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Well-bracketed control flow

Well-bracketed control flow:

In every function call, the caller resumes execution exactly once when the callee terminates.

In other words, function calls and returns form a stack.

This is often the case, except in the presence of features that break well-bracketedness like

concurrency and continuations.
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The Very Awkward Example (VAE)

Well-bracketedness is often captured via the Very Awkward Example (VAE) (attributed to Jacob

Thamsborg):

let r = ref(0) inλf . r ← 0; f (); r ← 1; f (); ! r (Very Awkward)

We expect that this program should always return 1 in a well-bracketed setting but the reasoning is

rather subtle:

– Intuitively, r is not accessible from outside the closure hence, it could not be influenced from

“outside”.

– However, the closure can itself be called within the callback used to call the closure.

let g = let r = ref(0) inλf . r ← 0; f (); r ← 1; f (); ! r in

g (λ_. g (λ_. ()); ()) (VAE-self-applied)
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The Very Awkward Example (VAE)

[Dreyer et al., 2010] introduced a logical relations model featuring state transition systems with

public (solid) and private (dashed) transitions.

Every function can locally make private transitions but must be in a publicly reachable state upon

returning.

r = 0 r = 1 (VAE-sts)

This approach has been successfully replicated by others, e.g., [Skorstengaard et al., 2019] and

[Georges et al., 2021].

The latter uses Iris to hide all the details of the model, step-indexing, resources, etc., but still uses an
explicit collection of state transition systems.
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Central question

Central question: Can we do better? Can we avoid explicit state transition systems?

Desiderata for the ideal solution (Our solution achieves all):

Conservative Extension A Hoare logic based on separation logic (Iris) which validates verbatim all

the usual reasoning principles of separation logic for a sequential language,

Bespoke Facilities with additional reasoning principles for reasoning about well-bracketedness.

Minimal Extension It uses existing reasoning facilities, e.g., Iris’s ghost state and invariants,

instead of public/private transitions.

Versatility It can be used to used to construct unary and binary logical relations models in the

standard way, i.e., as presented in [Krebbers et al., 2017, Timany et al., 2022], to

obtain a model which enables reasoning about well-bracketedness without explicit

state transition systems.
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The Awkward Example

Let us take a look at a closely related example.

The VAE is an adaptation of [Pitts and Stark, 1999]

let r = ref(0) inλf . r ← 1; f (); ! r (Awkward)

One would use the following state transition system for Awkward:

r = 0 r = 1 (Awkward-sts)

It has only one public transitions and no private transition.
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The Akward Example

We can prove that Awkward returns 1 in Iris without using state transition systems explicitly.

The spec for Awkward:

{True}
let r = ref(0) inλf . r ← 1; f (); ! r

{g. ∀f . {{True} f () {x. x = ()}} g f {x. x = 1}}
(awkward-spec)
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The Akward Example

The idea is to use the following one-shot ghost theory:

make-one-shot

⊢ |⇛∃γ. pending(γ)
shoot

pending(γ) ⊢ |⇛shot(γ)
pending-not-shot

pending(γ) ∗ shot(γ) ⊢ False

shot-persistent

⊢ persistent(shot(γ))

together with the following invariant:

AwkwardInv ≜ (ℓ 7→ 0 ∗ pending(γ)) ∨ (ℓ 7→ 1 ∗ shot(γ)) (awkward-invariant)

In Iris, ghost resources and frame-preserving updates correspond to public transitions.
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Counterpart for private transitions

If Iris’s ghost theory and frame-preserving updates capture public transitions,
what then would allow us to capture the kind of reasoning supported by private
transitions?

Answer: We introduce the well-bracketed program logic (well-bracketed Hoare triples)

– built on top of the existing Hoare logic of Iris

– It satisfies all the desiderata mentioned earlier.

– Enables reason about well-bracketing in HeapLang.

– Features proof rules to allocate and manipulate stacks of ghost names.

The central idea: to make a private transition from s to s′ we do the following:

■ The current ghost resource instance is the one on top on stack.

■ Leave the current instance (tracking s) untouched.

■ Allocate a fresh instance in state s′ and push it onto the stack.

■ To roll back, i.e., to go to a publicly reachable state, we just pop the stack.
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Well-bracketed Hoare triples

LPM e Lx. QMO

The stack mask: a set of (open) stack names

Just like ordinary Hoare triples of Iris with an added stack mask: a set of open stack names.

We omit O when it is empty.

It satisfies the counterpart to all WP rules for HeapLang except for wp-fork:

wbHoare-conseqence

Q =⇒ P ∀v. Φ(v) =⇒ Ψ(v)

LPM e LΦMO ⊢ LQM e LΨMO

wbHoare-inv-open

LI ∗ PM e Lx. I ∗ QMO e is atomic

L I ∗ PM e Lx. QMO

wbHoare-bind

LPM e LΨMO ∀v. LΨ(v)MK[v] LΦMO

LPMK[e] LΦMO

wbHoare-frame

LPM e LΦMO ⊢ LP ∗ RM e Lx. Φ(x) ∗ RMO
wbHoare-alloc

⊢ LTrueM ref(v) Lx. x 7→ vMO
wbHoare-load

⊢ Lℓ 7→ vM ! ℓ Lx. x = v ∗ ℓ 7→ vMO

wbHoare-store

⊢ Lℓ 7→ vM ℓ← w Lx. x = () ∗ ℓ 7→ wMO

Hence, we can ignore stacks when not reasoning about well-bracketedness.
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Reasoning principles for well-bracketedness (stacks)

An authoritative resource algebra of stacks (stack• and stack◦).

stack•: managed by the program logic (except if the stack is open, i.e., in the mask O).

stack◦: given to the user.

stacks-agree

stack•(N , s) ∗ stack◦(N , s′) ⊢ s = s′
stack-full-uniqe

stack•(N , s) ∗ stack•(N , s′) ⊢ False

stack-fragment-uniqe

stack◦(N , s) ∗ stack◦(N , s′) ⊢ False
stack-exists

stack◦(N , s) ⊢ stack∃(N )

stacks-push

stack•(N , s) ∗ stack◦(N , s) ⊢ |⇛stack•(N , γ :: s) ∗ stack◦(N , γ :: s)

stacks-pop

stack•(N , γ :: s) ∗ stack◦(N , γ :: s) ⊢ |⇛stack•(N , s) ∗ stack◦(N , s)
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Stack rules

Throughout the proof we can:

Allocate new stacks:
wbHoare-create-stack(
∀N , LP ∗ stack◦(N , [γ])M e LΦMO

)
⊢ LPM e LΦMO

Access, i.e., open, stacks in a delimited way: [In VAE: around the body of the closure]

wbHoare-access-stack

N ̸∈ O(
∀s. LP ∗ stack•(N , s)M e Lx. Φ(x) ∗ stack•(N , s)MO∪{N}

)
⊢ Lstack∃(N ) ∗ PM e LΦMO

Mend, i.e., temporarily close, stacks: [In VAE: around the callback]

wbHoare-mend-stack

LPM e LΦMO\{N} ⊢ Lstack•(N , s) ∗ PM e Lx. Φ(x) ∗ stack•(N , s)MO

Note how wbHoare-mend-stack is the dual of wbHoare-access-stack
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Specs and proof of VAE

We prove the following about VAE:

LTrueM
let r = ref(0) inλf . r ← 0; f (); r ← 1; f (); ! r

Lg. ∀f . LLTrueM f () Lx. x = ()MM g f Lx. x = 1MM
(VAE-spec)

This exactly the spec for Awkward but using well-bracketed triples instead of ordinary triples.

The invariant that we use for proving VAE-spec is as follows:

VAEInv ≜ ∃γ, s. stack◦(N , γ :: s) ∗ (ℓ 7→ 0 ∗ pending(γ)) ∨ (ℓ 7→ 1 ∗ shot(γ)) (VAE-invariant)

exactly the invariant for Awkward

except γ is the one on top of the stack
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Proof of VAE

The proof is very similar to that of Akward with some additional steps (in the following order):

– We allocate a stack N to establish the invariant and remember the name using stack∃(N ).

– We access stack N around inside the closure.

– When we write 0 to ℓ, we push a new instance (in pending state) on the stack.

– We mend the stack before each callback (the callback may use stacks; its mask is also empty).

– When we write 1 to ℓ, we pop the stack

– If necessary perform shoot resource update. [This also happens in Awkward.]
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A brief look at the internals of well-bracketed triples

Well-bracketed Hoare triples are defined in terms of well-bracketed weakest preconditions:

LPM e LΦMO ≜ □
(
P −∗ wbwp e LΦMO

)
Well-bracketed weakest preconditions are defined in terms of Iris weakest preconditions:

wbwp e LΦMO ≜ ∀S. AllStacksExcept(S,O) −∗
wp e

{
x. ∃S ′. S ⊆ S ′ ∗ AllStacksExcept(S ′,O) ∗ Φ(x)

}
(wbwp-definition)

A finite map from stack names to stack contents

Ownership of all stack• resource in S except for those in O

The crux: well-bracketed programs may allocate new stacks,

but have to preserve the state of each and every stack.
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The relation to ordinary Hoare triples and concurrency

Ordinary Hoare triples imply well-bracketed Hoare triples:

Hoare-wbHoare

{P} e {Φ} ⊢ LPM e LΦMO

Intuitively: if a program does not rely on stacks it cannot break well-bracketedness.

Upshot: We can combine reasoning and reason about innocuous non-well-bracketed concurrent

programs. We can prove LTrueM h g Lx. x = 1M for the following program:

let g = let first = ref(true) in let res = ref(None) in

let recwait() = if ! res = None thenwait () else ()in

λ_.; if ! first then first ← false; fork {res← Some(fact 1000000)} elsewait ()
in let h = let r = ref(0) inλf . r ← 0; f (); r ← 1; f (); ! r in

h g (innocuous-concurrency)

This demonstrates that we capture the semantic essence of well-bracketedness as we can capture

and reason about well-bracketedness in HeapLang including (innocuous) concurrency.
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Well-bracketedness as a trace property

We use the methodology of [Birkedal et al., 2021] together with VAE-spec to prove that calls to and

returns from VAE are indeed well-bracketed.

We instrument VAE (to emit events when entering and exiting the VAE closure).

Lseqfull ::= ⟨τ, call⟩ · Lseqfull · ⟨τ, ret⟩ | Lseqfull · Lseqfull | ε (τ ∈ Tag ≜ String)

Here τ is a unique tag created for each call made.

We show that any trace of (partial) execution of the program always matches a prefix of Lseqfull .
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Logical relations models

We can add support for reasoning about well-bracketedness to the logical relations model of

[Timany et al., 2022] by simply using WBWP instead of Iris’s WP.

We use the obtained unary and binary models to prove well-bracketedness of VAE.

EJΞ ⊢ τK∆ ≜ λ(e, e′). ∀C. SpecCtx∗ Z⇒ C[e′] −∗ wbwp e Lv. ∃v′. Z⇒ C[v′] ∗ JΞ ⊢ τK∆(v, v′)M

JΞ ⊢ αK∆ ≜ ∆(α)

JΞ ⊢ 1K∆ ≜ λ(v, v′). v = v′ = ()

JΞ ⊢ BK∆ ≜ λ(v, v′). v = v′ ∈ {true, false}
JΞ ⊢ ZK∆ ≜ λ(v, v′). v = v′ ∈ Z

JΞ ⊢ τ1 × τ2K∆ ≜ λ(v, v′). ∃v1, v2, v′1, v′2. (v = (v1, v2)) ∗ (v′ = (v′
1
, v′

2
)) ∗

JΞ ⊢ τ1K∆(v1, v′1) ∗ JΞ ⊢ τ2K∆(v2, v′2)

JΞ ⊢ τ1 + τ2K∆ ≜ λ(v, v′).
∨

i∈{1,2} ∃w,w′. (v = inji w) ∗ (v′ = inji w′) ∗ JΞ ⊢ τiK∆(w,w′)

JΞ ⊢ τ → ρK∆ ≜ λ(v, v′). □
(
∀w,w′. JΞ ⊢ τK∆(w,w′) −∗ EJΞ ⊢ ρK∆(v w, v′ w′)

)
JΞ ⊢ ∀α. τK∆ ≜ λ(v, v′). □

(
∀(Ψ : Val×Val→ iProp

□
). EJΞ, α ⊢ τK∆,α 7→Ψ(v⟨⟩, v′⟨⟩)

)
JΞ ⊢ ∃α. τK∆ ≜ λ(v, v′).∃(Ψ : Val×Val→ iProp

□
).

∃w,w′. (v = pack⟨w⟩) ∗ (v′ = pack⟨w′⟩) ∗ JΞ, α ⊢ τK∆,α 7→Ψ(w,w′)

JΞ ⊢ µα. τK∆ ≜ µ(Ψ : Val×Val→ iProp
□
).

λ(v, v′). ∃w,w′. (v = foldw) ∗ (v′ = foldw′) ∗ ▷JΞ ⊢ τK∆,α 7→Ψ(w,w′)

JΞ ⊢ ref(τ)K∆ ≜ λ(v, v′).∃ℓ, ℓ′. (v = ℓ) ∗ (v′ = ℓ′) ∗ ∃w,w′. ℓ 7→ w ∗ ℓ′ 7→s w′ ∗ JΞ ⊢ τK∆(w,w′)
N .ℓ.ℓ′

EJΞ ⊢ τK∆ ≜ λ(e, e′).∀j,C. SpecCtx ∗ j Z⇒ C[e′] −∗ wp e
{
v.∃v′. j Z⇒ C[v′] ∗ JΞ ⊢ τK∆(v, v′)

}
JΞ ⊢ αK∆ ≜ ∆(α)

JΞ ⊢ 1K∆ ≜ λ(v, v′). v = v′ = ()

JΞ ⊢ BK∆ ≜ λ(v, v′). v = v′ ∈ {true, false}
JΞ ⊢ ZK∆ ≜ λ(v, v′). v = v′ ∈ Z

JΞ ⊢ τ1 × τ2K∆ ≜ λ(v, v′).∃v1, v2, v′1, v′2. (v = (v1, v2)) ∗ (v′ = (v′
1
, v′

2
)) ∗

JΞ ⊢ τ1K∆(v1, v′1) ∗ JΞ ⊢ τ2K∆(v2, v′2)

JΞ ⊢ τ1 + τ2K∆ ≜ λ(v, v′).
∨

i∈{1,2} ∃w,w′. (v = inji w) ∗ (v′ = inji w′) ∗ JΞ ⊢ τiK∆(w,w′)

JΞ ⊢ τ → ρK∆ ≜ λ(v, v′). □
(
∀w,w′. JΞ ⊢ τK∆(w,w′) −∗ EJΞ ⊢ ρK∆(v w, v′ w′)

)
JΞ ⊢ ∀α. τK∆ ≜ λ(v, v′). □

(
∀(Ψ : Val×Val→ iProp

□
). EJΞ, α ⊢ τK∆,α 7→Ψ(v⟨⟩, v′⟨⟩)

)
JΞ ⊢ ∃α. τK∆ ≜ λ(v, v′).∃(Ψ : Val×Val→ iProp

□
).

∃w,w′. (v = pack⟨w⟩) ∗ (v′ = pack⟨w′⟩) ∗ JΞ, α ⊢ τK∆,α 7→Ψ(w,w′)

JΞ ⊢ µα. τK∆ ≜ µ(Ψ : Val×Val→ iProp
□
).

λ(v, v′).∃w,w′. (v = foldw) ∗ (v′ = foldw′) ∗ ▷JΞ ⊢ τK∆,α 7→Ψ(w,w′)

JΞ ⊢ ref(τ)K∆ ≜ λ(v, v′).∃ℓ, ℓ′. (v = ℓ) ∗ (v′ = ℓ′) ∗ ∃w,w′. ℓ 7→ w ∗ ℓ′ 7→s w′ ∗ JΞ ⊢ τK∆(w,w′)
N .ℓ.ℓ′

left: the binary logical relations model of [Timany et al., 2022]; right: added support for well-bracketedness and removed concurrency.
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Logical relations models

We use our unary and binary logical relation models to prove correctness of VAE.

In the binary case, we show that VAE is contextually equivalent to the following program:

λf . f (); f (); 1 (Straightforward)

In the unary case, where logical relations implies safety, we prove safe a program that would crash

if VAE returned anything except 1.
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Conclusion

– We introduced a well-bracketed program logic

– Extends and embeds Iris’s program logic (for sequential programs)

– Captures the semantic essence of well-bracketedness

– Useful to construct logical relations to reason about well-bracketedness with minimal effort

– We established its soundness: the program trace is indeed well-bracketed

The parts of the work were not covered in this talk:
– Details of proofs

– The ghost theory of stacks, e.g., definition of AllStacksExcept, and its construction

– Coq proofs
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