame

{P} e {x . Q}
{P ∗ R} e {x . Q ∗ R}

Hoare-Bind

{P} e {x . Q} ∀v. {Q[v/x]}K [v] {x . R}
{P}K [e] {x . R}

Hoare-Conseqence

{P} e {x . Q} P ′ ⊢ P ∀v. Q[v/x] ⊢ Q′ [v/x]
{P ′} e {x . Q′}

Hoare-rec

⊲ {P} e[(rec f x = e)/f] [v/x] {x . Q}
{P} (rec f x = e) v {x . Q}

Hoare-if-true

{P} e1 {x . Q}
{P} if true then e1 else e2 {x . Q}

Hoare-if-false

{P} e2 {x . Q}
{P} if false then e1 else e2 {x . Q}

Hoare-alloc

{True} ref(v) {x . ∃ℓ . x = ℓ ∗ ℓ ↦→ v}
Hoare-load

{ℓ ↦→ v} ! ℓ {x . x = v ∗ ℓ ↦→ v}
Hoare-store

{ℓ ↦→ v} ℓ ← w {x . x = () ∗ ℓ ↦→ w}
Hoare-faa

{ℓ ↦→ n} faa ℓ m {x . ℓ ↦→ (n +m)}

Hoare-par

{P1} e1 {x . Q1} {P2} e2 {x . Q2}
{P1 ∗ P2} e1∥e2 {x . ∃v1, v2. x = (v1, v2) ∗ Q1 [v1/x] ∗ Q2 [v2/x]}

Hoare-inv-alloc

{P ∗ R } e {x . Q}
{P ∗ R} e {x . Q}

Hoare-inv-open

{P ∗ R} e {x . Q ∗ R} e is atomic

{P ∗ R } e {x . Q}

16

Program Logic

A Hoare-style logic:

{P} e {x . Q}
precondition

program

binder for return value

postcondition

Examples: {n ≥ 0} fact n {x . x = n!} {True} letrec f x = f x in f 4 {x . False}

Theorem (Adequacy)

If we prove
⊢ {True} e {x . 𝜙 (x)}

in Iris for a suitable 𝜙 , then Correct𝜙 (e)

Proof rules for reasoning about programs:

Hoare-Frame

{P} e {x . Q}
{P ∗ R} e {x . Q ∗ R}

Hoare-Bind

{P} e {x . Q} ∀v. {Q[v/x]}K [v] {x . R}
{P}K [e] {x . R}

Hoare-Conseqence

{P} e {x . Q} P ′ ⊢ P ∀v. Q[v/x] ⊢ Q′ [v/x]
{P ′} e {x . Q′}

Hoare-rec

⊲ {P} e[(rec f x = e)/f] [v/x] {x . Q}
{P} (rec f x = e) v {x . Q}

Hoare-if-true

{P} e1 {x . Q}
{P} if true then e1 else e2 {x . Q}

Hoare-if-false

{P} e2 {x . Q}
{P} if false then e1 else e2 {x . Q}

Hoare-alloc

{True} ref(v) {x . ∃ℓ . x = ℓ ∗ ℓ ↦→ v}
Hoare-load

{ℓ ↦→ v} ! ℓ {x . x = v ∗ ℓ ↦→ v}
Hoare-store

{ℓ ↦→ v} ℓ ← w {x . x = () ∗ ℓ ↦→ w}
Hoare-faa

{ℓ ↦→ n} faa ℓ m {x . ℓ ↦→ (n +m)}

Hoare-par

{P1} e1 {x . Q1} {P2} e2 {x . Q2}
{P1 ∗ P2} e1∥e2 {x . ∃v1, v2. x = (v1, v2) ∗ Q1 [v1/x] ∗ Q2 [v2/x]}

Hoare-inv-alloc

{P ∗ R } e {x . Q}
{P ∗ R} e {x . Q}

Hoare-inv-open

{P ∗ R} e {x . Q ∗ R} e is atomic

{P ∗ R } e {x . Q}

17

Expressivity: Higher-Order Logic

Specifying abstract data types:
2

∃isStack : Val→ list (Val→ Prop) → Prop.

{True} mk_stack() {s.isStack(s, [])}∧
∀s.∀Φ.∀Φs.{isStack(s,Φs) ∗ Φ(x)} push(x, s) {v.v = () ∧ isStack(s,Φ :: Φs)}∧
∀s.∀Φ.∀Φs.{isStack(s,Φ :: Φs)} pop(s) {v.Φ(v) ∗ isStack(s,Φs)}

Note the higher-order quantification of a predicate that takes a list of predicates

2
Taken verbatim from Iris lecture notes.

18

Expressivity: Separation Logic

Separating conjunction:

P ∗ Q
separating conjunction

P ∗ Q holds if P and Q hold for disjoint resources

Example: exclusive ownership of a memory location (points-to proposition)

ℓ ↦→ v ∗ ℓ ′ ↦→ v′ ⊢ ℓ ≠ ℓ ′

Hoare-alloc

{True} ref(v) {x . ∃ℓ . x = ℓ ∗ ℓ ↦→ v}
Hoare-load

{ℓ ↦→ v} ! ℓ {x . x = v ∗ ℓ ↦→ v}

Hoare-store

{ℓ ↦→ v} ℓ ← w {x . x = () ∗ ℓ ↦→ w}

19

Expressivity: Separation Logic

In separation logic a Hoare triple specifies footprint of the program.

Hence the frame and par rules:

Hoare-Frame

{P} e {x . Q}
{P ∗ R} e {x . Q ∗ R}

Hoare-par

{P1} e1 {x . Q1} {P2} e2 {x . Q2}
{P1 ∗ P2} e1∥e2 {x . ∃v1, v2. x = (v1, v2) ∗ Q1 [v1/x] ∗ Q2 [v2/x]}

Important for modular verification:

Verify modules working on separate parts of memory in isolation and combine proofs

What if two modules share memory?

We use invariants (and resources) to specify sharing protocols

20

Expressivity: User-Defined Resources

Users can introduce resources as partial commutative monoids (PCM’s)

a 𝛾 ∗ b 𝛾 ⊣⊢ a · b 𝛾

user-defined operationlogical equivalence

|⇛P holds if P holds after updating resources

update modality

Idea: for verifying stateful programs we need a stateful logic

21

Expressivity: Step-Indexing and Invariants

Iris invariants are impredicative:

P

P can be any proposition;

it may also include invariants

Step-indexing is necessary for impredicative invariants to avoid self-referential paradoxes

These features are necessary for defining logical relations models for programming languages with

advanced features

22

Expressivity: Step-Indexing and Invariants (Logical Relations)

Goal: we want to prove type safety (well-typed programs do not crash)

Using logical relations:

We prove by induction on typing derivation:

e : 𝜏 ⇒ LR𝜏 (e)

where

LR𝜏 (e) ⇒ Safe(e)

However, we cannot take LR𝜏 (e) to be Safe(e):

Safe(e1) ∧ Safe(e2) ⇏ Safe(e1 − e2)

Counter example: Safe(true) and Safe(3) but ¬Safe(true − 3)

23

Expressivity: Step-Indexing and Invariants (Logical Relations)

We should take LR𝜏 to be:

LR𝜏 (e) ≜ CorrectJ𝜏K(e)

where J𝜏K (v) means that v is a value of type 𝜏 .

Ideally, we should define this by induction on types:

JintK (v) ≜ v ∈ Z
J(𝜏1 × 𝜏2)K (v) ≜ ∃v1, v2.v = (v1, v2) ∧ J𝜏1K (v1) ∧ J𝜏2K (v2)
J𝜏1 → 𝜏2K (f) ≜ ∀v. {J𝜏1K (w)} f v {x . J𝜏2K (x)}

...

J𝜇X . 𝜏K (v) ≜ ∃w. v = fold (w) ∧ J𝜏KX Z⇒J𝜇X . 𝜏K (w)
Jref(𝜏)K (v) ≜ ∃ℓ . v = ℓ ∧ ℓ always stores a value of 𝜏

circular definition

how do we express this?

24

Expressivity: Step-Indexing and Invariants (Logical Relations)

We use Iris and define

LR𝜏 (e) ≜ {True} e {x . J𝜏K (x)}
We define J𝜏K (v) inductively as follows:

JintK (v) ≜ v ∈ Z
J(𝜏1 × 𝜏2)K (v) ≜ ∃v1, v2.v = (v1, v2) ∧ J𝜏1K (v1) ∧ J𝜏2K (v2)
J𝜏1 → 𝜏2K (f) ≜ ∀v. {J𝜏1K (w)} f v {x . J𝜏2K (x)}

...

J𝜇X . 𝜏K ≜ 𝜇r . 𝜆v. ∃w. v = fold (w) ∧ ⊲ J𝜏KX Z⇒r (w)
Jref(𝜏)K (v) ≜ ∃ℓ . v = ℓ ∧ ∃w. ℓ ↦→ w ∗ J𝜏K (w)

Iris’s guarded recursion

may include invariants

25

Expressivity: Step-Indexing and Invariants (Logical Relations)

JΞ ⊢ 𝛼KΔ (v, v′) ≜ Δ(𝛼) (v, v′)

JΞ ⊢ NKΔ (v, v′) ≜ v = v′ ∈ N

JΞ ⊢ 𝜏1 × 𝜏2KΔ (v, v′) ≜ ∃v1, v2, v′1, v′2. v = (v1, v2) ∧ v′ = (v′1, v′2)∧
JΞ ⊢ 𝜏1KΔ (v1, v′) ∧ JΞ ⊢ 𝜏2KΔ (v2, v′2)

JΞ ⊢ 𝜏1 → 𝜏2KΔ (v, v′) ≜ ∀w,w′ . □(JΞ ⊢ 𝜏1KΔ (w,w′) −∗ EJΞ ⊢ 𝜏2KΔ (v w, v′ w′))

JΞ ⊢ ∀𝛼. 𝜏KΔ (v, v′) ≜ ∀f . □(J𝛼,Ξ ⊢ 𝜏KΔ[𝛼 ↦→f] (v _, v′ _))

JΞ ⊢ 𝜇𝛼. 𝜏KΔ (v, v′) ≜ 𝜇f . ∃w,w′ . v = fold w ∧ v′ = fold w′∧
⊲J𝛼,Ξ ⊢ 𝜏KΔ[𝛼 ↦→f] (w,w′)

JΞ ⊢ ref(𝜏)KΔ (v, v′) ≜ ∃ℓ . v = ℓ ∧ v′ = ℓ ′∧

∃w,w′ . ℓ ↦→ w ∗ ℓ ′ ↦→ w′ ∗ JΞ ⊢ 𝜏KΔ (w,w′) N.ℓ

EJΞ ⊢ 𝜏KΔ (e, e′) ≜∀𝜌, j,K, {spec_inv(𝜌) ∗ j Z⇒ e′}
e

{v. ∃v′ . j Z⇒ v′ ∗ JΞ ⊢ 𝜏KΔ (v, v′)}

20 D. Dreyer et al.

HeapAtomn
def
= {(W,h1,h2) | W ∈ Worldn}

HeapReln
def
= {ψ ⊆ HeapAtomn | ∀(W,h1,h2) ∈ ψ. ∀W W. (W ,h1,h2) ∈ ψ}

Islandn
def
= {ι = (s,δ ,ϕ, ,H) | s ∈ State∧δ ⊆ State2 ∧ϕ ⊆ δ ∧δ ,ϕ reflexive∧

δ ,ϕ transitive∧ ⊆ State∧H ∈ State → HeapReln}
Worldn

def
= {W = (k,Σ1,Σ2,ω) | k < n∧∃m. ω ∈ Islandm

k }
ContAtomn[τ1,τ2]

def
= {(W,K1,K2) | W ∈ Worldn ∧W.Σ1; ·; K1 ÷τ1 ∧W.Σ2; ·; K2 ÷τ2}

TermAtomn[τ1,τ2]
def
= {(W,e1,e2) | W ∈ Worldn ∧W.Σ1; ·; e1 : τ1 ∧W.Σ2; ·; e2 : τ2}

HeapAtom[τ1,τ2]
def
= n HeapAtomn[τ1,τ2]

World
def
= n Worldn

ContAtom[τ1,τ2]
def
= n ContAtomn[τ1,τ2]

TermAtom[τ1,τ2]
def
= n TermAtomn[τ1,τ2]

ValRel[τ1,τ2]
def
= {r ⊆ TermAtomval[τ1,τ2] | ∀(W,v1,v2) ∈ r. ∀W W. (W ,v1,v2) ∈ r}

SomeValRel
def
= {R = (τ1,τ2,r) | r ∈ ValRel[τ1,τ2]}

(ι1, . . . , ιm) k
def
= (ι1 k, . . . , ιm k) H k

def
= λ s. H(s) k

(s,δ ,ϕ, ,H) k
def
= (s,δ ,ϕ, , H k) ψ k

def
= {(W,h1,h2) ∈ r | W.k < k}

(k+1,Σ1,Σ2,ω)
def
= (k,Σ1,Σ2, ω k)

r
def
= {(W,e1,e2) | W.k > 0 ⇒ (W,e1,e2) ∈ r}

(k ,Σ1,Σ2,ω) (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω ω k

(ι1, . . . , ιm) (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j ι j

(s ,δ ,ϕ , ,H) (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ δ

(k ,Σ1,Σ2,ω) pub (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω pub ω k

(ι1, . . . , ιm) pub (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j

pub ι j ∧
∀ j ∈ {m+1, . . . ,m }. safe(ι j)

(s ,δ ,ϕ , ,H) pub (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ ϕ

safe(W)
def
= ∀ι ∈W.ω. safe(ι) safe(ι) def

= ∀s . (ι .s,s) ∈ ι .ϕ ⇒ s /∈ ι .

consistent(W)
def
= ι ∈W.ω. ι .s ∈ ι .

ψ ⊗ψ def
= {(W,h1 h1,h2 h2) | (W,h1,h2) ∈ ψ ∧ (W,h1,h2) ∈ ψ }

(h1,h2) : W
def
= h1 : W.Σ1 h2 : W.Σ2 ∧ (W.k > 0 ⇒ (W,h1,h2) ∈ {ι .H(ι .s) | ι ∈W.ω})

Fig. 5. Worlds and auxiliary definitions.

it is defined on a particular set of “states of interest”—whether there is other junk

in the State space is irrelevant.

Based on the two transition relations (full and public), we define two notions

of future worlds (aka world extension). First, we say that W ′ extends W , written

W ′ � W , iff it contains the same islands as W (and possibly more), and for each

island in W , the new state s′ of that island in W ′—which is the only aspect of the

22 D. Dreyer et al.

V α ρ def
= ρ(α).r

V b ρ def
= {(W,v,v) ∈ TermAtom[b,b]}

V τ ×τ ρ def
= {(W, v1,v1 , v2,v2) ∈ TermAtom[ρ1(τ ×τ),ρ2(τ ×τ)] |

(W,v1,v2) ∈ V τ ρ ∧ (W,v1,v2) ∈ V τ ρ}
V τ → τ ρ def

= {(W,λx:τ1.e1,λx:τ2.e2) ∈ TermAtom[ρ1(τ → τ),ρ2(τ → τ)] |
∀W ,v1,v2. W W ∧ (W ,v1,v2) ∈ V τ ρ ⇒
(W ,e1[v1/x],e2[v2/x]) ∈ E τ ρ}

V ∀α.τ ρ def
= {(W,Λα.e1,Λα.e2) ∈ TermAtom[ρ1(∀α.τ),ρ2(∀α.τ)] |

∀W W. ∀(τ1,τ2,r) ∈ SomeValRel.
(W ,e1[τ1/α],e2[τ2/α]) ∈ E τ ρ,α (τ1,τ2,r)}

V ∃α.τ ρ def
= {(W,pack τ1,v1 as τ1,pack τ2,v2 as τ2) ∈ TermAtom[ρ1(∃α.τ),ρ2(∃α.τ)] |

∃r. (τ1,τ2,r) ∈ SomeValRel∧ (W,v1,v2) ∈ V τ ρ,α (τ1,τ2,r)}
V µα.τ ρ def

= {(W, rollτ1 v1, rollτ2 v2) ∈ TermAtom[ρ1(µα.τ),ρ2(µα.τ)] |
(W,v1,v2) ∈ V τ [µα.τ/α] ρ}

V ref τ ρ def
= {(W, l1, l2) ∈ TermAtom[ρ1(ref τ),ρ2(ref τ)] | ∃i. ∀W W.

(l1, l2) ∈ bij(W (i).s)∧∃ψ. W (i).H(W (i).s) =
ψ ⊗{(W ,{l1 v1},{l2 v2}) ∈ HeapAtom | (W ,v1,v2) ∈ V τ ρ}}

O
def
= {(W,e1,e2) | ∀h1,h2. (h1,h2) : W h1;e1

<W.k⇒ consistent(W) h2;e2

K τ ρ def
= {(W,K1,K2) ∈ ContAtom[ρ1(τ),ρ2(τ)] |

∀W ,v1,v2. W pub W ∧ (W ,v1,v2) ∈ V τ ρ ⇒ (W ,K1[v1],K2[v2]) ∈ O}

E τ ρ def
= {(W,e1,e2) ∈ TermAtom[ρ1(τ),ρ2(τ)] |

∀K1,K2. (W,K1,K2) ∈ K τ ρ ⇒ (W,K1[e1],K2[e2]) ∈ O}

G · ρ def
= {(W, /0) | W ∈ World}

G Γ,x:τ ρ def
= {(W,(γ ,x (v1,v2))) | (W,γ) ∈ G Γ ρ ∧ (W,v1,v2) ∈ V τ ρ}

D · def
= { /0}

D ∆,α def
= {ρ,α R | ρ ∈ D ∆ ∧R ∈ SomeValRel}

S · def
= World

Σ;∆;Γ e1 log e2 : τ def
= Σ;∆;Γ e1 : τ ∧Σ;∆;Γ e2 : τ ∧

∀W,ρ,γ . W ∈ S Σ ∧ρ ∈ D ∆ ∧ (W,γ) ∈ G Γ ρ ⇒
(W,ρ1γ1e1,ρ2γ2e2) ∈ E τ ρ

S Σ, l:τ def
= S Σ ∩{W ∈ World | (W, l, l) ∈ V ref τ /0}}

Fig. 6. A step-indexed biorthogonal Kripke logical relation for HOS.

Our formulation of V�ref τ�ρ is slightly different from ADR’s and a bit more

flexible—e.g., ours can be used to prove Bohr’s “local state release” example (Bohr,

2007) (see the technical appendix, Dreyer et al., 2012), whereas ADR’s cannot—

but this added flexibility does not affect any of our “headlining” examples from

Sections 3–6.

As explained in Section 4, the value relation is lifted to a term relation via

biorthogonality. Concretely, we define the continuation relation K�τ�ρ based on

V�τ�ρ, and then the term relation E�τ�ρ based on K�τ�ρ:

This approach to type safety is called semantic type safety

It has been used for reasoning about correctness of the Rust type system.

See Derek Dreyer’s POPL’18 keynote for more details.

26

Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:

let c = ref(0) in
(faa c 1∥faa c 2) ;
! c

atomic fetch and add operation

26

Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:

{True}
let c = ref(0) in
(faa c 1∥faa c 2) ;
! c

{x . x ≥ 0}

26

Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:

{True}
let c = ref(0) in
{c ↦→ 0}
{∃n. n ≥ 0 ∗ c ↦→ n }

©«
{∃n. n ≥ 0 ∗ c ↦→ n }
{∃n. n ≥ 0 ∗ c ↦→ n}

faa c 1

{x . ∃n. n ≥ 0 ∗ c ↦→ n}

{∃n. n ≥ 0 ∗ c ↦→ n }
{∃n. n ≥ 0 ∗ c ↦→ n}

faa c 2

{x . ∃n. n ≥ 0 ∗ c ↦→ n}

ª®®®®®¬
;

{∃n. n ≥ 0 ∗ c ↦→ n }
! c

{x . x ≥ 0}

27

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref(0) in
(faa c 1∥faa c 2) ;
! c

{x . x = 3}

27

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref(0) in
(faa c 1∥faa c 2) ;
! c

{x . x = 3}

With which invariant should we proceed?

∃n. n ≥ 0 ∗ c ↦→ n c ↦→ 3

Neither works. We need to be able to refer to the value outside the invariant!

27

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref(0) in
(faa c 1∥faa c 2) ;
! c

{x . x = 3}

We use user-defined resources to define the following:

Sum𝛾 Left𝛾 Right𝛾

Contr-alloc

⊢ |⇛∃𝛾 . Sum𝛾 (0) ∗ Left𝛾 (0) ∗ Right𝛾 (0)
Contr-sum

Sum𝛾 (n) ∗ Left𝛾 (m) ∗ Right𝛾 (k) ⊢ n = m + k

Contr-incr-left

Sum𝛾 (n) ∗ Left𝛾 (m) ⊢ |⇛Sum𝛾 (n + k) ∗ Left𝛾 (m + k)

Contr-incr-right

Sum𝛾 (n) ∗ Right𝛾 (m) ⊢ |⇛Sum𝛾 (n + k) ∗ Right𝛾 (m + k)

Sum of contributions contributions of

the left thread

contributions of

the right thread

27

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref(0) in
(faa c 1∥faa c 2) ;
! c

{x . x = 3}

27

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref(0) in
{c ↦→ 0}
{c ↦→ 0 ∗ Sum𝛾 (0) ∗ Left𝛾 (0) ∗ Right𝛾 (0)}
{∃n. c ↦→ n ∗ Sum𝛾 (n) ∗ Left𝛾 (0) ∗ Right𝛾 (0)}

©«
{∃n. c ↦→ n ∗ Sum𝛾 (n) ∗ Left𝛾 (0)}

faa c 1

{x . Left𝛾 (1)}

{∃n. c ↦→ n ∗ Sum𝛾 (n) ∗ Right𝛾 (0)}

faa c 2

{x . Right𝛾 (2)}

ª®®¬ ;
{∃n. c ↦→ n ∗ Sum𝛾 (n) ∗ Left𝛾 (1) ∗ Right𝛾 (2)}
! c

{x . x = 3}

28

Proofs and Iris Proof Mode

— I simplified the proofs that I just presented

— However, Iris features a Proof Mode (IPM)

— IPM makes program verification in Coq

very close to what I presented

— To the right: screenshot of the proofs

we just saw in Iris in Coq using IPM

29

Robust Safety

Our modular reasoning principles imply that we can combine programs that are proven,

e.g. the Hoare-par rule.

Question: What can we say about combining a proven correct program with an arbitrary,

adversarial program?

Important insight:

— We can express limitations of arbitrary programs in terms Iris propositions and Hoare triples.

— Modular reasoning: we can combine these Hoare triples with those of proven correct

programs.

— We obtain proofs about the result of linking a proven correct program with an arbitrary,

adversarial program.

30

Robust Safety

Notice: We consider arbitrary programs which may crash.

Hence, we use a weaker, non-progressive variant of Hoare triples which allow the program to get

stuck:

{P} e {x . Q}

Just like ordinary Hoare triples the non-progressive version also enforces invariants and does not

allow assertion (we will see) failures.

{P} e {x . Q} ⊢ {P} e {x . Q}

All the modular reasoning principles of ordinary Hoare triples, e.g., Hoare-frame, Hoare-par, etc.,
also hold for the non-progressive variant.

31

Robust Safety

Similar to Correct𝜙 we define NonProg𝜙 which

— does not guarantee progress (programs may get stuck)

— requires no assertion failures

— if the program terminates to a value v, 𝜙 (v) must hold

Theorem (Non-progressive Adequacy)

If we prove
⊢ {True} e {x . 𝜙 (x)}

in Iris for a suitable 𝜙 , then NonProg𝜙 (e)

32

Robust Safety, an Example

The following even_counter module returns two functions, one to read the value and one to

increment it by two.

even_counter ≜ let c = ref(0) in
let incr _ = faa c 2 in

let read _ = let x = ! c in assert(x % 2 = 0); x in

(incr, read)

Question: can we prove NonProgisEven(prog)?

prog = let (incr, read) = even_counter in adversary; read ()

where adversary is a program with no hard-coded locations or assertions.

Hint: the language does not support pointer arithmetic; the only way to get a pointer is if the

program allocates it or if it is passed to it from another part of the program.

32

Robust Safety, an Example

The following even_counter module returns two functions, one to read the value and one to

increment it by two.

even_counter ≜ let c = ref(0) in
let incr _ = faa c 2 in

let read _ = let x = ! c in assert(x % 2 = 0); x in

(incr, read)

Question: can we prove NonProgisEven(prog)?

prog = let (incr, read) = even_counter in adversary; read ()

where adversary is a program with no hard-coded locations or assertions.

Hint: the language does not support pointer arithmetic; the only way to get a pointer is if the

program allocates it or if it is passed to it from another part of the program.

33

Robust Safety, an Example

Question: is our assumption of no pointer arithmetic reasonable?

Yes, this property holds for our high-level programming language. Hence, we can indeed prove

NonProgisEven(prog) from the previous slide.

Question: But more realistically, programs can be linked to adversary programs written

in more low-level languages, e.g., directly in assembly. Surely, those can perform pointer

arithmetic.

Yes, however, some modern hardware architectures (still mostly in research labs) feature so-called

capabilities which essentially restrict pointer arithmetic which can be used to enable the guarantee

that we have assumed about pointers.

See our work on studying the assembly language capability machines in Iris for more details.

34

How Do We Prove Robust Safety?

Question: how do we prove NonProgisEven(prog)?

prog = let (incr, read) = even_counter in adversary; read ()

where adversary is a program with no hard-coded locations or assertions.

Modular Reasoning!

34

How Do We Prove Robust Safety?

Question: how do we prove NonProgisEven(prog)?

prog = let (incr, read) = even_counter in adversary; read ()

where adversary is a program with no hard-coded locations or assertions.

Modular Reasoning!

35

How Do We Prove Robust Safety?

We can easily show the following specs for even_counter:

{True}
even_counter

{x . ∃f , g. x = (f , g) ∧
(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}

The proof is very similar to the example before. We simply use an invariant that asserts the

location is always even.

If we somehow had a non-progressive Hoare triple for the adversary program, we could

just compose it with the spec above; because modularity!

36

Logical Relations for Establishing Robust Safety

We define a logical relations model for our language:

— We define relations capturing good values and good expressions

— Similar to the logical relations we saw before except relations are not indexed by types

— Our language has not typed

— Arbitrary adversarial programs may not be well-typed even if had types

— We show that all adversarial programs (no hard-coded locations or assertions) are good

37

Logical Relations for Establishing Robust Safety

We define the goodval and goodexp relations as follows:

goodexp (e) ≜ {True} e {x . goodval (x)}
where goodval (v) is inductively as follows:

3

goodval (n) ≜ True if n ∈ Z
goodval (b) ≜ True if b ∈ {true, false}
goodval (()) ≜ True

goodval (v1, v2) ≜ goodval (v1) ∧ goodval (v2)
goodval (rec f x = e) ≜ ∀v. {goodval (v)} (rec f x = e) v {x . goodval (x)}

...

goodval (ℓ) ≜ ∃v. ℓ ↦→ v ∗ goodval (v)

Question: why are these relations not trivial?

3
This time by induction on the form of values instead of types.

37

Logical Relations for Establishing Robust Safety

We define the goodval and goodexp relations as follows:

goodexp (e) ≜ {True} e {x . goodval (x)}
where goodval (v) is inductively as follows:

3

goodval (n) ≜ True if n ∈ Z
goodval (b) ≜ True if b ∈ {true, false}
goodval (()) ≜ True

goodval (v1, v2) ≜ goodval (v1) ∧ goodval (v2)
goodval (rec f x = e) ≜ ∀v. {goodval (v)} (rec f x = e) v {x . goodval (x)}

...

goodval (ℓ) ≜ ∃v. ℓ ↦→ v ∗ goodval (v)

Question: why are these relations not trivial?

3
This time by induction on the form of values instead of types.

38

Logical Relations for Establishing Robust Safety

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let #»vs be values which are all good.
The following holds:

goodexp (e[#»vs/ #»xs])

where #»xs are variables (as many as #»vs).

Proof.

By induction on e. □

39

Robust Safety, an Example (proof)

{True}
let (incr, read) = even_counter in

adversary;

read ()
{x . isEven(x)}

{True}
even_counter

{x . ∃f , g. x = (f , g) ∧
(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let #»vs be values which are all good.
The following holds:

goodexp (e[#»vs/ #»xs])

where #»xs are variables (as many as #»vs).

39

Robust Safety, an Example (proof)

{True}

{(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}
let (incr, read) = (f , g) in
adversary;

read ()
{x . isEven(x)}

{x . isEven(x)}

{True}
even_counter

{x . ∃f , g. x = (f , g) ∧
(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let #»vs be values which are all good.
The following holds:

goodexp (e[#»vs/ #»xs])

where #»xs are variables (as many as #»vs).

39

Robust Safety, an Example (proof)

{True}

{(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}
adversary [f , g/incr, read];
g ()

{x . isEven(x)}
{x . isEven(x)}

{True}
even_counter

{x . ∃f , g. x = (f , g) ∧
(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let #»vs be values which are all good.
The following holds:

goodexp (e[#»vs/ #»xs])

where #»xs are variables (as many as #»vs).

39

Robust Safety, an Example (proof)

{True}

{(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}
adversary [f , g/incr, read];{
(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})

}
g ()

{x . isEven(x)}
{x . isEven(x)}

{True}
even_counter

{x . ∃f , g. x = (f , g) ∧
(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let #»vs be values which are all good.
The following holds:

goodexp (e[#»vs/ #»xs])

where #»xs are variables (as many as #»vs).

39

Robust Safety, an Example (proof)

{True}

{(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}
adversary [f , g/incr, read];{
(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})

}
g ()

{x . isEven(x)}
{x . isEven(x)}

Hence, by applying the adequacy theorem for non-progressive Hoare triples, we get

NonProgisEven(let (incr, read) = even_counter in adversary; read ())
as required.

{True}
even_counter

{x . ∃f , g. x = (f , g) ∧
(∀v. {True} f v {y. y = ()}) ∧
(∀v. {True} g v {y. isEven(y)})}

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let #»vs be values which are all good.
The following holds:

goodexp (e[#»vs/ #»xs])

where #»xs are variables (as many as #»vs).

40

Online resources

I hope this talk has made you interested in

learning more about Iris, separation logic,

program verification, etc.

See http://iris-project.org

A Higher-Order Concurrent Separation Logic Framework,
implemented and verified in the Coq proof assistant

Coq Formalization Technical Reference (v4.0) Mailing List Chat

Learning Iris Events Publications PhD dissertations Other material

Iris is a framework that can be used for reasoning about safety of concurrent programs, as the logic in logical relations, to reason
about type-systems, data-abstraction etc. In case of questions, please contact us on the Iris Club list or in our chat room.

Learning Iris
Some useful resources designed to learn Iris and its Coq implementation:

The Iris lecture notes provide a tutorial style introduction to Iris, including a number of exercises (but most of it not in Coq).
The second half of Derek Dreyer's Semantics lecture notes gives an introduction to Iris, including exercises and a Coq
development.
The Iris Tutorial at POPL'21 contains a number of exercises to practice the Iris tactics in Coq. A video recording of the tutorial
talk is also available.
The Iris Tutorial at POPL'20 shows how to use Iris to build logical relations for establishing type safety.

A selection of papers that are suited to get started with Iris:

The Iris From The Ground Up paper contains an extensive description of the rules and the model of the Iris logic.
The Iris Proofmode paper (Section 3) contains a brief tutorial to the Iris tactics in Coq.
The Iris Proof Mode (IPM) / MoSeL and the HeapLang documentation provide a reference of the Iris tactics in Coq.

Events
2 May–6 May 2022: The Second Iris Workshop, Nijmegen, The Netherlands
18 January 2021: Tutorial on Iris at POPL, Virtual
20 January 2020: Tutorial on Proving Semantic Type Soundness in Iris at POPL, New Orleans, USA
28 October–1 November 2019: The First Iris Workshop, Aarhus, Denmark
8 January 2018: Tutorial on Iris at POPL, Los Angeles, USA

Publications
Below, we give an overview of the research that uses Iris one way or another.

Modular Verification of Op-Based CRDTs in Separation Logic
Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, Lars Birkedal
In OOPSLA 2022: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

[preprint] .pdf Coq development

Multiparty GV: Functional Multiparty Session Types with Certified Deadlock Freedom
Jules Jacobs, Stephanie Balzer, Robbert Krebbers
In ICFP 2022: ACM SIGPLAN International Conference on Functional Programming

.pdf Artifact

Later Credits: Resourceful Reasoning for the Later Modality ("Iris 4.0")
Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer
In ICFP 2022: ACM SIGPLAN International Conference on Functional Programming

.pdf Website (with Coq development) Artifact and appendix

Compass: Strong and Compositional Library Specifications in Relaxed Memory Separation Logic
Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, Derek Dreyer
In PLDI 2022: ACM SIGPLAN Conference on Programming Language Design and Implementation

.pdf Coq development website

RustHornBelt: A Semantic Foundation for Functional Verification of Rust Programs with Unsafe Code
Yusuke Matsushita, Xavier Denis, Jacques-Henri Jourdan, Derek Dreyer
In PLDI 2022: ACM SIGPLAN Conference on Programming Language Design and Implementation
Recipient of PLDI 2022 Distinguished Paper Award

.pdf Coq development Creusot development artifact errata

Diaframe: Automated Verification of Fine-Grained Concurrent Programs in Iris
Ike Mulder, Robbert Krebbers, Herman Geuvers
In PLDI 2022: ACM SIGPLAN Conference on Programming Language Design and Implementation

.pdf Coq development

Islaris: Verification of Machine Code Against Authoritative ISA Semantics

Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-Pharabod, Derek Dreyer, Deepak
Garg, Peter Sewell
In PLDI 2022: ACM SIGPLAN Conference on Programming Language Design and Implementation

.pdf Coq development

Le Temps des Cerises: Efficient Temporal Stack Safety on Capability Machines using Directed Capabilities
Aïna Linn Georges, Alix Trieu, Lars Birkedal
In OOPSLA 2022: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

[preprint] .pdf Coq development

Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic
Jonas Kastberg Hinrichsen, Jesper Bengtson, Robbert Krebbers
In LMCS 2022: Logical Methods in Computer Science

.pdf Coq development

Applying Formal Verification to Microkernel IPC at Meta
Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O'Hearn, Francesco Zappa Nardelli
In CPP 2022: ACM SIGPLAN International Conference on Certified Programs and Proofs

.pdf

Mechanized Verification of a Fine-Grained Concurrent Queue from Meta's Folly Library
Simon Friis Vindum, Dan Frumin, Lars Birkedal
In CPP 2022: ACM SIGPLAN International Conference on Certified Programs and Proofs

.pdf Coq development

Simuliris: A Separation Logic Framework for Verifying Concurrent Program Optimizations

Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung, Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, Derek
Dreyer
In POPL 2022: ACM SIGPLAN Symposium on Principles of Programming Languages
Recipient of POPL 2022 Distinguished Paper Award

.pdf Coq development Artifact and appendix

Connectivity Graphs: A Method for Proving Deadlock Freedom Based on Separation Logic
Jules Jacobs, Stephanie Balzer, Robbert Krebbers
In POPL 2022: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development

VIP: Verifying Real-World C Idioms with Integer-Pointer Casts
Rodolphe Lepigre, Michael Sammler, Kayvan Memarian, Robbert Krebbers, Derek Dreyer, Peter Sewell
In POPL 2022: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development Artifact and appendix Video

A Separation Logic for Heap Space under Garbage Collection
Jean-Marie Madiot, François Pottier
In POPL 2022: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development Artifact

Formal Verification of a Concurrent Bounded Queue in a Weak Memory Model
Glen Mével, Jacques-Henri Jourdan
In ICFP 2021: ACM SIGPLAN International Conference on Functional Programming

.pdf Coq development

GhostCell: Separating Permissions from Data in Rust
Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, Derek Dreyer
In ICFP 2021: ACM SIGPLAN International Conference on Functional Programming

.pdf website with Rust and Coq development

Theorems for Free from Separation Logic Specifications
Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svendsen, Nikos Tzevelekos
In ICFP 2021: ACM SIGPLAN International Conference on Functional Programming
Recipient of ICFP 2021 Distinguished Paper Award

.pdf Coq development video

ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained Concurrency and Logical Atomicity
Dan Frumin, Robbert Krebbers, Lars Birkedal
In LMCS 2021: Logical Methods in Computer Science

.pdf website Coq development

GoJournal: A Verified, Concurrent, Crash-Safe Journaling System
Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek, Nickolai Zeldovich
In OSDI 2021: USENIX Symposium on Operating System Design and Implementation

.pdf code Coq development

RefinedC: Automating the Foundational Verification of C Code with Refined Ownership Types
Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, Deepak Garg
In PLDI 2021: ACM SIGPLAN Conference on Programming Language Design and Implementation
Recipient of PLDI 2021 Distinguished Paper Award
Recipient of PLDI 2021 Distinguished Artifact Award

.pdf website Coq development Artifact and appendix

Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation Logic
Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, Lars Birkedal
In PLDI 2021: ACM SIGPLAN Conference on Programming Language Design and Implementation

.pdf website Coq development

Compositional Non-Interference for Fine-Grained Concurrent Programs
Dan Frumin, Robbert Krebbers, Lars Birkedal
In S&P 2021: IEEE Symposium on Security and Privacy

[preprint] .pdf Coq development

Safe Systems Programming in Rust
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, Derek Dreyer
In Communications of the ACM (CACM), April 2021

.pdf html + video

Efficient and Provable Local Capability Revocation using Uninitialized Capabilities

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique
Devriese, Lars Birkedal
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

[preprint] .pdf Coq formalization

Mechanized Logical Relations for Termination-Insensitive Noninterference
Simon Oddershede Gregersen, Johan Bay, Amin Timany, Lars Birkedal
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf technical appendix Coq formalization

Distributed Causal Memory: Modular Specification and Verification in Higher-Order Distributed Separation
Logic

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, Lars Birkedal
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf technical appendix Coq formalization

Fully Abstract from Static to Gradual
Koen Jacobs, Amin Timany, Dominique Devriese
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq formalization

A Separation Logic for Effect Handlers
Paulo Emílio de Vilhena, François Pottier
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

[preprint] .pdf Coq formalization

Contextual Refinement of the Michael-Scott Queue (Proof Pearl)
Simon Friis Vindum, Lars Birkedal
In CPP 2021: ACM SIGPLAN International Conference on Certified Programs and Proofs

.pdf

Reasoning about Monotonicity in Separation Logic
Amin Timany, Lars Birkedal
In CPP 2021: ACM SIGPLAN International Conference on Certified Programs and Proofs

[amended after publication] .pdf Coq development

Machine-Checked Semantic Session Typing
Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, Jesper Bengtson
In CPP 2021: ACM SIGPLAN International Conference on Certified Programs and Proofs
Recipient of CPP 2021 Distinguished Paper Award

.pdf Coq development

Cosmo: A Concurrent Separation Logic for Multicore OCaml
Glen Mével, Jacques-Henri Jourdan, François Pottier
In ICFP 2020: ACM SIGPLAN International Conference on Functional Programming

.pdf Web development

Scala Step-by-Step: Soundness for DOT with Step-Indexed Logical Relations in Iris
Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, Robbert Krebbers
In ICFP 2020: ACM SIGPLAN International Conference on Functional Programming

.pdf Coq development website

Verifying Concurrent Search Structure Templates
Siddharth Krishna, Nisarg Patel, Dennis Shasha, Thomas Wies
In PLDI 2020: ACM SIGPLAN Conference on Programming Language Design and Implementation

.pdf Coq development

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems
Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, Lars Birkedal
In ESOP 2020: European Symposium on Programming

.pdf technical appendix Coq development

RustBelt Meets Relaxed Memory
Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, Derek Dreyer
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf website

Spy Game: Verifying a Local Generic Solver in Iris
Paulo Emílio de Vilhena, François Pottier, Jacques-Henri Jourdan
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development

Actris: Session-Type Based Reasoning in Separation Logic
Jonas Kastberg Hinrichsen, Jesper Bengtson, Robbert Krebbers
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development

The Future is Ours: Prophecy Variables in Separation Logic
Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, Bart Jacobs
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf website video

The High-Level Benefits of Low-Level Sandboxing
Michael Sammler, Deepak Garg, Derek Dreyer, Tadeusz Litak
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development

Verifying Concurrent, Crash-Safe Systems with Perennial
Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, Nickolai Zeldovich
In SOSP 2019: ACM Symposium on Operating Systems Principles

.pdf Coq development

Mechanized Relational Verification of Concurrent Programs with Continuations
Amin Timany, Lars Birkedal
In ICFP 2019: ACM SIGPLAN International Conference on Functional Programming

.pdf Coq development

Semi-Automated Reasoning About Non-Determinism in C Expressions
Dan Frumin, Léon Gondelman, Robbert Krebbers
In ESOP 2019: European Symposium on Programming

.pdf Coq development website slides

Time Credits and Time Receipts in Iris
Glen Mével, Jacques-Henri Jourdan, François Pottier
In ESOP 2019: European Symposium on Programming

.pdf Coq development

Iron: Managing Obligations in Higher-Order Concurrent Separation Logic
Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, Lars Birkedal
In POPL 2019: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development website

A Separation Logic for Concurrent Randomized Programs
Joseph Tassarotti, Robert Harper
In POPL 2019: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development

Iris from the Ground Up: A Modular Foundation for Higher-Order Concurrent Separation Logic ("Iris 3.1")
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, Derek Dreyer
Journal of Functional Programming (JFP), Volume 28, e20, November 2018
This is a significantly revised and expanded synthesis of the Iris 2.0 and 3.0 papers.

.pdf technical appendix

MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur
Charguéraud, Derek Dreyer
In ICFP 2018: ACM SIGPLAN International Conference on Functional Programming

.pdf website

Mtac2: Typed Tactics for Backward Reasoning in Coq
Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, Derek Dreyer
In ICFP 2018: ACM SIGPLAN International Conference on Functional Programming
Section 5 contains a case study using the Iris Proof Mode.

.pdf website

ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency
Dan Frumin, Robbert Krebbers, Lars Birkedal
In LICS 2018: ACM/IEEE Symposium on Logic in Computer Science

.pdf website Coq development slides

RustBelt: Securing the Foundations of the Rust Programming Language
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, Derek Dreyer
In POPL 2018: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf website

A Logical Relation for Monadic Encapsulation of State: Proving contextual equivalences in the presence of
runST

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, Lars Birkedal
In POPL 2018: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf Coq development

On Models of Higher-Order Separation Logic
Aleš Bizjak, Lars Birkedal
In MFPS 2017: Mathematical Foundations of Programming Semantics

.pdf

Robust and Compositional Verification of Object Capability Patterns
David Swasey, Deepak Garg, Derek Dreyer
In OOPSLA 2017: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
Recipient of OOPSLA 2017 Distinguished Paper Award

[preprint] .pdf [long version] .pdf Coq development Coq development (VM)

Strong Logic for Weak Memory: Reasoning About Release-Acquire Consistency in Iris
Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, Viktor Vafeiadis
In ECOOP 2017: European Conference on Object-Oriented Programming
Recipient of ECOOP 2017 Distinguished Paper Award

.pdf website

A Higher-Order Logic for Concurrent Termination-Preserving Refinement
Joseph Tassarotti, Ralf Jung, Robert Harper
In ESOP 2017: European Symposium on Programming

.pdf website arXiv

The Essence of Higher-Order Concurrent Separation Logic ("Iris 3.0")
Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, Lars Birkedal
In ESOP 2017: European Symposium on Programming

.pdf technical appendix Coq development

Interactive Proofs in Higher-Order Concurrent Separation Logic ("Iris Proof Mode")
Robbert Krebbers, Amin Timany, Lars Birkedal
In POPL 2017: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf

A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic
Morten Krogh-Jespersen, Kasper Svendsen, Lars Birkedal
In POPL 2017: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf technical appendix

Higher-Order Ghost State ("Iris 2.0")
Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer
In ICFP 2016: ACM SIGPLAN International Conference on Functional Programming

.pdf technical appendix (1/2) technical appendix (2/2) Coq development talk on youtube slides

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning ("Iris 1.0")
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, Derek Dreyer
In POPL 2015: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

.pdf technical appendix (historic) Coq formalization publisher's site slides

PhD dissertations
Verifying a concurrent, crash-safe file system with sequential reasoning
Tej Chajed
Massachusetts Institute of Technology, May 2022

.pdf

Sessions and Separation
Jonas Kastberg Hinrichsen
IT University of Copenhagen, March 2021

.pdf

Concurrent Separation Logics for Safety, Refinement, and Security
Dan Frumin
Radboud University Nijmegen, March 2021

.pdf website

Understanding and Evolving the Rust Programming Language
Ralf Jung
MPI-SWS and Saarbrücken Graduate School of Computer Science, August 2020
Recipient of Honorable Mention for the ACM Doctoral Dissertation Award
Recipient of ACM SIGPLAN John C. Reynolds Doctoral Dissertation Award
Recipient of ETAPS Doctoral Dissertation Award
Recipient of Otto Hahn Medal

.pdf website

Compositional Abstractions for Verifying Concurrent Data Structures
Siddharth Krishna
New York University, September 2019

.pdf

Verifying Concurrent Randomized Algorithms
Joseph Tassarotti
Carnegie Mellon University, January 2019

.pdf

Towards Modular Reasoning for Stateful and Concurrent Programs
Morten Krogh-Jespersen
Aarhus University, September 2018

.pdf

Contributions in Programming Languages Theory
Amin Timany
KU Leuven, May 2018

.pdf

Other material
Draft papers:

Trillium: Unifying Refinement and Higher-Order Distributed Separation Logic
Amin Timany, Simon Oddershede Gregersen, Léo Stefanesco, Léon Gondelman, Abel Nieto, Lars Birkedal
Submitted for publication

[preprint] .pdf Coq development

Case studies, MSc theses, abstracts, talks:

Mechanized Reasoning about a Capability Machine
Aina Linn Georges, Alix Trieu, Lars Birkedal
Extended Abstract for talk at PRISC 2020: Principles of Secure Compilation

.pdf

Verifying a Concurrent Data-Structure from the Dartino Framework
Morten Krogh-Jespersen, Thomas Dinsdale-Young, Lars Birkedal

.pdf Coq development

Formalizing Concurrent Stacks With Helping: A Case Study In Iris
Daniel Gratzer, Mathias Høier, Aleš Bizjak, Lars Birkedal

.pdf Coq development

Verifying Hash Tables in Iris
Esben Glavind Clausen
Master's thesis at Aarhus University supervised by Lars Birkedal, June 2017

.pdf

Logical Relations in Iris
Amin Timany, Robbert Krebbers, Lars Birkedal
At CoqPL 2017: The Third International Workshop on Coq for Programming Languages, Paris, France

abstract Coq development

Unifying Worlds and Resources
Ralf Jung, Derek Dreyer
At HOPE 2015: 4th ACM SIGPLAN Workshop on Higher-Order Programming with Effects, Vancouver, Canada

talk on youtube slides

Main research groups involved

Grants
The Iris project has been supported by the following grants:

iris-project.org is maintained by Logic and Semantics group, Computer Science @ Aarhus University

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[1]

[1]

[2]

[3]

[4]

[5]

[6]

Logic and Semantics Group
Contact: Lars Birkedal

Foundations of Programming
Group

Contact: Derek Dreyer

Department of Software Science
Contact: Robbert Krebbers

ModuRes
Modular Reasoning about Concurrent Higher-Order

Imperative Programs

Grants from The Danish Council for Independent
Research, Sapere Aude: DFF–Advanced Grant 2013
(more Information)

RustBelt
Logical Foundations for the Future of Safe Systems

Programming

2015 ERC Consolidator Grant (more information)

07/09/2022, 21.52
Page 1 of 1

— Iris Tutorial material

— Iris related publications

— PhD theses that include Iris works

— Other manuscripts

See https://cs.au.dk/~timany/talks/leuvenss22/

— These slides

— Links to other resources

http://iris-project.org
https://cs.au.dk/~timany/talks/leuvenss22/

