A Formal and Foundational Approach to Program Verification for Safety
and Security

Amin Timany

Aarhus University,
Aarhus, Denmark

Sep 20-22, 2022,
Summer School on Security Testing and Verification,
Leuven, Belgium

These slides: https://cs.au.dk/~timany/talks/leuvenss22

https://cs.au.dk/~timany/talks/leuvenss22
https://cs.au.dk/~timany/talks/leuvenss22

Introduction

It is important to make sure that critical software systems are safe and secure
Our approach: formal proof of safety and security properties of programs and PL’s

We use mathematical tools:

— Define the semantics (meaning) of programs, e.g., operational semantics

— State theorems about programs and PL’s in terms of their semantics, e.g., safety,
functional correctness, type safety, etc.

— Prove these properties using different tools and techniques

This is very similar to what other engineers do

— They build a mathematical model of the building/structure they are planning

— Analyze the model to make sure it is resilient against, e.g., earthquakes

Introduction

Program logics are important tools
— Based on mathematical logic
— Provide a formal framework for stating and proving properties of programs

— In this course: an overview of the Iris program logic and its applications

Programs’ semantics

In order to determine whether a program is correct/safe/secure we need to understand its meaning
(semantics).!

We use small-step operational semantics:

— A mathematical relation — describing individual steps of computation.
— We write —" for zero or more steps of computation

Formally, this is the reflexive transitive closure of —

Example:
2+3—>5

(2+3+7)%2—>%24;indetails: (2+3+7)%2 > (5+7)%2 > 12%2 — 24

%What we present here is slightly simplified. Semantics needs to also take into account the state of the machine, e.g.,

contents of memory. 3

Programs’ semantics

We distinguish a class of expressions called values:
— These are values we expect as the end result of computations

— Examples: numerals (2, 3, etc.), booleans, memory locations (references/pointers), functions,
etc.

— Non-examples: 2 + 3, “a” - 3,4 “a”, £[10], ! ¢ etc.

In this formalism we characterize errors (program crashing) as stuck programs:
— These are programs that are neither values nor can they take any step of computation

— Examples: “a” - 3 (treating a string as a number), 4 “a” (treating a number as a function), etc.

— How about £[10] and ! #? Are these programs stuck?

Programs’ semantics

We distinguish a class of expressions called values:
— These are values we expect as the end result of computations

— Examples: numerals (2, 3, etc.), booleans, memory locations (references/pointers), functions,
etc.

— Non-examples: 2 + 3, “a” - 3,4 “a”, £[10], ! ¢ etc.

In this formalism we characterize errors (program crashing) as stuck programs:
— These are programs that are neither values nor can they take any step of computation

— Examples: “a” - 3 (treating a string as a number), 4 “a” (treating a number as a function), etc.

— How about £[10] and ! #? Are these programs stuck?

It depends on the contents of the memory.
These programs could result in memory violations.

Some Interesting Properties

Safety: program does not crash

Safe(e) 2 Ve'.e =" ¢ = Val(e') vIe’. e — €’

— Example: Safe(letrecfx=f xinf4)

«

— Counterexample: —Safe(if “a” then2else 3)

Some Interesting Properties

Safety: program does not crash

Safe(e) 2 Ve'.e =" ¢ = Val(e') vIe’. e — €’

— Example: Safe(letrecfx=f xinf4)
— Counterexample: —Safe(if “a” then2else 3)
Functional Correctness: safe, and upon termination postcondition holds
Correcty(e) = Safe(e) A Vv. Val(v) A e —" v = $(v)

— Example: Correctisgyen(3 +5)

Some Interesting Properties

Safety: program does not crash
Safe(e) 2 Ve'.e =" ¢ = Val(e') vIe’. e — €’

— Example: Safe(letrecfx=f xinf4)

«

— Counterexample: —Safe(if “a” then2else 3)
Functional Correctness: safe, and upon termination postcondition holds

Correcty(e) = Safe(e) A Vv. Val(v) A e —" v = $(v)

— Example: Correctisgyen(3 +5)

Type safety: well-typed programs are safe

Is safety interesting?

Does safety, i.e., programs not crashing, have security implications?

Yes, many security vulnerabilities arise as safety (memory) violations, e.g., the infamous
Heardbleed bug.

An aside: there are other interesting properties that our methodology supports but are not covered
in this course, e.g., non-interference.

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number /

— The other side sends the first [characters of m back to signal that it is alive

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number /

— The other side sends the first [characters of m back to signal that it is alive

A simplified version of implementation:

void answer_heartbeat(SSL *req, unsigned int 1){
send_reply(l, reg->data);
}

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:
— One side sends a heartbeat request message m together with a number /

— The other side sends the first [characters of m back to signal that it is alive

A simplified version of implementation:

void answer_heartbeat(SSL *req, unsigned int 1){
send_reply(l, reg->data);
}

What happens if [> length(m)?

I bytes

Memory: m->data Other data in memory including passwords, security keys, etc.

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number /

— The other side sends the first [characters of m back to signal that it is alive

A simplified version of implementation:

void answer_heartbeat(SSL *req, unsigned int 1){
send_reply(l, reg->data);
}

This is a memory violation and would have been

What happens if [> length(m)? caught had the program been verified.

I bytes

Memory: m->data Other data in memory including passwords, security keys, etc.

Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

— One side sends a heartbeat request message m together with a number /

— The other side sends the first [characters of m back to signal that it is alive

A simplified version of implementation:

void answer_heartbeat(SSL *req, unsigned int 1){
if(l > reg->length){return;} < T} fix

send_reply(l, reg->data);
}

What happens if [> length(m)?

This is a memory violation and would have been
caught had the program been verified.

I bytes

Memory:

m->data

Other data in memory including passwords, security keys, etc.

Challenges

We defined safety as a desirable property to prove about programs.

Question: How do we reason about safety of large programs based on a detailed
operational semantics?

— There are many details, especially when we consider concurrent and distributed systems

A foundational approach, i.e., based on first principles, in a proof assistant (Coq)

The Proof Assistant Coq

A proof assistant based on the Calculus of Inductive Constructions
— Coqis itself a programming language:
— Curry-Howard correspondence (types are theorems, programs are proofs)
— It has an interesting meta-theory called type theory
— Proofs written and checked against foundational mathematical principles:

— Coq only understands functions and the concept of induction

An example: s nas tln sl

as [|m I8m].

— Commutativity of addition for natural numbers e tim. reflexiviey.
as [|m T8m].

. simpl. reflexivity.

— Proof automation can help but still this demonstrates the level i
of formality ke < .

Proof assistants are the highest standard of rigor for mathematical proofs

The Proof Assistant Coq

We use Coq to reason about state-of-the-art programs and programming languages:
— We define the precise mathematical model (operational semantics) of program execution
— The level of details in these models necessitates the use of proof assistants and program logics
— We define program logics (the Iris framework) for these programs

— Use these to prove correctness of programs

10

Challenges

Question: How do we reason about safety of a large programs based on a detailed
operational semantics at this level of detail in Coq?

— Coq solves the problem of mathematical rigor

— Still, proofs in Coq are not easier than those on paper; they are in fact more detailed and
longer ...

— How do we manage the complexity of proofs?

Abstraction and Modularity

11

Abstraction and Modularity

Abstraction and modularity are important related concepts whereby we mean:

— Abstract reasoning: hiding details not relevant to the core of the problem at hand, e.g.

individual steps of computation

scheduler (in case of concurrency)

the contents of the (entire) memory

networking layer (in case of distributed systems)

— Modular reasoning: composing of proofs of separate modules to prove correctness of

composed modules, e.g.

modular specs for libraries, e.g., abstract specs for ADT’s like stacks

reasoning about different threads in isolation

only considering a module’s memory footprint, i.e., parts the module might touch
reasoning about different nodes in the network in isolation

Modularity is also important for robust safety as we will see.

Abstraction and modularity are things that a program logic gives us.

12

What is Iris?

A Framework for Higher-order Concurrent Separation Logics

— : Built on top of (Program Correctness)

Program Logic

Iris Base Logic

(Operational Semantics)

13

What is Iris?

A Framework for Higher-order Concurrent Separation Logics

— : Built on top of (Program Correctness
— : Iris’s adequacy theorem safety/functional correctness

Program Logic

Iris Base Logic

(Operational Semantics)

13

What is Iris?

A Framework for Higher-order Concurrent Separation Logics

— : Built on top of (Program Correctness

— : Iris’s adequacy theorem
O : User-defined

safety/functional correctness

Program Logic

Custom Program Logic)

Tl (Operational Semantics)

Iris Base Logic

Used e.g. in reasoning about:

- a Haskell-style ST monad (POPL’18)
- termination insensitive non-interference (POPL’21)
- termination sensitive non-interference (S&P’21)

13

Versatility of Iris

Iris has been used in many projects:

Reasoning about session types

Reasoning about capability machines (hardware language)
Reasoning about non-interference (a security property)
Reasoning about distributed systems

Proving properties of gradual typing systems

Reasoning about algebraic effect handlers

Reasoning principles for weak memory

Proving properties of DOT (core of Scala)

Proving properties of the Rust programming language

etc.

This versatility is due to Iris’s expressivity.

14

Iris Base Logic

A logic with features designed for defining program logics:

P:=True|False |[PVP|PAP|P— P|Vx.P|3x. P| (higher-order logic)
PxP| (separation logic)
@Y | BP| (user-defined resources)
>P | ur.P| (step indexing)
(invariants)

Base logic inference rules:

15

Program Logic
A Hoare-style logic:
precondition

Examples: {n > 0} fact n{x. x = n!}

program)
binder for return value

{P}f{X- O}

postcondition

{True} letrec fx =f xinf 4{x. False}

16

Program Logic

program .
A Hoare-style logic: J binder for return value
{PYe{x. O}
precondition postcondition
Examples: {n > 0} fact n{x. x = n!} {True} letrec fx =f xinf 4{x. False}
Theorem (Adequacy)
If we prove

F {True} e{x. p(x)}

in Iris for a suitable ¢, then Correcty(e)

16

Program Logic

program .
A Hoare-style logic: binder for return value

{P}f{x O}

precondition postcondition
Examples: {n > 0} fact n{x. x = n!} {True} letrec fx =f xinf 4{x. False}

Theorem (Adequacy)
If we prove
F {True} e{x. p(x)}

in Iris for a suitable ¢, then Correcty(e)

Proof rules for reasoning about programs:
- s v @uAIKBIER (e @) Pep Vgl gl el
(P} Kle] {x. R} {P'Yef{x.Q'} {P)(recfx=e) v{x. Q)

16

Expressivity: Higher-Order Logic

Specifying abstract data types:?

JisStack : Val — list(Val — Prop) — Prop.
{True} mk_stack() {s.isStack(s, [])} A
Vs YO.VDs.{isStack(s, s) * ®(x)} push(x, s) {v.v = () A isStack(s, D :: Ps)}A
Vs.YO.VDs.{isStack(s, @ :: s)} pop(s) {v.®(v) = isStack(s, Ps)}

Note the higher-order quantification of a predicate that takes a list of predicates

Taken verbatim from Iris lecture notes.

17

Expressivity: Separation Logic

Separating conjunction: _) '
f— separating conjunction

PxQ
P« Q holds if P and Q hold for disjoint resources

Example: exclusive ownership of a memory location (points-to proposition)

t vl >V iEe£Ll
HoOARE-ALLOC HOARE-LOAD
{True} ref(v) {x. 3. x =L = £ — v} {t v} {x.x=vsl+> v}

HOARE-STORE
{t v}t —wi{x. x=()*t > w}

18

Expressivity: Separation Logic

In separation logic a Hoare triple specifies footprint of the program.

Hence the frame and par rules:

HoOARE-FRAME HOARE-PAR
{P}e{x. O} {P1} e {x. O1} {P2} ex {x. Qo}
{P=R}e{x. QxR} {P1 * Po}eqlex {x. Fvi, vo. x = (vi, v2) * O1[vi/x] * Qo[v2/x]}

Important for modular verification:
Verify modules working on separate parts of memory in isolation and combine proofs

What if two modules share memory?
We use invariants (and resources) to specify sharing protocols

19

Expressivity: User-Defined Resources

Users can introduce resources as partial commutative monoids (PCM’s)

user-defined operation
L,

update modality a” «[b” 4 a7}

logical equivalence

B P holds if P holds after updating resources

Idea: for verifying stateful programs we need a stateful logic

20

Expressivity: Step-Indexing and Invariants

Iris invariants are impredicative:

P can be any proposition;

it may also include invariants
Step-indexing is necessary for impredicative invariants to avoid self-referential paradoxes

These features are necessary for defining logical relations models for programming languages with
advanced features

21

Expressivity: Step-Indexing and Invariants (Logical Relations)

Goal: we want to prove type safety (well-typed programs do not crash)

Using logical relations:
We prove by induction on typing derivation:

e: 7= LR.(e)

where
LR, (e) = Safe(e)

However, we cannot take LR.(e) to be Safe(e):

Safe(e;) A Safe(ey) > Safe(e; — ;)

Counter example: Safe(true) and Safe(3) but =Safe(true — 3)

22

Expressivity: Step-Indexing and Invariants (Logical Relations)

We should take LR; to be:
LR.(e) = Correct[(e)

where [7] (v) means that v is a value of type .
Ideally, we should define this by induction on types:

[int](v) 2veZ
[(r1 X)) (v) £ 3vL, vp.v = (v, v2) A [1] (v) A [22] (v2)
[t = =] (f) = Vv A[a] (W} f vix. [z] ()}

: circular definition
[pX. 7] (v) = Fw. v=fold (w) A [r] X o (W)
[ref(r)] (v) £ 3¢. v=1¢ A £ always stores a value of 7

X howdowe express this?

23

Expressivity: Step-Indexing and Invariants (Logical Relations)

We use Iris and define

LR (e) = {True} e{x. [r] (%)}
We define 7] (v) inductively as follows:

[int] (v) 2veZ
[(r1 X 2)] (v) £ IvL, vo.v = (v,) A 1] (v) A 2] (v2)
[r1 = =] (f) = Vv A[n] (W} f vix. [r] (0}
: Iris’s guarded recursion
[pX.7] £ pr. Av. 3w. v=fold (w) A» 1]y, (W)
[ref(n)] (v) 2 3t. v="£A[Fw. £ > w] (w)]

may include invariants

24

Expressivity: Step-Indexing and Invariants (Logical Relations)

[E+ ala(vv) = A(@)(vv)

[E+N]a(w, v/ enN

[Ernxnl@y) s Vv v = (v) AV = (VA

Fala(u V) A[EF n)alw,

[E+ 1= nlav) £ Yo' O([E F rla(w,w) + E[E F na(vw v W)

Alemf) (VY)

[+ pa.t]a(v.v) 2 pf. Fw,w'.v=foldwA v = fold w'A
o[E b tlaganyy (W)

[Erref(Da(vv) 23tv=tAV =0'A

E[=+ tlale) 2Vp,ji K, {spec_inv(p) = ji=> €'}

e

{(v.3v.j v+ [Er ()}

This approach to type safety is called semantic type safety
It has been used for reasoning about correctness of the Rust type system.

See Derek Dreyer’s POPL’18 keynote for more details.

25

Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:

letc=ref(0)in

(faacl|] fa\a(cz);\ atomic fetch and add operation

lc

26

Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:

{True}
letc=ref(0)in
(faacl||faac2);
lc

{x. x > 0}

26

Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:
{True}
letc=ref(0)in
{c— 0}

{3n.n>0%crH n}

{(3n.n>0xc—n} |{Bn.n>0xcr nf}

{3n.n>0%xcrH— n} |{In.n>0%c+ n}
faacl faac2

{x.An.n>0xcr n}|{x. In. n > 0« c > n}

{3n.n>0%cH n}

lc

{x. x >0}

26

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
letc=ref(0)in
(faacl||faac2);
lc

{x. x=13}

27

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

With which invariant should we proceed?

dn.n>0%cr 1 ¢ 3

Neither works. We need to be able to refer to the value outside the invariant!

{True}
letc=ref(0)in
(faacl||faac2);
lc

{x. x =3}

27

srarminla. Qharad AMarmarsr O anarzvvranaoxr (Ctvrancar Dactannditian)

E

We use user-defined resources to define the following:

Sum? Left” Right”
i T —
Sum of contributions contributions of contributions of
the left thread the right thread
CONTR-ALLOC CONTR-SUM
F B 3y. Sum”(0) * Left" (0) * Right”(0) SumY(n) = Left¥(m) = Right"(k) r n=m+k

CONTR-INCR-LEFT
Sum? (n) * Left” (m) + BSumY (n+ k) = Left! (m+ k)

CONTR-INCR-RIGHT
SumY(n) = Right”(m) + B SumY(n + k) % Right"(m+ k)

27

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
letc=ref(0)in
(faacl||faac2);
lc

{x. x=13}

27

Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}

letc=ref(0)in

{c— 0}

{c + 0% Sum?(0) * Left’(0) = Right"(0)}

{3n. ¢ = nx Sum?(n)| * Left’ (0) = Right’(0)}
{Bn. ¢ > nxSum?(n)| * Left’ (0)}||{3n. c = n* Sum(n)| * Right? (0)}

faacl faac?2 ;

{x. Left (1)} {x. Right¥(2)}

{3n. c = nxSum?(n)| * Left’ (1) = Right’(2)}

lc

{x. x=13}

27

Proofs and Iris Proof Mode

— Isimplified the proofs that I just presented
— However, Iris features a Proof Mode (IPM)

— IPM makes program verification in Coq
very close to what I presented

— To the right: screenshot of the proofs
we just saw in Iris in Coq using IPM

Robust Safety

Our modular reasoning principles imply that we can combine programs that are proven,
e.g. the HOARE-PAR rule.

Question: What can we say about combining a proven correct program with an arbitrary,
adversarial program?

Important insight:

— We can express limitations of arbitrary programs in terms Iris propositions and Hoare triples.

— Modular reasoning: we can combine these Hoare triples with those of proven correct
programs.

— We obtain proofs about the result of linking a proven correct program with an arbitrary,
adversarial program.

29

Robust Safety

Notice: We consider arbitrary programs which may crash.

Hence, we use a weaker, non-progressive variant of Hoare triples which allow the program to get
stuck:

{P}; e{x. O}

Just like ordinary Hoare triples the non-progressive version also enforces invariants and does not
allow assertion (we will see) failures.

{Pye{x. O} + {P}; e{x. O}

All the modular reasoning principles of ordinary Hoare triples, e.g., HOARE-FRAME, HOARE-PAR, etc.,
also hold for the non-progressive variant.

30

Robust Safety

Similar to Correcty we define NonProgy which

— does not guarantee progress (programs may get stuck)

— requires no assertion failures

— if the program terminates to a value v, ¢(v) must hold

Theorem (Non-progressive Adequacy)
If we prove

F{True}, e{x. ¢(x)}
in Iris for a suitable ¢, then NonProgy (e)

31

Robust Safety, an Example

The following even_counter module returns two functions, one to read the value and one to
increment it by two.

even_counter = let ¢ = ref(0) in
letincr _= faac2in
let read _=letx=!cinassert(x % 2=0); xin

(incr, read)
Question: can we prove NonProg;sgyen (prog)?
prog = let (incr, read) = even_counter in adversary; read ()

where adversary is a program with no hard-coded locations or assertions.

32

Robust Safety, an Example

The following even_counter module returns two functions, one to read the value and one to
increment it by two.

even_counter = let ¢ = ref(0) in
letincr _= faac2in
let read _=letx=!cinassert(x % 2=0); xin

(incr, read)
Question: can we prove NonProg;sgyen (prog)?
prog = let (incr, read) = even_counter in adversary; read ()
where adversary is a program with no hard-coded locations or assertions.

Hint: the language does not support pointer arithmetic; the only way to get a pointer is if the
program allocates it or if it is passed to it from another part of the program.

32

Robust Safety, an Example

Question: is our assumption of no pointer arithmetic reasonable?

Yes, this property holds for our high-level programming language. Hence, we can indeed prove
NonProg;sgven (prog) from the previous slide.

Question: But more realistically, programs can be linked to adversary programs written
in more low-level languages, e.g., directly in assembly. Surely, those can perform pointer
arithmetic.

Yes, however, some modern hardware architectures (still mostly in research labs) feature so-called

capabilities which essentially restrict pointer arithmetic which can be used to enable the guarantee
that we have assumed about pointers.

See our work on studying the assembly language capability machines in Iris for more details.

33

How Do We Prove Robust Safety?

Question: how do we prove NonProg;sgyen(prog)?
prog = let (incr, read) = even_counter in adversary; read ()

where adversary is a program with no hard-coded locations or assertions.

34

How Do We Prove Robust Safety?

Question: how do we prove NonProg;sgyen(prog)?
prog = let (incr, read) = even_counter in adversary; read ()

where adversary is a program with no hard-coded locations or assertions.

Modular Reasoning!

34

How Do We Prove Robust Safety?

We can easily show the following specs for even_counter:

{True},
even_counter
x.Af,g.x=(f, 8 A
(Vv. {True}, fv{y. y=0}) A
(Vv. {True}, g v{y. isEven(y)})

The proof is very similar to the example before. We simply use an invariant that asserts the
location is always even.

If we somehow had a non-progressive Hoare triple for the adversary program, we could
just compose it with the spec above; because modularity!

35

Logical Relations for Establishing Robust Safety

We define a logical relations model for our language:
— We define relations capturing good values and good expressions
— Similar to the logical relations we saw before except relations are not indexed by types

— Our language has not typed
— Arbitrary adversarial programs may not be well-typed even if had types

— We show that all adversarial programs (no hard-coded locations or assertions) are good

36

Logical Relations for Establishing Robust Safety

We define the good,,; and good,,, relations as follows:
good,,(e) = {True}, e{x. good,,(x)}
where good,,,;(v) is inductively as follows:?

good,,/(n) = True if neZ
good,,;(b) £ True if be{true, false}
good,,;(()) = True

good,,;(vi,v2) = good,,,;(vi) A good,;(v2)

good, (rec fx=e) =Vv.{good, ;(v)} (recfx=e) v{x. good,, (x)}

good. ., (£) =[Fv. £ — v good (V)]

3This time by induction on the form of values instead of types.

37

Logical Relations for Establishing Robust Safety

We define the good,,; and good,,, relations as follows:
good,,(e) = {True}, e{x. good,,(x)}
where good,,,;(v) is inductively as follows:?

good,,/(n) = True if neZ
good,,;(b) £ True if be{true, false}
good,,;(()) = True

good,,;(vi,v2) = good,,,;(vi) A good,;(v2)

good, (rec fx=e) =Vv.{good, ;(v)} (recfx=e) v{x. good,, (x)}

good. ., (£) =[Fv. £ — v good (V)]

Question: why are these relations not trivial?

3This time by induction on the form of values instead of types.

37

Logical Relations for Establishing Robust Safety

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.

Furthermore, let Vs be values which are all good.

The following holds:
goodexp(e[VE/)TE])

— . —>
where xs are variables (as many as vs).

Proof.

By induction on e.

38

Robust Safety, an Example (proof)

{True},

let (incr, read) = even_counter in
adversary;
read ()

{x. isEven(x)}

{True},
even_counter
x.3f. g x=(.8) A
(V. {True}; f v{y. y= O}) A
(Vv. {True}, g v{y. isEven(y)})

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let Vs be values which are all good.
The following holds:

good,,, (e[73/33])

where x3 are variables (as many as vs).

39

Robust Safety, an Example (proof)

{True},
(Vv. {True}; f vi{y. y= OD A |
(Vv. {True}, g v{y. isEven(y)})
let (incr, read) = (f, g) in
adversary;
read ()
{x. isEven(x)}
{x. isEven(x)}

{True},
even_counter
x.3f. g x=(.8) A
(V. {True}; f v{y. y= O}) A
(Vv. {True}, g v{y. isEven(y)})

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let Vs be values which are all good.
The following holds:

good,,, (e[73/33])

where x3 are variables (as many as vs).

39

Robust Safety, an Example (proof)

{True},
(Yv. {Truel; fv{y. y=0}) A |4
(Vv. {True}, g v{y. isEven(y)})

adversary(f, g/incr, read];

g0
{x. isEven(x)}
{x. isEven(x)}

{True},
even_counter
x.3f. g x=(.8) A
(V. {True}; f v{y. y= O}) A
(Vv. {True}, g v{y. isEven(y)})

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let Vs be values which are all good.
The following holds:

good,,, (e[73/33])

where x3 are variables (as many as vs).

39

Robust Safety, an Example (proof)

{True},
(Vv {True}; fv{y. y =0 A |4
(Vv. {True}, g v{y. isEven(y)})
adversary|f, g/incr, read];
(Vv. {True}; fv{y. y=0}H A
(Vv. {True}, g v{y. isEven(y)})

g0
{x. isEven(x)}
{x. isEven(x)}

{True},
even_counter
x. 3f,g. x = (f.9) A
(V. {True}; f v{y. y= O}) A
(Vv. {True}, g v{y. isEven(y)})

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let Vs be values which are all good.
The following holds:

good,,, (e[73/33])

where x3 are variables (as many as vs).

39

Robust Safety, an Example (proof)

{True},
(Vv. {True}, fv{y. y=0} A |4
(Vv. {True}, g v{y. isEven(y)})
adversary|f, g/incr, read];
(Vv. {True}; fv{y. y=0}H A
(Vv. {True}, g v{y. isEven(y)})

g0
{x. isEven(x)}
{x. isEven(x)}

{True},
even_counter
x.3f. g x=(.8) A
(V. {True}; f v{y. y= O}) A
(Vv. {True}, g v{y. isEven(y)})

Theorem (Fundamental Theorem of Robust Safety (FTRS))

Let e be any expression with no hard-coded locations or assertions.
Furthermore, let Vs be values which are all good.
The following holds:

good,,, (e[73/33])

where x3 are variables (as many as vs).

Hence, by applying the adequacy theorem for non-progressive Hoare triples, we get

NonProgisgyen(Let (incr, read) = even_counter in adversary; read ())

as required.

Online resources

I hope this talk has made you interested in
learning more about Iris, separation logic,
program verification, etc.

See http://iris-project.org

See https://cs.au.dk/~timany/talks/leuvenss22/

Iris Tutorial material
Iris related publications
PhD theses that include Iris works

Other manuscripts

— These slides

— Links to other resources

A Higher-Order Concurrent Separation Logic Framework,
implemented and verified in the Coq proof assistant

Leamninglis | Events Publications | PhD dissertations Other material

Irs s framework that can be used for reasoning about safety of concurrent programs, as the logic in logical relations, to reason

about type-systems, data-abstraction etc. In case of questions, please contact us on the Irs Club lst or in our chat room,

Learning Iris

Some useful designed to learn Iris and its Coq

intion of the rules and the model of the Iis ogic.
1o the rs tactics in Coq
mentation provide a reference of the Iris tactics in Coq,

Events
« 2 May-6 May 2022
« 18 January 202
« 20 January 202
« 28 October-1N
« 8 January 2018;

. Niimegen, The Netherlands

s at POPL, New Orleans, USA
ark

Publications

Below, we give an overview of the research that uses Ifs one way or another.

40

http://iris-project.org
https://cs.au.dk/~timany/talks/leuvenss22/

